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Abstract: Chitosan is one of the most researched biopolymers for healthcare applications, however,
being a naturally derived polymer, it is susceptible to endotoxin contamination, which elicits pro-
inflammatory responses, skewing chitosan’s performance and leading to inaccurate conclusions. It is
therefore critical that endotoxins are quantified and removed for in vivo use. Here, heat and mild
NaOH treatment are investigated as facile endotoxin removal methods from chitosan. Both treatments
effectively removed endotoxin to below the FDA limit for medical devices (<0.5 EU/mL). However, in
co-culture with peripheral blood mononuclear cells (PBMCs), only NaOH-treated chitosan prevented
TNF-α production. While endotoxin removal is the principal task, the preservation of chitosan’s
structure is vital for the synthesis and lysozyme degradation of chitosan-based hydrogels. The
chemical properties of NaOH-treated chitosan (by FTIR-ATR) were significantly similar to its native
composition, whereas the heat-treated chitosan evidenced macroscopic chemical and physical changes
associated with the Maillard reaction, deeming this treatment unsuitable for further applications.
Degradation studies conducted with lysozyme demonstrated that the degradation rates of native
and NaOH-treated chitosan-genipin hydrogels were similar. In vitro co-culture studies showed that
NaOH hydrogels did not negatively affect the cell viability of monocyte-derived dendritic cells
(moDCs), nor induce phenotypical maturation or pro-inflammatory cytokine release.

Keywords: chitosan; endotoxin removal; alkali treatment; heat treatment; Maillard reaction;
pro-inflammatory response; monocyte-derived dendritic cells; lysozyme degradation

1. Introduction

Chitosan is a linear, cationic copolymer comprised of randomly distributed β-(1,4)-
linked N-acetyl-D-glucosamine and D-glucosamine units. It is produced from the deacety-
lation of chitin (Figure 1) which is in fungal cell walls and crustaceans, with the latter
being a major waste product of the fishing industry [1–3]. In the human body, chitosan is
predominantly degraded by lysozyme, which only interacts with the acetylated units of
chitosan [4–6]. Given that chitosan is abundant, renewable, biocompatible, biodegradable,
non-toxic, and anti-microbial [7–9], it is clear why chitosan is of utmost interest in high-
value applications. Chitosan has been designated ‘Generally Recognized As Safe (GRAS)’
by the FDA and is approved for use in dietary supplements [10] as well as in biomedical
applications, such as wound dressings and gels [11,12]. Importantly, chitosan is one of
the leading materials studied for central nervous system applications because of its ability
to cross the blood brain barrier [13]. Furthermore, the expanding interest in this material
is evidenced by the growing worldwide chitosan market, which is expected to grow to
$12.14 billion in 2026 at a compound annual growth rate of 19.2% [14].
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A major issue that needs to be considered for any biomedical in vivo application of
chitosan is the contamination with bacterial lipopolysaccharides (LPS), also known as
endotoxins. These are heat-stable molecules (<180 ◦C) found in the outer membrane of
Gram-negative bacteria [15–17], and are composed of three parts: lipid A, a core oligosac-
charide, and an O-antigen (Figure 1). The inner core is highly phosphorylated, causing
LPS to be anionic [18,19]. Innate immune cells recognize the lipid A portion of endotoxin
through Toll-like receptor-4 (TLR4), which initiates downstream signalling leading to proin-
flammatory cytokine release, resulting in activation of potent immune responses [20]. The
host immune system can detect and elicit potent proinflammatory responses in response
to extremely small concentrations of endotoxin [21]; for example, monocytes and den-
dritic cells are shown to be activated by endotoxin concentrations as low as 0.01 ng/mL
(0.05 EU/mL) [15] and 0.02 ng/mL (0.1 EU/mL) [22], respectively. The FDA have therefore
enforced strict regulations on endotoxin levels in medical devices (limit of 0.5 EU/mL [23]),
with devices continually being recalled due to their endotoxin levels exceeding the limit [17].
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Figure 1. Structure of chitosan and LPS and their ionic interaction (created with BioRender, adapted
from [24]).

