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Abstract: Companies regularly face market pressure to develop products faster but they also need to
simultaneously incorporate technological constraints, sustainability trends, and customer require-
ments into their designs, which requires the use of systematic procedures. Firms that exploit natural
resources and convert them into high-value products are among them. However, the literature on
the application of such systematic approaches to products of this type remains scarce, as they often
requrire extensive experimental plans involving the testing and optimization of multiple formulations.
Here, we propose a systematic approach to the design of pine-resin-in-water emulsions, which can be
used to fabricate pressure-sensitive adhesives. The strategy is customer-centric in the sense that the
customers’ specifications are integrated into the decision-making tool used to assess the quality of the
formulations obtained through experiments. This tool uses loss functions to assess satisfaction with
individual quality characteristics and multi-attribute decision-making methods to integrate them
into an overall quality metric. Our framework is aligned with industrial practices and consists of
three sequential stages: (i) screening of primary factors; (ii) optimization of secondary factors; and
(iii) assessment of the experimental repeatability of the formulations. In each of these stages, the
decision-making tool is used to “drive” the process of finding the optimal formulation.

Keywords: product development; resin-in-water emulsions; colophony; experimental design;
customer-centric design

1. Introduction

The chemical industry is constantly seeking opportunities to manufacture essential
commodities and convert them into higher-value-added chemical-derived products [1].
The development of these chemicals requires (i) an economically viable process; (ii) a
marketing strategy that aligns with market trends; and (iii) a sustainable production route
and product (see, e.g., Harmsen et al. [2], Cussler and Moggridge [3]). Industries involved
in the transformation of pine resin, an abundant natural and non-toxic raw material, into
derivatives are currently facing the challenge to keep up with market demands. This
industrial sector is often referred to as the second industry in the product value chain [4],
where the primary industry is responsible for cleaning and separating the raw material
into basic fractions (e.g., the separation of pine oleoresin into colophony and turpentine
derivatives, see Zinkel and Russell [5]) and the third industry produces higher-value chemi-
cals resulting from the transformation/incorporation of resin derivatives. Typically, the
second industry produces derivatives in the form of elastomers, polymers for biomedical
applications, coatings, adhesives, and surfactants [6], as well as food products and excipi-
ents for the fragrance and pharmaceutical industries [7]. Recently, colophony derivatives
were recognized as exceptional and sustainable binders that can be used in combination
with other materials to improve physical properties [8,9] or as repellent and anti-microbial
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coatings [10,11]. Additionally, their application to the fabrication of adhesives has been
successfully investigated (see Hayashi et al. [12], Petrie [13], Unger et al. [14]).

Pressure-sensitive adhesives (PSAs) are a class of soft materials that adhere to different
media with light pressure and short contact times, without a chemical reaction [15]. PSAs
are often used in packaging applications (tapes and labels), medical applications, and baby
and feminine hygiene applications, among others. Initially, PSAs were produced from
natural rubber and they have predominantly been used in medical care. However, during
the 1960s, rubber-based technologies were replaced by solvent-based synthetic polymers
such as polyacrylates. Natural rubber emulsion-based technologies dominated the market
until the late 1970s [16]. PSA formulations with improved thermal stability and different-
molecular-weight versions of A-B-A block polymers were presented by Korpman [17].

Environmental concerns have forced industries to look for coating techniques other
than solvent-based systems. In recent decades, effective cross-linked hot-melt adhesive
systems have been developed to replace those based on natural rubber [18]. Water-based ad-
hesive systems have become a viable alternative, and the increasing use of water emulsion-
based systems ensures a greater selection of raw materials that can be incorporated into
applications, meeting economic and sustainability requirements. Pine resin belongs to this
group of materials and the industrial players in the market who have the ability to exploit
it are encouraged to develop successful formulations.

PSAs are amorphous viscoelastic materials with a rheological behavior that is de-
termined by the viscosity and elastic modulus. Both these properties, as well as the
glass transition temperature (here represented by Tg), depend on the composition. The
preparation of PSAs should ideally involve resin-in-water emulsions and the addition of
plasticizers, diluents, emulsifiers, and stabilizers should be minimized [19]. In addition
to the environmental impact of these agents, they can also have negative effects on the
functional/structural properties of PSAs, as they can migrate to the surface of adhesives
and cause adhesion breakage. Kim et al. [20] reported on the production of acrylic water
emulsions, which were later used to form PSAs from water-borne commercial dispersions
with various colophony esters. Resins with a lower Tg have practical advantages, as they
are more susceptible to forming stable (easier to produce) water dispersions under nor-
mal pressure conditions [19]. Aydin et al. [21] introduced a method for obtaining water
solvent-free dispersions of polymer and tackifier that can be used to produce colophony
dispersions for incorporation into PSAs. Geoghegan and Wang [22] described the labo-
ratory production of resin-in-water dispersions using a resinic ester with a Tg of 83 °C.
Boonstra et al. [23] used a 4 L reactor with temperature control to prepare resin-in-water
dispersions, which were further blended with acrylic latex to produce PSAs. Miller [24]
proposed a formulation where a resinic ester combined with an antioxidant—butylated
hydroxytoluene—was utilized to produce the dispersion. Aarts et al. [25] produced disper-
sions of tackifiers using glycerol ester. Finally, Yang et al. [26] reported on the production
of resin dispersions with tackifier in continuous mode. This rich body of knowledge, which
is available in the form of patents, was crucial in setting up the experimental installation
and emulsion characterization during this study.

