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Abstract: Non-spherical polymer nanoparticles (NPs) have gained attention in various fields, but
their fabrication remains challenging. In this study, we present a simple protocol for synthesizing
partially etched polystyrene (PS) nanoparticles through emulsion polymerization and chemical
etching. By adjusting the degree of crosslinking, we selectively dissolve the weakly crosslinked
portions of the particles, resulting in partially etched PS NPs with increased surface area. These
partially etched NPs are evaluated for their use as solid surfactants in Pickering emulsions, where
they demonstrate significantly improved emulsion stability compared to intact spherical NPs. Our
results contribute to the field of nanoparticle shape control and provide insights into developing novel
materials for various applications, particularly in the area of solid surfactant usage. Additionally, the
importance of conducting cellular toxicity studies using these partially etched NPs for future work is
also emphasized.

Keywords: partially etched nanoparticles; emulsion polymerization; delayed crosslinking; Pickering
emulsion; enhanced stability

1. Introduction

Polymer nanoparticles (NPs) have gained significant attention in recent years due
to their diverse range of applications in electronics [1], photonics [2], sensors [3,4], and
pharmaceuticals [5,6], owing to their versatility and tunable properties. Depending on
their shapes, polymer NPs can be classified into spherical, non-spherical, and mesoporous
forms. Among them, non-spherical polymer NPs have shown significant potential in
biomedical engineering, offering advantages over their spherical counterparts. Specifi-
cally, non-spherical NPs have demonstrated improved cellular uptake [7], enhanced drug
delivery [8], and more efficient imaging contrast agents [9]. These features are in part
attributed to the unique surface properties of non-spherical NPs, such as their increased
surface area and surface roughness, which provide more opportunities for interactions
with cells and biomolecules.

Non-spherical NPs can be further classified into ellipsoidal, dumbbell, rod, disk,
cube, and other non-spherical shapes [10,11]. However, producing non-spherical NPs is
challenging as they tend to prefer a spherical shape during synthesis to minimize surface
energy. Recent advancements in particle manufacturing technology have led to significant
progress in developing various types of non-spherical NPs. For example, ellipsoidal NPs
were produced by mechanically elongating spherical polystyrene (PS) precursor particles
upon heating them above their glass transition temperature [12,13]. Dumbbell-shaped
PS NPs were obtained by emulsion polymerization of styrene monomers in the presence
of shape-directing agents [14,15]. In addition, preformed mesoporous silica NPs were
used as a template for synthesizing polymer NPs of various shapes [16]. Furthermore,
microfluidic devices facilitated precise control over reactant flows and the size and shape
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of the resulting polymer particles [17,18]. However, research on partially and/or randomly
deformed NPs manufacturing techniques has been limited. These particles can maintain the
characteristics of spherical particles while increasing surface area and improving interfacial
adsorption capability, which can enhance the stability of Pickering emulsions [19,20].
Additionally, NPs with random shapes can be utilized as model particles mimicking
microplastic particles found in nature for cellular toxicity studies that have caused serious
environmental problems [21,22].

In this study, we focus on developing a simple protocol to fabricate partially etched PS
NPs using emulsion polymerization and chemical etching. The degree of crosslinking was
controlled by adjusting the time to add a crosslinking reagent during the polymerization
reaction. Then, the obtained partially crosslinked PS NPs were chemically etched to
selectively dissolve weakly crosslinked portions. These particles with increased surface
area were evaluated by using them as solid surfactants to form Pickering emulsions. Note
that Pickering emulsions are stabilized by solid particles adsorbed at a fluid–fluid interface,
which are more stable and robust than traditional emulsions stabilized by molecular
surfactants [23,24]. Thus, developing solid surfactants with tailored properties is of great
interest for the stabilization of Pickering emulsions. Our approach provides insights into the
potential of partially etched NPs as solid surfactants in emulsion stabilization. Furthermore,
the ability to control the degree of surface roughness and surface area of the NPs offers new
opportunities for developing novel materials with tailored properties for various medical
and environmental applications.