Many studies employ natural sources of biomaterials, which are susceptible to en-
dotoxin contamination [25,26]. Furthermore, synthetic biomaterials can also be contam-
inated with endotoxin due to contaminated laboratory equipment or reagents [15,17].
Endotoxin contamination is a particular concern for chitosan as the cationic nature of
the polymer predisposes its interaction with the negatively charged phosphate groups in
LPS (Figure 1) [27]. Despite the continuous increase in the number of scientific publica-
tions related to chitosan [28], the purity levels, and in particular endotoxin contamination,
are seldom acknowledged [21,29]. Chitosan is renowned for its potent immunostimu-
latory ability [30–32], and has been reported to elicit both pro- and anti-inflammatory
responses [33–36]. Furthermore, there are contrasting findings concerning the cytotoxicity
of chitosan [37–39]. As endotoxins have inflammatory and cytotoxic effects [40], variable
endotoxin contamination could be the reason behind such divergent reports in the liter-
ature [41]. Unless endotoxin is quantified and removed, bioassay studies of chitosan (or
any other biomaterial) are incomplete and prone to misleading conclusions, limiting their
validity, and obstructing intended translation into clinical practice.
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Several methods have been developed to remove endotoxin from biomaterials. For
example, ultrafiltration and size-exclusion chromatography remove endotoxin based on
size. Although endotoxins are approximately 10 kDa, they readily form large aggregates
up to 1000 kDa [42,43], making these methods difficult. Moreover, most commercially
available endotoxin removal resins combine porous cellulose beads for the matrix and
cationic poly(ε-lysine), as the affinity ligand. Examples include the Pierce™ High-Capacity
Endotoxin Removal Resin and Cellufine™ ETclean. However, endotoxin removal efficiency
is dramatically reduced in viscous and positively charged samples [44], namely chitosan.
Ultrasonication and two-phase extraction using detergents are also potential endotoxin
removal methods; however, these methods can damage biomaterials, negating their perfor-
mance [17]. Less complex methods to remove endotoxins from chitosan involve the use
of heat and alkali treatments. Previous studies investigating heat treatment found that
temperatures of 180 ◦C or above can destroy endotoxin [15,16]. Heat treatment is often
disregarded as an endotoxin removal method, due to the thermal stability of endotox-
ins [15–17]; however, chitosan degradation temperature is reported to be approximately
300 ◦C [45–48], therefore chitosan should theoretically withstand these temperatures with-
out compromising its structure. Similarly, the use of alkali treatments such as NaOH has
shown promising results in inactivating endotoxins in chitosan due to the hydrolysis of
ester and amide linkages found in the lipid A portion [49,50]. Starting from highly deacety-
lated (95%) and extensively purified ChitoClear® chitosan, Lebre and colleagues used
acid-alkaline treatment to remove endotoxin [41]. It is important to note that the presence
of acetyl groups is vital for in vivo lysozyme degradation of chitosan-based hydrogels [4–6].
If endotoxin removal methods lead to a significant increase in deacetylation degree (DD),
they are not suitable for the purification of chitosan intended to degrade in vivo.

This study investigates the suitability of heat and NaOH treatment for the removal
of endotoxin from commonly used Sigma-Aldrich medium molecular weight chitosan.
For this, chitosan endotoxin levels are quantified with Pierce™ Chromogenic Limulus
Amebocyte Lysate (LAL) assay, while the effectiveness of endotoxin removal is also in-
vestigated via an In vitro TNF-α bioassay. Fourier-transform infrared (FTIR) spectroscopy
was employed to determine the effect of endotoxin removal methods on chitosan structure
and change in DD. The ability of treated materials to form chitosan-genipin hydrogels for
further biomedical applications is validated, and subsequently, lysozyme degradation of
resultant hydrogels was monitored. Chitosan-genipin hydrogels were finally cultured with
monocyte-derived dendritic cells (moDCs) to assess cytocompatibility.