The design and development of products is a well-established field and industry is
constantly adopting new practices to accelerate and systematize procedures. Companies
recognize the potential of these practices to (i) respond successfully to market uncertainty
and speed; (ii) improve knowledge and systematize creative processes; and (iii) ensure that
decision-making processes are explicit and well-documented [27]. Despite the increasing
importance of this field in academia and industry, the literature on the systematic devel-
opment of new water-based emulsions for PSAs remains scarce, especially because the
process needs to be compatible with customers’ specifications and the extensive experimen-
tal work required.

This paper aims to fill this gap. Here, we propose a sequential approach to the
systematization of procedures. The proposed strategy is aligned with current practices,
specifically, those that integrate the needs of the customer into the various stages of concept
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(and product) design [28]. Fundamentally, it relies on a combination of experimental
work planned to maximize the obtained information and proper customer-centric decision-
making tools to identify the optimal candidate concepts (in the form of emulsions or
designated formulations) to develop. To identify good candidate emulsions and optimize
their performance, we use the design of experiments. To systematically compare the
metrics representing the product quality interpreted by customers, we use (i) engineering
methods for robust design [29], specifically the concept of the loss function introduced by
Taguchi et al. [30]; and (ii) multicriteria decision-making methods to aggregate multiple
quality metrics into a single performance indicator.

This paper presents the following three novel elements: (i) a systematic customer-
centered approach for developing polymer-based products; (ii) the use of robustness-
centered techniques for assessing the performance of candidate emulsions, along with
multi-attribute value techniques for integrating individual quality criteria into a perfor-
mance metric; and (iii) a methodology based on the sequential design of experiments for
optimizing formulations. The proposed approach is illustrated through the development
of resin-in-water emulsion systems for use in PSA production.

In the remaining sections, boldface lowercase letters represent vectors, boldface capital
letters represent continuous domains, blackboard bold capital letters represent discrete
domains, and capital letters represent matrices. Finite sets containing ι elements are
compactly represented by JιK ≡ {1, · · · , ι}. The transpose operation of a matrix/vector is
represented by “ᵀ”.

This paper is organized as follows. Section 2 presents (i) the materials used in the
experiments; (ii) the experimental equipment; (iii) the laboratory procedure; and (iv) the
equipment used for quality characterization. Section 3 systematizes the product devel-
opment procedure used herein and briefly outlines (i) the loss function used to select the
best products by considering customers’ specifications, and (ii) the linear model used to
represent the multi-criteria decision-making tool utilized for ranking. Section 4 applies the
proposed approach to the design of physically viable resin-in-water emulsions. First, we
select a set of promising candidate formulations. Then, we optimize them using a sequen-
tial optimal design of experiments, where the goal is to maximize the global performance
metric by combining four quality characteristics. Finally, we analyze the repeatability of
the production method. Section 5 provides an overview of this work and a summary of
the results.

2. Materials and Equipment Characterization

This section introduces the experimental procedure. In Section 2.1, we characterize the
materials used. In Section 2.2, the equipment used for the experimental work is presented
and the procedure is described. Finally, Section 2.3 describes the measurement equipment
used for characterizing the emulsions.

The resin industry commonly uses the softening point, Tsoft as a measure of the glass
transition temperature rather than differential scan calorimetry, as it corresponds to the
point at which a specific resin probe slides into polymer due to a temperature increase.
A physical test is used to determine the softening temperature, where a standard probe
of specific dimensions and weight is gradually heated until it starts flowing. Typically,
the glass transition temperature of colophony resins is about 30–40 °C below the softening
point, which, in turn, is highly correlated with the average molecular weight. Higher
softening temperatures correspond to resins with higher average molecular weights. In our
study, we used the ASTM D1525-17 standard for measuring the softening temperature [31].

2.1. Materials

The resins used in the experiments were modulated regarding their softening point.
That is, we used two resins processed under different conditions, R1 and R2, to combine
new products with a given Tsoft. This part of the experimental work involved various
(sequential) tests, where the compositions of the mixtures in R1 and R2 were varied until
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the new resins obtained (denoted here as A, B, and C (see Table 1)) satisfied the target values
of Tsoft shown in the right column in the table. Essentially, A, B, and C are the mother resins
used to produce the resin-in-water emulsions (see Section 4). Here, our goal was to regulate
the impact of resin quality, as quantified by the softening temperature, on emulsions.

Table 1. Characterization of the resins used in the experimental work.

Resin Designation Tsoft (°C)

A 60
B 70
C 80

We used three surfactants in the experimental work. Due to industrial property limita-
tions imposed by the suppliers, we cannot name them. The choice of anionic surfactants
for use in the emulsions was based on both prior industrial knowledge and the need to
ensure compatibility with the resin systems under consideration. Here, they are denoted
as S1 (surfactant of supplier 1), S2 (surfactant of supplier 2), and S3 (surfactant of sup-
plier 3). All other reagents used, such as potassium hydroxide (KOH) and water, were of
analytical grade.

2.2. Experimental Equipment and Procedure

The experimental work was conducted using a purpose-built system consisting of
a jacketed reactor vessel of 500 mL with a batch-mode agitator. The temperature along
the batches was automatically controlled and the agitator was designed to ensure ideal
mixture conditions, with its geometry preventing the accumulation of solids and its ability
to generate a vortex capable of efficiently dispersing the water phase when added to
the system.

