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Abstract: Due to the wide scope of applications of additive manufacturing (AM) in making final
products, the mechanical strength of AM parts has become very important. Therefore, different tests
are being developed to determine the structural integrity of three-dimensional printed components.
In this respect, the pin-bearing test is designed to evaluate the response of a fastener, plate, and hole
to stress. In this study, two different polymer materials were used to fabricate the samples utilizing
the fused deposition modeling technique. Since the specimen width and hole diameter have effects
on the pin-bearing strength and structural integrity of the parts, we prepared the specimens with four
hole diameters to determine the influence of this ratio. A series of tensile tests were performed, and
the stiffness and pin-bearing strength of additively manufactured specimens were determined. The
preferred bearing failure mode was observed in several tested specimens. Subsequently, a scanning
electron microscope investigation was conducted on the damaged area of the examined specimens to
obtain insights into the damage mechanisms and failure behavior of the aforementioned specimens.
We used digital image correlation technique to determine the strain field of dumbbell-shaped test
coupons. The results of this research can be utilized for new designs of AM parts with a higher
mechanical strength.

Keywords: additive manufacturing; pin-bearing; fracture; mechanical strength; SEM; DIC

1. Introduction

Although the fabrication of geometrically complex parts is not possible by conven-
tional manufacturing processes, additive manufacturing (AM) techniques have been used
for this purpose. In fact, AM differs from the traditional methods of fabrication, which
changes the conventional removal procedure to an additional process [1]. AM, commonly
known as three-dimensional (3D) printing or rapid prototyping, is a fabrication process
based on layer-by-layer deposition of material [2]. The capabilities of fabricating complex
geometries, with high sustainability, customization of different products, consolidation
of sophisticated assemblies, and minimal material waste can be considered as benefits
of rapid prototyping compared to traditional manufacturing techniques. Due to these
advantages, 3D printing has become very popular in many fields, such as construction [3],
the automotive industry [4], medicine [5], polymer composites [6], tooling and moulding
industries [7], electronics [8], and the food industry [9]. There are various types of 3D
printing processes, and all of them have their targeted applications. According to ASTM
F2792-12 [10], 3D printing has been categorized into seven methods, in which material
extrusion is used in this research work.

Since 3D printing shows a rapid growth of development, different engineering is-
sues such as printing accuracy [11], fatigue strength [12], interfacial bonding [13], life
time [14], mechanical properties [15], fracture behavior [16], impact strength [17], and
buckling [18] have been investigated in this field. Three-dimensional printing was devised
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for fabrication of prototypes, but its application has recently changed to fabrication of final
products. Consequently, the structural performance of 3D-printed parts has become very
important. Considering the wide applications of 3D printing and the introduction of this
technique in different industries, new investigations are required to study the mechanical
strength of 3D-printed components. In this context, the mechanical strength and structural
integrity of additively manufactured parts were investigated in existing studies [19–22].
For instance, in [23] tensile and flexural behavior of the structures fabricated by fused
deposition modeling (FDM) were investigated. To this aim, solid and porous continuous
carbon fiber-reinforced polymer composites with different infill density levels were printed
and subjected to the tensile and flexural tests. The results indicated an increase in tensile
strength and flexural strength with an increase in the fiber content. At the same time, in [24]
the bonding strength of 3D-printed suture joint was studied. In this context, different inter-
faces were printed and tensile tests were performed. The experimental findings indicated
that with the flat interface, the material in the interfacial layer was subjected to simple shear,
but in the wavy interface, the material was subjected to complicated mixed mode load.
Later, effects of printing speed on the mechanical behavior of printed structural elements
were investigated in [25]. In detail, the test coupons were fabricated with various printing
speeds using acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) materials.
After a series of tensile and three-point bending tests, it was concluded that the specimens
printed with the lowest speed, showed lowest elongation at failure, but exhibited the
highest tensile strength. Recently, we investigated the fracture response of anisotropic
3D-printed components [26]. Indeed, the structural integrity and the fracture behavior of
PLA and PLA-wood additively manufactured parts were studied. The obtained results
confirmed that using 40% wood fibers decreases the mechanical strength. Although extant
research works have been investigated the mechanical behavior of 3D-printed components,
this issue still remains as a significant problem that requires resolution. In this respect,
examining the mechanical strength of 3D-printed structural elements under pin-bearing
conditions is beneficial towards obtaining a better understanding of failure mechanisms of
additively manufactured parts.