2. Materials and Methods
2.1. Materials

For emulsion polymerization, ultrapure water (resistivity ≥ 18.2 MΩ·cm, Aquapuri5,
Young In Scientific Co., Ltd., Seoul, Republic of Korea) was used as an aqueous solution.
Styrene monomer (99.5%) was purchased from Samchun Chemicals (Seoul, Republic of
Korea). Sodium dodecyl sulfate (SDS, ≥99.0%, Sigma-Aldrich, St. Louis, MO, USA)
and cetyltrimethylammonium bromide (CTAB, 99+%, Acros Organics, Fair Lawn, NJ,
USA) were used as surfactants. Initiator (potassium persulfate (PPS), K2S2O8, ≥99.0%) and
crosslinker (divinyl benzene (DVB), 80%) were obtained from Sigma-Aldrich (St. Louis, MO,
USA). Etching solvents used were tetrahydrofuran (THF, extra pure, Daejung Chemicals
& Metals, Siheung-si, Gyeonggi-do, Republic of Korea), toluene (99.9%, Sigma-Aldrich,
St. Louis, MO, USA), and chloroform (≥99.0%, Sigma-Aldrich, St. Louis, MO, USA).
Ethanol (94.5%) was obtained from Daejung Chemicals & Metals (Siheung-si, Gyeonggi-do,
Republic of Korea). For Pickering emulsion formation, n-decane (99+%, Acros Organics,
Fair Lawn, NJ, USA) was used as an oil phase, which was filtered using aluminum oxide
particles (Al2O3, Pore size = 58 Å, Sigma-Aldrich, St. Louis, MO, USA) to remove any polar
impurities. All chemicals were used as received unless otherwise noted.

2.2. Emulsion Polymerization of PS NPs

Emulsion polymerization was used to synthesize PS NPs [25]. A 500 mL three-necked
round bottom flask containing 200 mL of ultrapure water was placed in a silicon oil bath at
90 ◦C (Figure 1a). To prevent solvent evaporation, a reflux condenser was attached to the
flask. After adding 1.04 × 10−3 mol of surfactant and 10 mL of styrene monomer to the
reactor, N2 purging was performed for 30 min. The polymerization process was initiated
by adding the PPS initiator. After 18 h of polymerization, PS NPs were obtained and
subsequently washed with ethanol. This was achieved by using a series of centrifugation
at 14,000 rpm and redispersion steps, repeated five times at 5 ◦C to eliminate residual
reactants. The synthesis of partially crosslinked NPs followed the same protocol, with the
exception that 4 wt% DVB was added to the reactor at a designated time tDVB after PPS
addition (Figure 1b).
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Figure 1. Schematic illustration of fabricating the partially etched PS NPs. (a) Experimental setup.
(b) Proposed mechanism.

2.3. Chemical Etching of Partially Crosslinked PS NPs

An etching solvent such as THF, chloroform, or toluene was mixed with the particle
solution (3 wt%) at a volume ratio of 6:1. After vortexing for 1 min, the particle solution was
centrifuged at 14,000 rpm for 10 min. The resulting precipitate was redispersed in ethanol
to obtain partially etched PS NPs. The same procedure was repeated for the other tDVB
particle samples. The particle shape was observed using a scanning electron microscope
(SEM, LEO SUPRA 55, Carl Zeiss, Oberkochen, Germany).

2.4. Fabrication of Pikckering Emulsions

The aqueous dispersion of PS NPs (9 wt%) and n-decane were mixed in a 1:1 volume
ratio to prepare an oil-in-water Pickering emulsion by vortexing for 1 min. The stability
of the emulsion was monitored using an inverted microscope (ECLIPSE Ti, Nikon, Tokyo,
Japan) and a camera (EOS700D, Canon, Tokyo, Japan) for a period of 2 months.

3. Results
3.1. Synthesis of PS NPs

Emulsion polymerization was used to synthesize non-crosslinked and partially crosslinked
PS NPs with uniform size distributions, as shown in Figure 2. For the partially crosslinked
PS NPs, the crosslinking reagent DVB was added approximately at tDVD = 70 min, which
corresponds to ~80% of the final size [26], following the initiator addition. When using the
anionic surfactant SDS, the mean diameters of non-crosslinked and partially crosslinked PS
particles were 153.86 ± 3.65 nm and 163.71 ± 7.74 nm, respectively (Figure 2a,b). Similarly, the
cationic surfactant CTAB produced monodisperse PS spherical particles with mean diameters of
non-crosslinked and partially crosslinked PS particles of 80.21 ± 2.06 nm and 63.48 ± 3.94 nm,
respectively (Figure 2c,d). It should be noted that the final particle size was related to the critical
micelle concentration (CMC) of the surfactants used [27]. Generally, low CMC surfactants yield
small styrene monomer micelles, resulting in the formation of small polymer particles [28].
The surfactants used in the experiments were SDS and CTAB with CMC values of 8.3 and 0.9,
respectively [29–31]. SDS has a CMC over about eight times higher than CTAB, resulting in
larger styrene monomer droplets and thus larger PS particles.
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Figure 2. SEM images of PS NPs. Different surfactants were added: SDS (a,b) and CTAB (c,d).
The top and bottom rows indicate non-crosslinked PS NPs and partially crosslinked PS NPs at
tDVD = 70 min, respectively.