Each experiment required the configuration of five parameters that could potentially
affect the quality of the resin-in-water emulsions, namely the softening temperature of
the resin, the surfactant, the amount of KOH added to the system during the reaction
(expressed in %wt relative to the resin mass), the agitation rate of the agitator (measured
in rpm), and the amount of surfactant required (also expressed in %wt relative to the
resin mass).

After selecting the experimental conditions, 200 g of resin was fed into the reactor (see
Figure 1a). Then, the temperature control module and heating system were switched on and
the temperature at which the emulsion is prepared was set to correspond to the softening
point of the resin. The agitator was also switched on and adjusted to the previously
determined speed. After two hours when the resin reached a stable and nearly constant
temperature and became fluid (see Figure 1b), a given volume of a solution with a 1:1 mass
ratio of KOH was added to the reactor. The resulting solution was then agitated for 30 min,
which corresponds to the time period during which the saponification reaction occurs.
Next, the surfactant was added in small amounts. The resulting solution, now containing
the surfactant, was agitated for another 30 min to ensure homogeneity. Finally, the water
was added in increments in all the experiments. Essentially, the same relative amount of
water was added at equal time points to minimize the effects of different mixing strategies
in the emulsion characteristics. The amount of water added was calculated such that at the
end of the process, the amount of solids in the water phase was about 55 %wt. Next, we
describe the physical/chemical transformations that occurred during the formation of the
resin-in-water emulsions.

Initially, a water-in-resin emulsion was formed. During this time, a small amount
of water (in small increments) was added to the system. This dispersion was slowly
stirred to yield a concentrated resin-in-water emulsion. This period was characterized by
phase inversion as a result of sharp changes in viscosity and electrical conductivity. The
emulsion formed was then diluted by adding more water in larger increments. The phase
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inversion was visually easy to identify and characterizes the point at which the dispersion
water-in-resin phase forms the resin-in-water emulsion (see Figure 1c).

(a) (b) (c)

Figure 1. The state of the resin during the process (a) as a (solid) raw material; (b) after heating to the
softening point; (c) as a resin-in-water emulsion.

2.3. Quality Characterization Equipment

To characterize the quality characteristics of the emulsions we considered four vari-
ables: (i) viscosity (expressed in cP); (ii) pH (non-dimensionally expressed); (iii) solid
content (expressed in %wt); and (iv) size of the particles (represented here by the aver-
age diameter, expressed in nm). Viscosity was measured with a Brookfield DV2T spindle
RV03, Brookfield, Toronto, Canada viscosimeter. pH was measured using a Mettler Toledo
SevenEasyTM pH meter, Mettler Toledo, Greifensee, Switzerland. The solid content was mea-
sured using gravimetric analysis with a precision balance. The particle size was measured
using a Malvern Zetasizer Nano ZS, Malvern, Worcestershire, United Kingdom system, which
provided both the particle size distribution (PSD) and the cumulative distribution curves.

The stability of an emulsion depends on various parameters, with one of the most
significant being the size and distribution of the particles—the smaller the dispersed
particles, the stabler the system. More specifically, according to industry research on
this type of emulsion, when the particle size is lower than 500 nm and has a unimodal
distribution, good results in terms of stability are typically achieved. Thus, by controlling
the particles’ size and the unimodality of the respective PSD, as in our experiments, the
stability of the formulations, or at least the identification of formulations that may not
be stable, can be indirectly ensured. We also note that during the optimization stages,
visual evaluation of the emulsions was performed and some of them were reported as
non-dispersed (ns), as shown in the tables of results (see Sections 4.2–4.4). Moreover, the
initially produced samples were observed after three months and no significant phase
separation was observed, which is an excellent indicator of stability and demonstrates
the compatibility of the resin system, including the resin–surfactant combination and the
production process.

3. Development Approach and Related Tools

In this section, we present an overview of the methods used to select the formula-
tions that were worth exploring further and the procedure used to design resin-in-water
emulsions tailored to customers’ needs. Section 3.1 explains the methodology used to
create a performance metric that captures customer satisfaction relative to all the qual-
ity characteristics (see Section 2.2). Section 3.2 discusses the procedure used to design
the product.

3.1. Overall Quality Performance Metric

Here, we describe the construction of an overall performance metric that could rep-
resent the quality of the emulsions with a customer-centric approach [32]. Two separate
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challenges emerged during this process: (i) how to measure the quality of the formulations
according to each quality characteristic specification; and (ii) how to aggregate the metrics
representing each quality characteristic into an overall performance index.

To measure the quality of the emulsions, we assumed the customers’ specifications
were known and we adopted the Taguchi method, specifically the loss function. The
formulation of the loss function depends on the quality characteristic under consideration,
that is, smaller-is-better, larger-is-better, or target-is-best [33]. These quality characteristics
represent the loss in economic value associated with missing the target (i.e., the quality
goal that fully satisfies customers). This approach is commonly used to address practical
engineering problems (see Liao and Kao [34] for an example).