In the current study, a series of bearing tests was performed to determine the maximum
fracture loads and failure modes of 3D-printed polymer parts. To this aim, PLA and ABS
materials were used and all test coupons were printed using the FDM process. As the
ratio of the specimen width (W) to the hole diameter (D) have effects on the pin-bearing
strength and structural integrity of the parts, the specimens were fabricated with two hole
diameters to determine the influence of this ratio. In the experimental practices, we used the
digital image correlation technique (DIC) to measure strain on the surface of the 3D-printed
specimens. The remainder of this paper is structured as follows: in Section 2, the details
of specimen preparation and experimental investigations are described. Verification of
experiments by DIC are explained in Section 3. The documented results are explained and
discussed in Section 4. Finally, a short summary is presented in Section 5.

2. Experimental Procedure
2.1. Specimen Preparation

In this study, two groups of test coupons were fabricated and examined under tensile
test conditions: (i) dumbbell-shaped samples, and (ii) double-shear specimens. The first
group of samples were examined to determine the basic mechanical properties of additively
manufactured parts. In detail, the specimens were designed in a CAD platform according
to Type I in ASTM D638 [27]. The saved “.stl” file was used to print dumbbell-shaped
samples utilizing PLA and ABS materials, based on the FDM technique. The printing
parameters are listed in Table 1.
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Table 1. Processing parameters and properties of 3D-printed PLA and ABS specimens.

Parameters PLA ABS

Nozzle temperature (◦C) 220 235
Bed temperature (◦C) 60 100
Nozzle speed (mm/s) 60 60
Infill percentage (%) 100 100
Density (gr/cm3) 1.29 1.13
Layer width (mm) 0.42 0.42
Layer height (mm) 0.25 0.25
Number of contours 2 2
Raster angle (◦) ±45 ±45

We designed and printed double-shear specimens for pin-bearing tests according
to ASTM D5961-13 [28]. The double-shear specimen is a flat and constant rectangular
cross-section specimen with a centerline hole near to the end of the specimen. The bearing
load typically applied by a lightly torqued fastener (or pin) that is responded in a double
shear through a fixture described in ASTM D5961-13 [28]. In the present study, the CAD
platform was used to design double-shear samples. Subsequently, we imported the files
in the CuraTM slicing engine to slice and set the printing parameters. Finally, the file was
used and the material was extruded and deposited in layers from a horizontal basis. The
printed specimens were kept on the printer bed until they completely cooled down. This
issue minimized the distortion and warping of the printed specimens. It is noteworthy that
we fabricated a steel fixture according to its detail presented in ASTM D5961-13 [28] for
experimental tests of double-shear samples. In the double-shear specimens, representative
factors which have an influence on the failure mode are specimen width (W), hole diameter
(D), and edge distance (e), which denotes the distance between the hole’s center and end
of the specimen that is parallel to the force. Figure 1 demonstrates the schematics of
double-shear samples and the fixture loading plate.

3
6

135

18

Ø6

5

Spacer
Upper grip

Lower grip

Specimen

Figure 1. The schematics of double-shear samples and the fixture loading plate (dimensions in mm).

In the current research work, we designed, printed, and examined double-shear
specimens with various W/D and e/D ratios. Indeed, the bearing failure mode might be
attained by using high W/D and e/D ratios. As explained in [28], it is advised to consider
the W/D and e/D ratios at least 6 and 3, respectively. Here, we fabricated specimens with
diameter of 3, 4, 6, and 12 mm which give us different W/D and e/D ratios. Based on
different hole diameters, the effects of hole diameter on the mechanical performance of the
specimens can be determined. Since the specimen thickness has not a significant effect on
the failure mode of the parts, all specimens were prepared with the same thickness.
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2.2. Experimental Tests