2. Materials and Methods
2.1. Materials

Chitosan (medium molecular weight 190,000–300,000 gmol−1, 75–85% deacetylation,
product code 448877, lot number STBG5137V), glacial acetic acid (product code 101884980,
lot number STBH0491), genipin (≥98%, product code G4796, lot number 0000111438),
1.0 M NaOH solution (product code S2770-100ML, lot number RNBK6726), Roswell Park
Memorial Institute (RPMI) 1649 media, L-glutamine, penicillin/streptomycin, polymyxin B
and O-Phenylenediamine dihydrochloride were supplied from Sigma-Aldrich (Irvine, UK).
Foetal calf serum was supplied by Gibco. IL-4 was supplied by Miltenyi Biotec (Bergisch
Gladbach, Germany) and GM-CSF was supplied by Genzyme (Cambridge, MA, USA).
Endotoxin-free water was purchased from EMD Milipore (Darmstadt, Germany). Human
TNF-alpha DuoSet ELISA kit was purchased from R&D Systems (Minneapolis, MN, USA).
Lymphoprep was purchased from StemCell (Bernburg, Germany).

2.2. Heat Treatment for Endotoxin Removal

Chitosan powder (2 g) contained in a crucible was heated in a pre-heated Clifton
drying oven at temperatures of 120, 140, 160 and 180 ◦C for 0.75, 1.5 and 3 h. The conditions
of 180 ◦C for 3 h were selected as they have been reported to destroy endotoxin [15,16],
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while lower temperatures and durations were chosen to evaluate the feasibility of endotoxin
removal with milder conditions.

2.3. NaOH Treatment for Endotoxin Removal

Chitosan powder (1 g) was mixed with 20 mL of 1.0 M NaOH solution using a magnetic
stirrer. Conditions were based on reports that NaOH hydrolyses the ester and amide
linkages of the lipid A portion in endotoxin [49,50]. The mixture was stirred at room
temperature for 2 h, 24 h, 2 h with the addition of polymyxin B (final concentration of
100 µg/mL) as well as 50 ◦C for 2 h. Polymyxin B was added as a high-affinity LPS
ligand [51,52], which was postulated to improve endotoxin removal. Each mixture was
filtered with a 70 µm cell strainer to remove the solution. The resultant wet chitosan powder
was washed with endotoxin-free water until the pH of the filtrate was 7, and subsequently
transferred to an ethanol-sterilised open container and dried in an ethanol-sterilised Clifton
drying oven at 37 ◦C for 24 h.

2.4. Preparing Chitosan Solutions

Chitosan solutions (1.5% w/v) were prepared by dissolving native, heat-treated (180 ◦C
for 1.5 h) and NaOH-treated (1.0 M NaOH for 2 h) chitosan powders in acetic acid solution
(1% v/v). The solutions were stirred with a magnetic stirrer in sealed vessels for 24 h to
obtain pale yellow, viscous solutions.

2.5. PBMC Isolation and Culture

Leukocyte Reduction System cones were obtained from healthy donors with informed
consent and ethical approval from the Faculty of Medical Sciences Ethics Committee,
Newcastle University (1659/10369/2019), Newcastle upon Tyne, UK. Whole blood was
obtained from healthy donors with informed consent and ethical approval from the Animal
Welfare and Ethical Review Body, Newcastle University (AWERB Project ID No: ID 633).
Peripheral blood mononuclear cells (PBMCs) were isolated by density centrifugation on
Lymphoprep. Chitosan solution was prepared following the method outlined in Section 2.4.
The wells of a 24-well plate (Costar, Deeside, UK) were coated with 200 µL chitosan solution.
Plates were dried for 24 h in a TriMat 2 microbiological safety cabinet to produce chitosan
films. As chitosan solution is slightly acidic, dried films were neutralised with 0.5 mL
0.1 M NaOH solution and subsequently washed five times with 1 mL Hanks Balanced Salt
Solution (HBSS) containing phenol red indicator until the colour of the solution changed to
red, suggesting a neutral pH and complete removal of excess NaOH.

2.5.1. CLI-095 Culture

PBMCs (1 × 106/mL) were suspended in RF10 media (RPMI 1640 substituted with 1%
penicillin-streptomycin, 2% glutamine and 10% fetal calf serum) +/− the TLR4 inhibitor
CLI-095 (5 µg/mL) in 15 mL falcon tubes and incubated at 37 ◦C with 5% CO2 for 6 h on
a MACSmix™ Tube Rotator (Miltenyi Biotec, Bergisch Gladbach, Germany). PBMCs were
then added to an uncoated or chitosan-coated 24-well tissue culture plate (1 × 106 PBMCs
per well) and further incubated for 18 h. Supernatant (200 µL) was removed and frozen at
−80 ◦C for determination of cytokine secretion by TNF-α ELISA (Section 2.6).