Let the quality characteristics be designated by Ci, where i is the number of quality
characteristics of interest, i ∈ JqK, and q is the number of quality dimensions used to
characterize the product. In our case, q = 4, i = 1 represents the viscosity, i = 2 represents
the pH, i = 3 represents the solid content, and i = 4 represents the average particle
diameter. Let C be the vector containing all the quality characteristics. The loss function for
the quality characteristics Ci, which is represented by L(Ci), is:

L(Ci) =


ki (Ci − ξi)

2 for scenarios target-is-best
ki C2

i for scenarios smaller-is-better
ki/C2

i for scenarios larger-is-better

, (1)

where ki is the loss constant for the ith quality characteristic and ξi is the respective target
value. We note that L(Ci) : R → R, i ∈ JqK. Consequently, Equation (1) does not
allow operating (e.g., summing or subtracting) different loss functions since they can
have different domains [35]. To assure their commensurability, we normalize them using
the respective specifications and target values. The normalized loss function used for
measuring quality, therefore, is

Lnorm(Ci) =


4 (Ci − ξi)

2/(USi − LSi)
2 for scenarios target-is-best

C2
i /US2

i for scenarios smaller-is-better
LS2

i /C2
i for scenarios larger-is-better

, (2)

where LSi and USi are the lower and upper specifications for the ith quality characteristic,
respectively. Consequently, Lnorm(Ci) : R→ [0, 1], i ∈ JqK.

The aggregation of multiple criteria for measuring the performance relative to the
quality characteristics into a performance metric was based on multi-attribute value theory
(MAVT) (see Belton and Stewart [36]). MAVT is a multicriteria decision method that is
used to address situations where all (finite) alternatives are known with complete certainty,
and the objective function aggregates the value scores that reflect each alternative’s perfor-
mance on each criterion, appropriately weighted. Typically, the weights reflect the relative
importance that the decision maker gives to each criterion. Various model forms can be
used to represent the aggregation but the most common in practical applications is the
linear model, as it simplifies the elicitation of the weights [37]. It should be noted that
the value score functions must be commensurable but may represent conflicting criteria.
Examples of the application of MAVT to practical decision problems can be found in the
literature (see, for example, Keeney [38]. The elicitation of the weights is conducted via
surveys [39] or based on expert-based knowledge [40].

The overall quality metric used herein is, therefore,

O =
q

∑
i=1

wi Lnorm(Ci), (3)
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where the q-element column vector w contains the weights of all single-score criteria and they
obey the constraints ∑

q
i=1 wi = 1, wi ≥ 0, i ∈ JqK. The promising emulsions minimize (3) with

respect to Ci, i ∈ JqK.

3.2. Design Procedure

Now, we introduce the product development procedure used in this study, which
involved multiple stages of experimental work. The main goal was to identify a set of
promising formulations that could later be tested for their potential to scale up. Very often
the number of quality characteristics that impact product quality perception is large, as is
the number of factors that impact their performance. As a result, the experiments for factor
screening have to be minimized, as they require a large amount of work and resources.
Therefore, an approach based on splitting the experimental work into three sequential
phases where some factors are fixed in some of them is beneficial. This approach minimizes
the resources required while allowing for the analysis of a large range of concepts and
preventing the discarding of promising formulations. Our approach involved dividing
the experimental work into three stages: the first stage involved factor/quality criteria
screening; the second stage involved optimization; and the third stage involved the study
of the repeatability features of the formulations considered most promising. Figure 2
illustrates this sequence of stages and shows that the procedure analyzed here was included
in the concept development phase, where the goal was to choose a small set of candidate
formulations to later test regarding their potential to scale up. The concept development
was carried out after performing a systematic analysis of the product’s most relevant quality
characteristics, the specifications that must be met, and the factors that typically affect
technical performance, as well as the company’s strategic planning regarding product
development. Each stage of the experimental design had a specific goal and was followed
by experimentation and an analysis of the results. In each of the stages of the concept
design phase, the decision tool used for ranking (and optimizing) the formulations was the
overall quality metric (3) that focuses on the customer targets. It must be emphasized that
in the first stage of the procedure, some of the experimental factors were fixed to reduce
the number of experiments for screening purposes. Then, the formulations identified in the
screening were optimized, i.e., the factors initially screened were fixed, but another group
was varied.

Here, we analyze each of the stages. Stage 1 involved screening a subset of factors
judged as the most relevant for the quality metrics. The complete set of factors was divided
into (i) primary factors, xpri, and (ii) secondary factors, xsec, where the former were varied
in the screening experiments and the latter were fixed to an appropriately normal level.
Thus, x ≡ xpri ∪ xsec represents the complete set of factors populated with k elements. The
factors were divided into experience-based knowledge from a company that produces
colophony-resin derivatives and the requirements of industrial customers. This ranking
also captured the ease of modifying the factors at the experimental level and their impact on
the overall performance of the product. The primary factors were modified to produce a set
of feasible emulsions and the secondary factors were used to optimize their performance.