A series of tensile tests was conducted on the dumbbell-shaped samples. To this aim,
we used SANTAM STM-150 uniaxial testing machine with a cross-head speed in the range
of 0.001 mm/min to 500 mm/min equipped with a 50 kN load cell. The wedge grips of
the machine directly gripped the shoulder parts of the specimens which were subjected
to uniaxial tensile load. Appropriate tensile grips were used to keep the test coupons
completely aligned in the vertical direction. In this study, the specimens experienced the
constant crosshead speed of 5 mm/min until final failure. Geometries of a dumbbell-shaped
specimen and tensile test conditions are schematically illustrated in Figure 2. In the present
study, four identical dumbbell-shaped specimens were examined to ensure repeatability
and reproducibility of the results.

19

13

57

6

165

R76

Figure 2. Geometries of a dumbbell-shaped specimen and schematic of tensile test conditions
(dimensions in mm).

The tensile load was applied to all bearing samples. In this context, a tensile displace-
ment with loading rate of 2 mm/min was applied. The experimental details are illustrated
in Figure 3 where the top of the specimen was secured in displacement-controlled grips
and the bottom of the specimen was secured in stationary grips. For repeatability of this
experimental investigation, for each material and hole diameter, four identical specimens
were printed and tested. Thus, thirty two tests were performed.

It has been discovered that performance of the the specimens is impacted by the
clamping conditions. In fact, increasing the clamping pressure of a specimen lead to an
increase in the bearing failure load. Therefore, utilizing an appropriate clamp is a necessity
in experimental practice.
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Figure 3. A 3D-printed specimen under test conditions, front view (left) and side view (right).

3. Verification of Experimental Tests

This section presents the application of the DIC technique for verification of our
experiments. When a full field strain profile is required, DIC as a contactless and non-
interferometric optical method provides a solution. DIC uses photogrammetric techniques
to determine the full field and localized displacement and strain of an object. The de-
termined displacement fields can be used to characterize the damage and rupture of the
examined structural element [29]. In fact, by using the DIC technique, measurement
quantities collected might be connected to the specific material reactions. DIC has been
used extensively for small scale deformation events and strain measurements in different
research works [30–32].

In the present study, the DIC technique is used to determine the strain field of
dumbbell-shaped specimens. Since DIC is based on color contrast, we applied speckle
patterns by spraying the specimen’s surface with contrasting paints. To this aim, a white
spray paint was used to cover the specimen’s surface. Later, we sprayed spots of black
mat paint, of random sizes on the white background. This technique provides a random
texture that allows us to recognize the area around the point of interest and satisfies the
contrast and randomness required for DIC measurement. Here, we used a Canon CMOS
camera, equipped with Canon EF 100 mm macro lens supporting the spatial resolution
equal to 2592 × 1728. Moreover, an appropriate illumination is provided by LED lamps.
The utilized camera provided 30 frames per second for image acquisition. Figure 4 shows
the DIC setup in our experiments.

Figure 4. DIC setup including imaging and lighting equipment.
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In DIC measurement, the mm-to-pixel coefficient is used to indicate the scale of
pictures. By measuring the width of the specimens in the pictures, it is discovered that the
specimen width corresponds to 1625 pixels. The mm-to-pixel coefficient is calculated to be
equal to 0.008 by dividing the specimen width (in mm) by its value in pixels. accordingly,
1 mm on the specimen equates to 125 pixels in the image. In our experimental practices,
the step size and subset size for all DIC correlations were regarded to be 25 pixels and
45 × 45 pixels, respectively. As the test started, the first photo was captured. Afterwards, a
snapshot of the deformed surface was taken every five seconds. The obtained results are
presented and discussed in the subsequent section.

4. Results and Discussion

In the bolted joints, the bearing failure mode is desirable, because it gives plenty of
warning prior to the final failure, and develops slowly. In addition, the bearing failure
mode is favorable, since load transfer capability can still be used. The tension, shear, and
cleavage failure modes frequently occur abruptly and are typically catastrophic. Indeed,
the term “net-tension” describes a situation wherein the joint capability for load transfer
can no longer be sustained. Figure 5 shows typical failure modes which can be occurred in
the bolted joints.