3.2. Partially Etched PS NPs

Chemical etching was used to produce partially etched particles, as illustrated in
Figures 1b and 3a. During the growth process of PS particles, the addition of DVB at a des-
ignated time tDVB led to the formation of crosslinked PS-co-DVB copolymer chains mainly
from the outer layer of the particles. Thus, the crosslinking reaction primarily occurred
in the outer layer, leaving the core region of the particles relatively non-crosslinked. In
addition, we expected that the delayed DVB addition partially formed weakly crosslinked
regions even in the outer layer. When these partially crosslinked PS NPs were dispersed in
an organic solvent that could dissolve PS linear chains, only the non- or weakly crosslinked
portions of the particles were locally dissolved, resulting in a partially etched morphology.

The particle shape was adjusted by tuning tDVB, as shown in Figure 3b,c. When
DVB was added immediately after the initiator addition (tDVB = 0 min), the particle shape
remained intact after dispersing them in toluene, demonstrating that these PS NPs were
completely crosslinked to form PS-co-DVB copolymer. When tDVB increased to 35 min
and 70 min, the resulting particles’ surface was partially etched after solvent treatment. As
tDVB further increased to 140 min, the non- or weakly crosslinked portions that could be
chemically etched increased, resulting in a more significant degree of structural roughness.
When DVB was added after the completion of polymerization (i.e., tDVB = 300 min), the
crosslinked regions of the PS NPs were minimally formed, resulting in unstable particles in
toluene that formed aggregated clumps.
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Figure 3. Formation of partially etched PS NPs. (a) Schematic for illustrating the prospective
mechanism. (b,c) SEM images showing morphological changes before (b) and after (c) chemical
etching with toluene depending on tDVB (SDS was used). Insets in panel c indicate the corresponding
magnified images.
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The morphological changes in partially crosslinked PS NPs (tDVB = 70 min) were
further evaluated by treating them with different organic solvents. The study used SDS and
CTAB surfactants in the polymerization reaction. When examining the PS NPs polymerized
in the presence of SDS (Figure 4a–c), the use of THF and chloroform produced a similar
morphology compared to toluene. In contrast, the PS NPs polymerized with CTAB were
more vulnerable to solvent treatment (Figure 4d–f). When the particles were dispersed in
THF, chloroform, or toluene, they formed aggregates and fused together, indicating that an
inefficient crosslinking reaction occurred for tDVB = 70 min.
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in the presence of SDS and CTAB surfactants, respectively, where tDVB = 70 min for all the cases.

3.3. Evaluation of Pickering Emulsion Stability

The stability of oil-in-water Pickering emulsions, which were stabilized with partially
etched PS NPs, was compared to those stabilized with intact spherical PS NPs. Note
that Pickering emulsions formed with solid particles have a wide range of applications in
various fields such as food, cosmetics, pharmaceuticals, oil recovery, and phase-transfer
catalysis due to their high stability, biocompatibility, and tunable properties [24,32–35]. As
shown in Figure 5, the emulsions stabilized with the intact spherical PS NPs (tDVB = 0 min
sample in Figure 3c) almost disappeared after 2 months, whereas those stabilized with
partially etched PS NPs (tDVB = 70 min sample in Figure 3c) remained the same after
2 months, demonstrating their extremely robust and long-lasting stability. This enhanced
stability can be attributed to the surface roughness of the partially etched particles. The
surface roughness of the partially etched particles increases the surface area exposed to
each fluid phase (i.e., oil and water), leading to stronger attachment energy of the particles
to the interface [19,20]. This increased attachment property can result in more robust and
stable emulsions.
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4. Conclusions

In this study, we have successfully developed a simple and efficient protocol for
fabricating partially etched PS NPs using emulsion polymerization and chemical etching.
By adjusting the time of adding the crosslinking agent during the polymerization reaction,
we were able to control the degree of crosslinking in the particles. The resulting partially
crosslinked PS NPs were chemically etched to selectively dissolve the weakly crosslinked
portions, resulting in the formation of partially etched particles with increased surface
area. Furthermore, we evaluated the partially etched NPs as solid surfactants to form
Pickering emulsions. The resulting emulsions demonstrated significantly improved stability
compared to intact spherical NPs, indicating that the partially etched NPs have promising
potential as stabilizers for emulsion-based applications. In addition, we believe that the
randomly shaped partially etched NPs can be further utilized as model particles that mimic
microplastic particles found in nature for cellular toxicity studies. Microplastics have
caused serious environmental problems, and their impact on human health is still not fully
understood. Therefore, using the partially etched NPs as model particles may provide a
valuable tool for investigating the toxicity and environmental impacts of microplastics.
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