Among the primary factors, there were continuous and discrete (categorical) inputs,
and we assumed that their discrete levels could be ordered [41]. In this phase, we adopted
a full (or partial) factorial design of experiments after deciding which levels were to be
used for the experiments and the corresponding codes. Details about the choice of the
experimental designs are discussed in state-of-the-art references such as Montgomery [42].
Computational tools such as JMP® can be used for the design and data analysis [43]. The
results of Stage 1 included a set of primary factors and levels that could optimize quality
performance and this combination of factors and levels was fixed in the second stage.
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Systematic conceptualization:
1. Response variables
2. Factors affecting
the performance

Ranking the factors:
xpri, xsec

Screening experimental design.
Goal: factor screening
Factors tested: xpri

Experiments;
Results analysis

Sequential experimental design.
Goal: quality optimization

Factors tested: xsec

Experiments;
Results analysis

Experimental design
for checking the

experimental repeatability

Experiments;
Results analysis

Scale-up

Stage 1

Stage 2

Stage 3

Analysis

Factor ranking

[Fix xsec]

Optimal levels of xpri

[Fix xpri]

Optimal levels of xsec

[Fix xpri and xsec]

Optimal formulations

Concept
design
phase

Systematic analysis

Figure 2. Systematic procedure for hierarchically organizing the experimental work in a customer-
centric approach.

In Stage 2, we adopted a different approach to optimizing the quality performance.
Here, we varied the factors belonging to the secondary group one at a time using a sequential
optimal design strategy. We assumed that they were continuous and the goal was to
minimize (3) with respect to xsec

i ∈ xsec, where i is the index for the elements of the
vector containing the secondary factor indices, JksecK, where JksecK ⊂ JkK. The sequential
optimal design of experiments is a commonly used technique in practical applications (see,
e.g., Box and Hunter [44], Goujot et al. [45]).

The sequential optimal design of experiments is an approach consisting of two dis-
tinct phases. In the first phase, a set of experiments is conducted to fit a causal model
between the factors and the response variable(s). In the second phase, the model is used to
determine the factor levels for the next experiment to maximize the information criterion.
The second phase is then iterated and in each iteration, the causal model is updated using
the observations of the latest experiment and a new experiment is prescribed. Here, we
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adapted a strategy from the general framework, where the regression models relating
the secondary factors to the quality variables were linear or square polynomial func-
tions. Instead of maximizing an information criterion, we minimized the overall quality
metric (3) in each iteration.

Now, we describe the complete procedure. First, we conducted experiments where
the level of a secondary factor, say the jth factor (xj ∈ xsec), was varied. We used the
results of the observations from Stage 1 to fit a linear model that related each of the quality
characteristics with the factor, i.e.,

Ci = g1,i(xj) (4)

where g1,i(•), i ∈ JqK are linear functions that depend on xj. Next, the obtained regression
models g1,i(•) were used to prescribe the next experiment by solving the optimization problem

min
x

q

∑
i=1

wi Lnorm(Ci) (5a)

s.t. Ci = g1,i(xj), i ∈ JqK. (5b)

Problem (5) belonged to the nonlinear programming class and was solved with ap-
propriate tools. Equation (5a) served as the objective function (i.e., the overall quality
metric), and (5b) represented a set of equality constraints that reflected the causal relations
described by the previously fitted regression models.

The next experiment provided one additional observation, which was used to update
the models g1,i(•). In practice, when we have the results from more than two experiments,
we replace the linear regression models with square polynomial models, i.e., (4) was
replaced by

Ci = g2,i(xj), (6)

and after model fitting, this new equality relation was used in the next optimization step
instead of (5b). The model fitting problems were linear with respect to the parameters and
were solved using the least squares algorithm [46].

The accumulation of experiments allowed us to converge to the goal since the proce-
dure had convergence properties (see [47]). However, to rationalize the experimental work,
we set a given tolerance for the distance between the quality performance and the optimum
(O = 0.0), and the cycle ended when it was attained. In this case, we set the tolerance to 0.10.
The complete optimization may require successive sequential experimental procedures for
different factors, i.e., one may apply the procedure by varying the secondary factor xj in
Equations (4) or (6).

In Stage 3, we analyzed the repeatability of the promising formulations. The factors
were fixed to the optimal levels obtained in previous stages and new experiments were
conducted by replicating the conditions. The complete set of observations obtained for
the optimum formulations was used to determine the average value, x̄Ci , the standard
deviation, sCi , and the coefficient of variation (expressed in %) for each quality characteristic
Ci. Here, we considered

Cv,i =
sCi

x̄Ci

× 100 % (7)

where Cv,i, i ∈ JqK is the coefficient of variation for the ith quality characteristic. To assure
the repeatability of the experimental results (and the procedure), the coefficient of variation
should ideally be small.

4. Results

In this section, we utilized the approach introduced in Sections 2 and 3 to the design of
resin-in-water emulsions for application in PSA fabrication. In Section 4.1, we characterize
the design problem and the decision-making tool used to assess the quality performance
of the formulations. In Section 4.2, we apply the screening experimental design discussed
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in Section 3.2 to find the optimal levels of the primary factors. In Section 4.3, we used
sequential experimental design to optimize the formulations by judiciously choosing
the levels of the secondary factors. Finally, in Section 4.4, we analyze the experimental
repeatability of the formulations.

4.1. The Design Problem

Here, we characterize the design context and introduce the overall quality metric used
to assess the formulations resulting from the experiments.

The quality characteristics were introduced in Section 2.3, where C1 represented
viscosity, C2 represented pH, C3 represented the solid content, and C4 represented the
particle diameter, and they were measured using the methods described in Section 2.3.
The factors affecting the quality characteristics were listed in Sections 2.1 and 2.2. The
primary factors were the resin, which was characterized by the respective softening tem-
perature and mathematically represented by x1, and the surfactant, x2. Both factors were
discrete. The secondary factors were the amount of KOH added to the reactional sys-
tem, represented by x3; the agitation rate, x4; and the amount of surfactant, x5. All sec-
ondary factors were continuous and were used to optimize the formulations regarding the
quality characteristics.