2.5.2. TNF-α Bioassay

Native, heat-treated and NaOH-treated chitosan films were prepared. PBMCs (1 × 106/mL)
were suspended in RF10 media and added to the prepared 24-well plate with or without
100 ng/mL LPS and incubated at 37 ◦C with 5% CO2 for 24 h. Two hundred (200) µL of
supernatant was removed and frozen at −80 ◦C for determination of cytokine secretion by
TNF-α ELISA (Section 2.6).
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2.6. ELISA

Supernatants from the cellular experiments were analysed by TNF-α sandwich enzyme-
linked immunosorbent assay (ELISA). Briefly, a 96-well plate was prepared with 4 µg/mL
capture antibody overnight. The plate was washed with PBS + 0.1% Tween 20 and super-
natant was diluted in PBS + 1% BSA and added to the plate for 2 h. Following washing,
50 ng/mL detection antibody was added for 2 h. The washing step was repeated and
Streptavidin-HRP was added to the plate for 30 min before the plate was washed again.
OPD was dissolved in citrate phosphate buffer (26.5 mM citric acid, 51.6 mM Na2HPO4,
51.5 mM Na2HPO4·2H2O) and H2O2, which was added for 15–30 min until the colour
developed. Next, 3 M H2SO4 was added as a stop solution. The optical density was mea-
sured immediately using a Tecan Sunrise™ Absorbance Microplate Reader at 490 nm. The
concentration of cytokine in the cell culture supernatants was determined by interpolation
of the endotoxin standard curve, using Microsoft Excel software.

2.7. Endotoxin Quantification

The endotoxin content of the native and treated chitosan was determined using the
Pierce™ Chromogenic Endotoxin Quantification Kit (Limulus Amebocyte Lysate [LAL]
assay), following the manufacturer’s protocol. First, chitosan powders were suspended
in endotoxin-free water overnight to mimic making a 1.5% w/v mixture. Chitosan pow-
der suspended in endotoxin-free water was used rather than chitosan solution (typically
prepared with the aid of acetic acid [53–55]), as chitosan solution is viscous and prevents
homogeneous mixing of LAL reagents. Furthermore, chitosan solution is typically yellow,
and the LAL assay measures yellow products photometrically at 405 nm, which may af-
fect readings. Supernatants were then pipetted into a 24-well plate that was pre-heated
and maintained at 37 ◦C using a Mixer HC (Starlab, Milton Keynes, UK). Reconstituted
Amebocyte Lysate Reagent was added, followed by reconstituted chromogenic substrate
solution and 25% acetic acid stop solution at specified time points. The optical density
at 405 nm was immediately measured after assay completion using the Tecan Sunrise™
Absorbance Microplate Reader. The developed colour intensity is proportional to the
amount of endotoxin present in the sample and was calculated using a standard curve.

2.8. Synthesis of Chitosan-Genipin Hydrogel Films

Chitosan solutions were prepared following the method in Section 2.4. Genipin
solution (1% w/v) was prepared by dissolving genipin powder in endotoxin-free water.
Chitosan solution (2 mL of 1.5% w/v) was mixed for 3 min with genipin solution (0.4 mL of
1% w/v) using a magnetic stirrer. Chitosan-genipin mixture (500 µL) was then transferred
to Vision Plate™ 24 microplate, sealed with a plastic cover and hydrogel films were formed
in a Clifton drying oven at 37 ◦C for 24 h.

2.9. Synthesis of Chitosan-Genipin Hydrogel Disks

Chitosan and genipin solutions were prepared following the methods outlined in
Sections 2.4 and 2.8. Chitosan solution (1 mL, 1.5% w/v) was mixed with genipin solution
(0.2 mL, 1% w/v) in a sealed polyethylene vial (15 mm diameter) and placed in a Clifton
drying oven at 37 ◦C for 24 h to form chitosan-genipin hydrogel disks.