Net-tension Bearing Shear-out Tearing Cleavage

Figure 5. Schematics of different failure modes in bearing test.

In the present study, different failure modes are observed in the examined specimens.
The failure mode can be determined by visual inspection and the geometry. Different
failure modes obtained from experiments on PLA and ABS samples with various e/D
ratios are illustrated in Figure 6. The hole deformation figures confirmed that pin-bearing
corresponds to the first phenomena of material failure. As can be seen, neither PLA nor
ABS specimens indicate the bearing failure mode in the test coupons with the maximum
hole diameter (D = 12 mm). On the tested specimens, we documented the bearing failure
mode for samples with e/D ratios ≥ 3.

Net-tension

BearingPLA

ABS

Net-tension Bearing

Net-tension
Net-tension

Bearing

Net-tension
Net-tension

Net-tension Cleavage

Cleavage

Net-tension

Bearing

Net-tension
Net-tension

Net-tension

Cleavage
Bearing

Net-tension
Net-tension

Bearing
Cleavage

Cleavage

Net-tension
Net-tension

e/D = 6 e/D = 4.5 e/D = 3 e/D = 1.5

Figure 6. Examined specimens with various e/D ratio and failure modes.

According to the experiments performed on PLA and ABS test coupons, the failure
loads of specimens with various W/D and e/D ratios are presented in Table 2. The results
indicate that the highest failure load is 3646 ± 143 N belongs to a 3D-printed ABS samples
with W/D = 3 and e/D = 1.5. Moreover, experimental findings confirmed that the lowest
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failure load was 2761 ± 90 N obtained from test on a PLA specimen while its W/D and
e/D were 12 and 6, respectively. All specimens indicated a good replica repetition, and the
maximum dispersion measured for failure load was less that 4%. In addition, the stiffness
of specimens with different e/D and W/D ratios are presented in Table 2. Indeed, the
highest stiffness is 1093 N/mm related to a 3D-printed ABS specimen.

Table 2. The results of the examined 3D-printed specimens.

Material W /D e/D Failure Load
(N)

Stiffness
(N/mm)

Typical
Failure Mode

PLA

3 1.5 3595 ± 123 989 Net-tension

6 3 3218 ± 20 832 Bearing

9 4.5 2850 ± 49 785 Bearing

12 6 2761 ± 90 768 Bearing

ABS

3 1.5 3646 ± 143 1093 Cleavage

6 3 3521 ± 52 1083 Cleavage

9 4.5 3081 ± 73 843 Bearing

12 6 2833 ± 72 769 Bearing

In the current study, the ultimate bearing strength of the examined specimens was
calculated according to ASTM D5961-13 [28], using the following equation:

Fbru =
PMax

k × D × h
(1)

where Fbru denotes the ultimate bearing strength and PMax indicates the maximum load
prior to the failure. Moreover, k is load per hole factor, and h and D are specimen thickness
and hole diameter, respectively. The average of obtained ultimate bearing strength of
tested PLA and ABS specimens are summarized in Table 3. This ultimate bearing strength
shows the maximum load capability of a bearing specimen with respect to the printing and
loading direction. The result of experimental practice summarized in Table 3 provides a
fair idea of how altering geometrical parameters affect bearing strength. We have obtained
the highest ultimate bearing strength equal to 189 ± 5 from a test on a 3D-printed ABS part
with the hole diameter of 3 mm.

Table 3. The ultimate bearing strength of tested specimens.

Material W /D e/D Fbru

(MPa)

PLA

3 1.5 60 ± 2

6 3 107 ± 1

9 4.5 143 ± 2

12 6 184 ± 6

ABS

3 1.5 61 ± 2

6 3 117 ± 2

9 4.5 154 ± 4

12 6 189 ± 5

The ultimate bearing strength of tested PLA and ABS test coupons are illustrated in
Figure 7. As is shown, the ultimate bearing strength increased with an increase in W/D and
e/D ratio in both materials. In addition, the curves show that ABS has a higher ultimate
bearing strength in all ratio of W/D and e/D compared to the PLA material.