The product specifications gathered from the customers are listed in Table 2. Nor-
malized loss functions were constructed for all the quality characteristics by applying
Equation (2), and they are shown in the second column in Table 3.

Table 2. Specifications imposed on the quality characteristics of the resin–water emulsions.

Quality Characteristic Lower Specification Upper Specification Target Value Loss Function

Viscosity (@25 °C) ns † 1000 cP ns † smaller-is-better
pH 7 9 8 target-is-best

Solid content 54 %wt 56 %wt 55 %wt target-is-best
Particle diameter ns † 1000 nm ‡ ns † smaller-is-better

† undefined; ‡ 95 % of particles below 1000 nm.

Table 3. Normalized loss functions and relative weights.

Quality Characteristic Normalized Loss Function Weight (wi)

Viscosity (@25 °C) Lnorm(C1) = 1× 10−6 C2
1 0.30

pH Lnorm(C2) = (C2 − 8)2 0.15
Solid content Lnorm(C3) = (C3 − 55)2 0.05

Particle diameter Lnorm(C4) = 1× 10−6 C2
4 0.50

The weights representing the relative importance of the quality characteristics were
determined using expert-based knowledge and typical customer requirements. They are
shown in the third column in Table 3. Consequently, the overall quality metric, which
was obtained using Equation (3) and used for ranking the emulsions in the remaining
sections, is

O = 3× 10−7 C2
1 + 0.15 (C2 − 8)2 + 0.05 (C3 − 55)2 + 5× 10−7 C2

4 . (8)

Besides this metric, an additional feature emerged during the process of extraction
of experience-based knowledge. The technical staff and customers recommended that for
subsequent applications, the particle size distribution (PSD) should be unimodal, as it is a
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common indicator of the stability of the resulting emulsion. To account for this requirement,
a new binary quality characteristic was introduced into the analysis, C5, where

C5 =

{
0 for unimodal PSD
1 for non-unimodal PSD.

(9)

This characteristic was not explicitly included in the decision model (8) but non-
unimodal PSD emulsions (i.e., C5 = 1) were automatically discarded from the group of
promising formulations.

4.2. Screening of Primary Factors

This section presents the work conducted in Stage 1 of the proposed approach (see
Figure 2), which was used for screening the primary factors.

The vector of factors included five elements, i.e., x = (x1, x2, x3, x4, x5)
ᵀ, where

x1 represented the resin composition, distinguished by the respective softening tempera-
ture; x2 represented the surfactant, identified by the supplier; x3 represented the amount of
KOH used; x4 represented the agitation rate; and x5 represented the amount of surfactant.
Consequently, the number of factors of the design problem, k, was 5. x1 and x2 represented
the primary factors, that is, xpri = (x1, x2)

ᵀ and kpri = 2. x3, x4, and x5 represented the
secondary factors, that is, xsec = (x3, x4, x5)

ᵀ and ksec = 3.
For the screening of the primary factors, we used a three-level full factorial design

of experiments (see Section 3.2). Specifically, the complete design consisted of 3kpri
= 9

experiments, where x1 and x2 were varied in the three levels. Table 4 shows the levels
tested for each factor and the respective codes and designations (shorten to Designat.) used
in the remaining parts of the paper. In all the experiments carried out in this stage, the
secondary factors were kept constant: the amount of KOH added was 2 %wt relative to the
resin, the amount of surfactant was 7 %wt relative to the resin, and the agitation rate was
set to 100 rpm. Furthermore, the experimental temperature was maintained at 25 °C in all
the tests. The water was added gradually to obtain dispersions with a solid content within
the range of 55± 1 %wt.

Table 4. Levels and codes of primary factors.

Factor Level Characterization Designat.

x1

−1 Resin with Tsoft = 60 °C A1
0 Resin with Tsoft = 70 °C A2

+1 Resin with Tsoft = 80 °C A3

x2

−1 Surfactant from S1 S1
0 Surfactant from S2 S2

+1 Surfactant from S3 S3

Table 5 presents the results of the experiments. The first column shows the experiment
number, the second column shows the x1 level, the third column shows the x2 level, and the
fourth column shows the designation of the emulsion, where the first two symbols denote
the base resin used (see Table 4), the fourth and fifth symbols denote the surfactant, and
the last digit indicates the experiment number under the same conditions (i.e., for a given
pair, x1 and x2). Furthermore, columns 5 to 8 show the results of the characterization of the
emulsions, and column 9 shows the average diameter, where 95 % of the particles had a
smaller size, d95, which, in turn, is an extreme measure of the PSD obtained through image
analysis (see Section 2.3). Finally, column 10 shows the information on the unimodality of
the PSD curve, and column 11 shows the overall performance metric (8). It is important to
note that, similar to the average particle diameter, d95 should be as small as possible.
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The analysis of the results showed that (i) three of the formulations did not produce
stable emulsions (i.e., formulations A2:S3, A3:S1, and A3:S3), which may indicate that resins
with lower Tsoft (lower average molecular weight) have better emulsification properties
in water; (ii) the PSD curves obtained for three of the formulations were not unimodal
(i.e., formulations A1:S3, A2:S1, and A3:S2), which may indicate that they were physically
unstable); (iii) the most promising formulation obtained from the resin with Tsoft = 60 °C
was A1:S2, which was optimized in Stage 2; and (iv) the most promising emulsion obtained
from resin A2 was A2:S2, which was also optimized in Stage 2.