2.10. FTIR

FTIR spectroscopy was conducted to determine if heat or NaOH treatment induces
chemical changes to native chitosan powder. An Agilent Technologies Cary 630 FTIR
spectrometer (Agilent, Santa Clara, CA, USA) in attenuated total reflection (ATR), equipped
with diamond crystal, was used to obtain FTIR spectra for samples between 4000 and
650 cm−1 in transmittance mode. Thirty-two (32) background scans were taken before
64 sample scans. DD of native and NaOH-treated chitosan was calculated from the spectra
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using Equation (1) [56]. In the equation, A1320 and A1420 represent the transmission at
1320 cm−1 and 1420 cm−1, respectively.

Deacetylation degree (%) = 100 −
(

A1320
A1420

− 0.3822
)
× 1/0.03133 (1)

2.11. Lysozyme Degradation

The lysozyme degradation of chitosan-genipin hydrogel disks (prepared following
the method outlined in Section 2.9) was investigated gravimetrically in lysozyme/PBS
solution containing 2 mg/mL lysozyme. The concentration, higher than physiological, was
selected to enhance degradation and reduce experimental time [6]. An empty 70 µm cell
strainer was first weighed. Formed hydrogels were then removed from vials, transferred to
a cell strainer, and weighed. Hydrogels were then immersed into 30 mL of PBS/lysozyme
solution and their weight was recorded at regular time points, after draining solution from
the strainer and removing excess solution from the hydrogel surfaces using filter paper.
The experiment was performed in triplicate. The degradation rate was calculated using
Equation (2), where W0 is the initial weight of the sample and Wd is the weight of the
sample following immersion in PBS/lysozyme solution.

Degradation rate (%) =

[
W0 − Wd

W0

]
× 100 (2)

2.12. moDC Isolation and Co-Culture Experiments

Monocytes were isolated from PBMCs using CD14+ microbeads with a MACS sep-
aration column (Miltenyi Biotech, Woking, UK). CD14+ monocytes were cultured at
0.5 × 106 cells/mL in a 24-well plate in RF10 media with GM-CSF and IL-4 (both at
50 ng/mL) for 6 days to generate immature moDCs. Media was refreshed on day 3
with GM-CSF and IL-4. On day 6 of moDC generation protocol, ~0.24 g chitosan-genipin
hydrogels were added to the cell culture alongside 100 µL of RF10 media with or without
LPS to achieve a final concentration of 100 ng/mL. The negative control was supplemented
with RF10 only and the positive control with RF10 with LPS. Cells were incubated at 37 ◦C
with 5% CO2 for 24 h, after which 200 µL of supernatant was removed and frozen at −80 ◦C
for determination of cytokine secretion by ELISA, and cells were harvested and assessed
for expression of cell surface markers by flow cytometry.

2.13. Flow Cytometry

Harvested moDCs were suspended in FACS buffer (PBS + 0.5% BSA + 1 mM EDTA + 0.01%
sodium azide). The moDCs were incubated with the viability dye, zombie aqua. moDCs
were then incubated with fluorescently labelled monoclonal antibodies to cell surface
markers of interest (mAbs) (Supplementary Table S1) and human IgG (200 µg/mL) to
prevent Fc receptor binding of the mAbs. The cells were then suspended in binding buffer
(0.01 M Hepes (pH 7.4), 0.14 M NaCl and 2.5 mM CaCl2) and Annexin V was added to
detect apoptotic cells. Cells were fixed in 1% formaldehyde and acquired on the Fortessa
X20; data were analysed using FCS Express (version 7.16.0047, DeNovo software, Los
Angeles, CA, USA). The flow cytometry gating strategy can be found in Supplementary
Figure S1. BD Biosciences Anti-Mouse Ig, k/Negative Control Compensation Particles
were used for fluorescence compensation settings.

2.14. Statistical Analyses

Statistical analyses for most experiments were performed using GraphPad Prism soft-
ware, version 9.5.0 (730), GraphPad Software Inc., La Jolla, CA, USA. The data are presented
as means ± standard deviation and were compared using either the Student’s t-test or
ANOVA and Tukey post hoc tests at 95% confidence level. A one-tailed binomial test
was used to test for statistical significance in TNF-α production from PBMCs cultured on
chitosan films +/− CLI-095 and moDCs cultured with or without NaOH chitosan-genipin
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hydrogels. PBMC TNF-α bioassay values were analysed using a general linear model
separating batch, donor and treatment effects using JMP software. There were significant
differences between treatment groups and so multiple comparisons were performed to
compare groups using Tukey’s correction for multiple pairwise tests. p values less than 0.05
were considered significant.