Polymers 2023, 15, 1660 8 of 12

In Figure 8, the load-displacement results of tested PLA and ABS specimens with
different e/D ratios are depicted. As illustrated, the highest loads belong to the lowest e/D
ratio in both examined materials. In addition, the curves exhibit that the specimens with
the smallest hole diameter (D = 3) have the largest displacement in both PLA and ABS
specimens. The illustrated curves in Figure 8 confirmed the crucial role of e/D ratio in
determining maximum load capability of the specimens which is consequently efficient in
leading the bearing failure mode.
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Figure 7. The ultimate bearing strength of tested specimens with various W/D and e/D ratio.
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Figure 8. Load-displacement curves of examined PLA (left) and ABS (right) with different e/D ratios.

In the current study, we used scanning electron microscopy (SEM) to provide a better
insight into the fracture mechanism of the examined specimens. In this context, we have
considered three points around the specimen hole (see Figure 9) to investigate the effects of
loading on the bonds between filament layers. Point 1 is placed at the right side of the hole.
Point 2 refers to the location where the pin was connected to the specimen and is located
at the top side of the hole. Moreover, point 3 shows the fracture area, above the hole in a
3D-printed ABS specimen.

Figure 9 shows the SEM image of point 1 in a tested ABS specimen with hole diameter
of 12 mm. This figure indicates that although the infill density was set to 100% in fabrication
of the specimens, there are still some gaps between the filaments which confirm that
these slight air gaps are an intrinsic feature of the FDM process. Moreover, this figure
demonstrates a vertical crack that was created due to the net-tension failure.

In Figure 10 the SEM images of two reference points (2 and 3) of a tested 3D-printed
ABS specimen are illustrated. This specimen has the hole diameter of 12 mm (e/D = 1.5)
and shows net-tension and cleavage failure modes. In Figure 10 (top), there is a compression
in the filaments due to the bearing load. The ridge marking pattern (yellow arrows) shown
in Figure 10 (bottom) indicates that the rasters located at the top of the hole (point 3) tolerate
a large portion of applied load where the inter-raster and inter-layer bonding strength bear
a small portion of the applied stresses.
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3

2

1

Crack

Figure 9. Reference points in visual inspection of specimens (left), and SEM image of point 1 of a
3D-printed ABS specimen with hole diameter of 12 mm (right).

Figure 10. SEM images of point 2 (top) and point 3 (bottom) of a 3D-printed ABS specimen with hole
diameter of 12 mm.
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Figure 11 demonstrates the fracture surface of point 1 of a 3D-printed PLA speci-
men with the hole diameter of 3 mm where the net-tension failure occurred. The hackle
pattern shown in this figure implies the high energy dissipation resulting in large plastic
deformation [33]. This issue is in accordance with the load-displacement curves shown in
Figure 8 (left).

Hackle pattern

Hackle pattern

Figure 11. SEM images of point 1 of a 3D-printed PLA specimen with hole diameter of 3 mm.

5. Conclusions

In the current study, the pin-bearing strength and the fracture behavior of additively
manufactured polymeric components have been investigated. To this aim, PLA and ABS
materials were used to fabricate double-shear specimens with four hole diameters to deter-
mine the influence of ratio of the specimen width to the hole diameter on the pin-bearing
strength. It is noteworthy that different failure modes such as net-tension, bearing, and
cleavage were observed in different specimens. Based on the results, the main contributions
of this research are summarized as follows:

- The bearing failure mode was documented for test coupons with e/D ratios ≥ 3. The
highest fracture load was 3646 ± 143 N belongs to a 3D-printed ABS specimen with
W/D = 3 and e/D = 1.5.

- The highest ultimate bearing strength was equal to 189 ± 5 obtained from a test on a
3D-printed ABS part with the hole diameter of 3 mm.

- SEM investigations indicate that inter-raster and inter-layer bonding strength only
bears a small part of the applied loads. However, the rasters at the top of the hole
tolerate a substantial portion of the applied load.

Considering applications of 3D printing in fabrication of functional end-use products,
the outcome of this research work is beneficial for future designs, development, and
optimization of 3D-printed polymer components.
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