Table 5. Results of the experimental design in the screening of primary factors stage.

# Exper. x1 x2 Designat. C1 (cP) C2 (-) C3 (%wt) C4 (nm) d95 (nm) C5 O

1 −1 −1 A1:S1_1 1562 11.04 54.36 209.6 310.45 0 2.161
2 −1 0 A1:S2_1 265 8.63 55.11 428.2 1029.93 0 0.173
3 −1 +1 A1:S3_1 1292 11.19 54.58 614.9 1302.51 1 2.225
4 0 −1 A2:S1_1 187 10.28 55.62 444.3 4246.54 1 0.908
5 0 0 A2:S2_1 339 8.46 54.34 262.7 695.22 0 0.123
6 0 +1 A2:S3_1 - - - - - - ns †

7 +1 −1 A3:S1_1 - - - - - - ns †

8 +1 0 A3:S2_1 112 8.55 54.44 615.5 1064 1 0.254
9 +1 +1 A3:S3_1 - - - - - - ns †

† non-dispersed formulations.

To avoid an overly strict limitation of the candidate alternatives, which is common in
product design, formulation A1:S1 was also considered for optimization despite its sub-
optimal performance (see the value O in the first line in Table 5). This was because (i) the
concepts resulting from the subsequent stages were widened if at least two surfactants were
included in the set of formulations to optimize, and (ii) the deficiency of formulation A1:S1
was related to a single quality characteristic—the viscosity (see the value C1 in the first line
in Table 5)— indicating good performance in all other criteria. In summary, formulations
A1:S1, A1:S2, and A2:S2 were optimized, which is discussed in Section 4.3. x1 and x2 were
fixed to −1 or 0 and none of the formulations that were optimized were based on the resin
with a higher Tsoft.

4.3. Optimization of Secondary Factors

Now, we optimize the promising formulations identified in Stage 1. The secondary
factors used in the optimization were the amount of KOH used relative to the resin weight,
x3; the agitation rate, x4; and the amount of surfactant relative to the resin weight, x5. The
sequence of the experiments followed the procedure described in Section 2.2. In contrast
to Stage 1, here, we did not use the previously identified factorial plan but followed the
sequential optimal design-based approach introduced in Section 3.2 for each emulsion. The
results are shown in Table 6, which can be interpreted similarly to Table 5.

The accumulation of experiments followed a sequential order, where the next exper-
iment was prescribed based on the updated model(s) relating the factors to the quality
characteristics. It should be noted that the optimization procedure required a different
number of experiments for each emulsion (seven experiments for A1:S1 and four for the
other two formulations). This was due to the fact that the models fitted with the previ-
ously obtained observations had a lower prediction ability, as they relied on a small and
sometimes dispersed sample of points. The experiments from Stage 1 were considered the
reference conditions and were incorporated into the sequence as the initial condition. The
convergence was achieved with an error of 0.053 for A1:S1 and less than 0.03 for the other
two formulations, values considered within the specified tolerance. The trajectory to the
optimum passed through conditions where no emulsion was formed (see Experiment 11)
or the PSD was not unimodal (see Experiment 14), both indicating unstable formulations.
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Table 6. Results of the experimental design in the optimization of secondary factors stage.

Optimization of Emulsion A1:S1 (x1 = −1, x2 = −1)

# Exper. x3 (%wt) x4 (rpm) x5 (%wt) Designat. C1 (cP) C2 (-) C3 (%wt) C4 (nm) C5 O

1 2.0 100 7.0 A1:S1_1 1562 11.04 54.36 209.6 0 2.161
10 2.5 100 7.0 A1:S1_2 5967 10.11 55.02 150.0 0 11.361
11 0.0 100 7.0 A1:S1_3 - - - - - ns †

12 1.0 100 7.0 A1:S1_4 440 10.19 54.44 261.1 0 0.827
13 1.0 100 6.0 A1:S1_5 429 10.14 55.92 319.0 0 0.835
14 0.5 100 7.0 A1:S1_6 - - - - - ns †

15 0.5 100 10.5 A1:S1_7 235 8.99 54.68 1007.7 1 0.676
16 0.5 100 14.0 A1:S1_8 172 8.28 55.46 209.4 0 0.053

Optimization of emulsion A1:S2 (x1 = −1, x2 = 0)

2 2 100 7.0 A1:S2_1 265 8.63 55.11 428.2 0 0.173
17 2.5 100 7.0 A1:S2_2 352 8.36 54.30 236.2 0 0.109
18 2.0 50 7.0 A1:S2_3 392 8.62 55.92 231.1 0 0.173
19 1.0 50 7.0 A1:S2_4 - - - - - ns †

20 1.5 50 7.0 A1:S2_5 131 8.05 54.91 205.53 0 0.027

Optimization of emulsion A2:S2 (x1 = 0, x2 = 0)

5 2.0 100 7.0 A2:S2_1 339 8.46 54.34 262.7 0 0.123
21 2.5 100 7.0 A2:S2_2 308 8.35 54.58 341.3 0 0.114
22 2.0 50 7.0 A2:S2_3 337 8.70 54.96 350.6 0 0.169
23 1.0 50 7.0 A2:S2_4 87 6.96 54.94 245.5 0 0.195
24 1.5 50 7.0 A2:S2_5 118 7.94 54.98 210.5 0 0.027

† non-dispersed formulations.