3. Results and Discussion
3.1. Endotoxin Contamination of Chitosan

The LAL assay was first conducted to measure the levels of endotoxin in native
chitosan samples incubated in endotoxin-free water. As shown in Figure 2A, endotoxin
levels exceeded the 0.5 EU/mL FDA limit for medical devices [23]. Furthermore, to confirm
In vitro the presence of endotoxin in chitosan, PBMCs were cultured on chitosan films
and the production of the pro-inflammatory cytokine, TNF-α, was measured (Figure 2B).
Endotoxin is a known pathogen-associated molecular pattern that signals through Toll-like
receptor (TLR)4 expressed by immune cells [57]. The specific small molecule inhibitor of
TLR4 signalling, CLI-095, was used to assess whether TNF-α induction by chitosan was
mediated through this receptor. Indeed, blocking of TLR4 signalling completely abrogated
the secretion of TNF-α (Figure 2B). Together, these data indicate that native chitosan
is contaminated with sufficient endotoxin levels to induce pro-inflammatory cytokine
production by immune cells in a TLR4-dependent manner.
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Figure 2. (A) Endotoxin quantification of native chitosan powder suspended in endotoxin free water
determined by LAL assay. N = 3. (B) TNF-α production of PBMCs cultured on native chitosan films
or with 100 ng/mL LPS, with or without the TLR4 small molecule inhibitor, CLI-095, for 18 h. PBMCs
cultured on untreated plate served as negative control. (+) indicates included and (-) not included
compounds. N = 3 (black circles indicate repeats); * p < 0.05; *** p < 0.001 (black comparator lines).

3.2. Endotoxin Removal from Chitosan

Two methods of endotoxin removal from chitosan were explored: heat treatment and
NaOH treatment. Native chitosan powder was exposed to 120, 140, 160 and 180 ◦C for 0.75,
1.5 and 3 h. Temperature of 180 ◦C and durations were based on reports of this temperature
being sufficient to destroy endotoxin [15,16]. Differential scanning calorimetry (DSC) was
first conducted to determine if heat treatment is a suitable endotoxin removal method
for chitosan (Supplementary Method S1.1). The DSC thermographs of chitosan powder
showed that it has a degradation temperature of approximately 303 ◦C (Supplementary
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Figure S2), which is in agreement with the literature [45–48], suggesting that the polymer is
stable at 180 ◦C. While temperatures below 180 ◦C did not suffice in bringing endotoxin
level below FDA-approved limit of 0.5 EU/mL [23] (results not presented), treatment of
chitosan powder at 180 ◦C for all time points significantly reduced the endotoxin levels
compared to the native chitosan powder, with chitosan treated for 1.5 and 3 h removing
endotoxin to levels below FDA-approved limit (Figure 3A). The second method used
NaOH for endotoxin removal, as it inactivates endotoxin through hydrolysis of the ester
and amide linkages in the lipid A portion of LPS [49,50]. Chitosan powder was treated with
1.0 M NaOH at room temperature for 2 and 24 h, 2 h at 50 ◦C, and at room temperature for
2 h with the addition of polymyxin B. Polymyxin B was used as it is a high-affinity LPS
ligand [51,52], which was postulated to enhance endotoxin removal. All conditions reduced
endotoxin contamination of chitosan to below the FDA-approved limit (0.5 EU/mL). There
was no significant difference in the level of endotoxin removal between the different
conditions (Figure 3B). Chitosan powder heated at 180 ◦C for 1.5 h and treated with NaOH
for 2 h at room temperature were the conditions that advanced to further testing as these
were the mildest conditions, assumed to be the least likely to alter the chemical structure
of chitosan.
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Figure 3. Endotoxin quantification of chitosan samples treated at 180 ◦C (A) or with NaOH (B) de-
termined by the LAL assay. N = 3 (black circles indicate repeats). (C) TNF-α production by PBMCs
from three donors cultured on films synthesized from three batches of each optimal treatment type
(180 ◦C for 1.5 h or NaOH for 2 h) versus native chitosan for 24 h. PBMCs were cultured alone with or
without 100 ng/mL LPS as a positive or negative control, respectively. TNF-α values were analysed
for statistical significance using a general linear model separating batch, donor and treatment effects.
There were significant differences between treatment groups and multiple comparisons were per-
formed to compare groups using Tukey’s correction for multiple pairwise tests. N = 9 (each symbol
represents a different batch of chitosan solution used to make films). *** p < 0.001; **** p < 0.0001.
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As only chitosan powder incubated in endotoxin-free water was tested in the LAL
assay, due to inability to test the dissolved acidic chitosan solution (Section 2.7), a sec-
ond method was used to confirm endotoxin removal. TNF-α production was measured
from PBMCs from three donors cultured with three batches of native, heat-treated and
NaOH-treated chitosan films. There was no significant difference in the production of
TNF-α between the native chitosan and heat-treated chitosan conditions, suggesting that
endotoxin removal through this method was not adequate (Figure 3C). Chitosan solution
produced with heat-treated chitosan was inhomogeneous and contained insoluble chitosan
flakes (Supplementary Figure S3C), which resulted in a rough film on the surface of the
plate. This may have promoted TNF-α release, as a previous study demonstrated that
proinflammatory cytokine release from PBMCs treated with biomaterial correlated with
surface roughness [58]. However, there was a significant reduction in TNF-α production
when PBMCs were cultured on NaOH-treated chitosan films compared to native chitosan
films. Taken together, the data suggest that NaOH treatment efficiently removes endotoxin
from chitosan and prevents activation of immune cells.

3.3. Investigating the Structural Changes of Treated Chitosan

FTIR spectroscopy was conducted to determine if heat and NaOH-treatment induce
chemical changes to native chitosan (Figure 4). In the FTIR spectra of all chitosan samples,
a wide band is observed at 3600–3000 cm−1, which is due to overlapping O-H and N-H
stretching vibrations [59]. A prominent band at approximately 2900 cm−1 is present in all
samples, which is attributed to C-H stretching of the pyranose ring [9,60]. Characteristic
peaks of chitosan are observed at 1647 cm−1 and 1559 cm−1. The former represents C=O
stretching of the secondary amide (amide I band) present in the acetylated units of chitosan,
and the latter is due to N-H bending in the secondary amide (amide band II). The band
at 1375 cm−1 is assigned to CH3 bending of the acetylated units of chitosan [61], and the
band at 1312 cm−1 corresponds to C-N stretching in secondary amides (amide III). The
transmission band at 1149 cm−1 in the spectra of the chitosan powder is attributed to
asymmetric stretching of the C-O-C bridge from the glycosidic bond [62].

Heat treatment caused chitosan powder to darken in colour (Supplementary Figure S3B),
which was postulated to be a result of the Maillard reaction (methodology and results can
be found in Supplementary Materials [63–72]). The Maillard reaction is a non-enzymatic
browning reaction initiated by the condensation of NH2 and C=O groups, resulting in Schiff
base formation and rearrangement to Amadori products (Supplementary Figure S4) [66,67].
As chitosan contains both functional groups, it is possible the Maillard reaction can occur
in chitosan. Heat treatment also prevented dissolution of chitosan in 1% v/v acetic acid
solution, as insoluble particles were distributed throughout the solution (Supplementary
Figure S3C). Despite the obvious visual changes, the FTIR of heat-treated and native
chitosan were similar. However, it should be noted that heat treatment causes a change in
the peak at 1647 cm−1, corresponding to C=O stretching of the secondary amide. In the
heat-treated chitosan powder, this peak shifts bathochromically to 1655 cm−1 and increases
in intensity (Figure 4A). Furthermore, the peak ratio of amide I to amide II bands increases
in heat-treated chitosan (Supplementary Table S2). As there is overlap between C=O and
C=N [73], it is feasible that these changes are due to the formation of a Schiff base due to
the Maillard reaction. Hydrogels were attempted to be formed with heat-treated chitosan
and 1% v/v genipin; however, upon visual inspection, the hydrogels were less robust
compared to those formed with native chitosan. Fluorescence studies (Supplementary
Methods S1.2.2) showed that heat-treated hydrogels produced less fluorescence compared
to native hydrogels (Supplementary Figure S5B), indicating less crosslinking occurred.
Overall, heat treatment induced both visual and chemical changes to chitosan, and did
not reduce TNF-α production by PBMCs (Figure 3C). It was therefore concluded that heat
treatment is not a suitable endotoxin removal method and will not progress for further
testing in this study.
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Figure 4. FTIR spectra of native chitosan powder vs. heat-treated chitosan powder (heated at 180 ◦C
for 1.5 h) (A) and native chitosan powder vs. NaOH-treated chitosan (treated with 1.0 M NaOH
solution for 2 h, washed with endotoxin-free water and dried at 37 ◦C for 24 h) (B).