Table 7 presents a summary of the most promising formulations identified in this
phase, which are analyzed regarding their experimental repeatability in Section 4.4. It
is important to note that the optimal conditions for emulsions A2:S1 and A2:S2 were
identical, so the final decision about the most promising formulation requires an accurate
economical analysis.

Table 7. Optimal formulations resulting from the optimization of secondary factors stage.

# Exper. Designat. x1 (-) x2 (-) x3 (%wt) x4 (rpm) x5 (%wt)

16 A1:S1_8 −1 −1 0.5 100 14.0
20 A1:S2_5 −1 0 1.5 50 7.0
24 A2:S2_5 0 0 1.5 50 7.0

4.4. Formulations’ Repeatability

Here, we assess the repeatability of the experiments conducted to produce the optimal
formulations shown in Table 7. In our context, repeatability refers to the ability to produce
formulations with similar performance quality characteristics under the same experimental
conditions. This measure is crucial in the industrialization of a concept, as it represents the
inherent variation in the production process (i.e., precision). Processes with lower precision
may require more accurate control systems to ensure that the customers’ specifications are
systematically achieved. The repeatability analysis followed the guidelines described in
Section 3.2 and the coefficient of variation was determined using Equation (7).

We replicated the optimal formulations by conducting three additional experiments
for each formulation. The optimization experiments from Stage 2 (see Table 7) were also
included in the data set used for analysis. The complete set of observations is shown in
Table 8. The results showed that the coefficient of variation was below 10% for all the quality
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characteristics, with the exception of viscosity and the particles’ d95 for A1:S1. Additional
experiments for this formulation may be necessary to further assess its repeatability. Overall,
the results demonstrated the repeatability of the production procedure and the resin–
surfactant combinations.

Table 8. Results of the experimental design in Stage 3.

Repeatability of Emulsion A1:S1 (x1 = −1, x2 = −1, x3 = 0.5 %wt, x4 = 100 rpm, x5 = 14.0 %wt)

# Exper. Designat. C1 (cP) C2 (-) C3 (%wt) C4 (nm) C5 O

16 A1:S1_8 172 8.25 55.46 209.43 0 0.051
25 A1:S1_9 236 8.61 54.27 460.97 0 0.205
26 A1:S1_10 231 8.42 54.43 448.80 0 0.159
27 A1:S1_11 237 8.39 55.07 449.25 0 0.141

x̄Ci 219.00 8.42 54.81 392.11
sCi 31.44 0.15 0.56 121.92

Cv,i (%) 14.36 1.76 1.01 31.09

Repeatability of emulsion A1:S2 (x1 = −1, x2 = 0, x3 =1.5 %wt, x4 =50 rpm, x5 =7.0 %wt)

20 A1:S2_5 131 8.05 54.91 205.53 0 0.027
28 A1:S2_6 132 7.96 55.26 206.35 0 0.030
29 A1:S2_7 132 8.04 54.84 202.35 0 0.027
30 A1:S2_8 128 8.01 54.87 196.25 0 0.025

x̄Ci 130.75 8.02 54.97 202.62
sCi 1.89 0.04 0.20 4.58

Cv,i (%) 1.45 0.50 0.36 2.26

Repeatability of emulsion A2:S2 (x1 = 0, x2 = 0, x3 =1.5 %wt, x4 =50 rpm, x5 =7.0 %wt)

24 A2:S2_5 118 7.94 54.98 210.5 0 0.027
31 A2:S2_6 108 7.89 55.31 208.57 0 0.032
32 A2:S2_7 112 7.95 54.66 219.48 0 0.034
33 A2:S2_8 106 7.82 54.15 215.65 0 0.068

x̄Ci 111.00 7.90 54.78 213.55
sCi 5.29 0.06 0.49 4.96

Cv,i (%) 4.77 0.75 0.90 2.32

5. Conclusions

We consider the problem of designing high-added value products from natural com-
pounds and propose a systematic approach that uses customer specifications to “drive” the
experimental work in the concept development phase. Our procedure consists of three
main steps: (i) screening the primary factors using a full factorial experimental design;
(ii) optimizing the formulation using a sequential experimental design, where the secondary
factors are manipulated to iteratively improve the quality performance; and (iii) assessing
the experimental repeatability of the optimal formulations. The complete procedure is de-
scribed in detail in Section 3.2. The tool used to rank the experimentally obtained emulsions
aggregates the loss functions representing the customer quality perception with respect
to the single quality characteristics. Multi-attribute value theory provides the theoretical
framework for the aggregation, and the relative weights representing the importance of
each quality criterion are elicited from the preferences of experts and customers. The
concept of the loss function introduced by Taguchi is employed to represent the quality
performance relative to each individual characteristic.

The approach proposed herein is successfully used to develop pine-resin-in-water
emulsions for the fabrication of pressure-sensitive adhesives (see Section 4). The next stage
of product development requires the scale-up of the optimal formulations to anticipate
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technological issues and construct a more accurate economic analysis that, in turn, will
enable a more robust decision on its industrialization. We believe the proposed tool can be
applied to other products, especially in cases where the design procedure requires extensive
experimental work, the time to market is short, and the resources are limited.
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