The FTIR spectra of native and NaOH-treated chitosan powders are extremely com-
parable, suggesting that NaOH treatment did not induce any major chemical alterations.
There were very slight changes in wavelengths by 1 cm−1, for example, a hypsochromic
shift occurred in the band from 1647 cm−1 to 1646 cm−1. It was visually noted that NaOH-
treatment enhanced the solubility of chitosan, suggesting that an increase in DD had
occurred, improving the hydrophilicity of the polymer. Deacetylation is the process of
the removal of acetyl groups from chitin and substitution of amino groups [74]. Chitin
that is deacetylated above 50% is defined as chitosan [75]. The DD of native chitosan was
estimated as 80.4%, which is in agreement with the Sigma-Aldrich certificate of analysis
for the specific batch of chitosan used in this study (see Section 2.1). NaOH treatment
resulted in similar DD of 80.3%. This result was anticipated as the NaOH treatment used
in this study (1.0 M NaOH for 2 h at room temperature) was extremely mild compared to
the severe thermoalkaline conditions of chitin deacetylation [76–80]. Comparable DD was
further validated by subsequent successful synthesis of chitosan-genipin hydrogels with
NaOH-treated chitosan and 1% w/v genipin (Sections 2.8 and 2.9).

3.4. Lysozyme Degradation of Chitosan-Genipin Hydrogels Made Using NaOH Treated Chitosan

FTIR results showed that tested NaOH treatment preserved DD of native chitosan.
Yet the key to using chitosan as injectable and implantable material is its ability to degrade
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in vivo. Lysozyme interacts with the acetylated units of chitosan only [4,5], therefore it is
important to determine if NaOH-treated chitosan is still susceptible to lysozyme degrada-
tion. Native and NaOH-treated chitosan-genipin hydrogel disks were produced following
the method outlined in Section 2.9, and lysozyme degradation was monitored gravimetri-
cally. Lysozyme hydrolyses the glycosidic bond in the chitosan backbone [60,81,82] and,
as previously shown, also degrades one of the bifunctional crosslinks in chitosan-genipin
hydrogels, namely the secondary amide linkage [6]. Figure 5 shows that in the first day
of lysozyme exposure, there is a negative degradation rate. This is due to diffusion of the
solvent into the network, causing an initial swelling phase [53]. After 1 day, both native
and NaOH-treated forms of the gels start to disintegrate, until they are fully degraded
in approximately 2 weeks. It is noted that 24 h after the immersion into the solution
hydrogels made with NaOH-treated chitosan had a significantly higher volume change
(24.0% ± 3.7), compared to native chitosan (15.0% ± 1.9) (p < 0.05). This is potentially due
to subtle difference in DD and endotoxin removal enhancing hydrophilicity, and therefore
diffusion of water into the network. As anticipated, based on similar DD, the degradation
rates are comparable; for example, between 3 and 7 days the native and NaOH-treated
chitosan-genipin hydrogels degraded by 58.8% and 58.5%, respectively. Overall, the results
show that NaOH treatment of chitosan does not affect the lysozyme-mediated degradation
of resultant chitosan-genipin hydrogels, making them suitable for in vivo applications and
subsequent elimination by degradation.
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3.5. Compatibility of NaOH-Treated Chitosan-Genipin Hydrogels with moDCs

In our previous study with chitosan-genipin hydrogels (identical chitosan used with
same lot number sourced from Sigma), we used generic sterilization methods that are not
sufficient for endotoxin removal and reported an increase in the release of pro-inflammatory
cytokines, IL-6 and TNF-alpha, by murine dendritic cells and monocytes after co-culture
with these hydrogels [83]. To investigate the cytocompatibility of NaOH-treated chi-
tosan with immune cells, NaOH-treated chitosan-genipin hydrogels were co-cultured with
moDCs. These cells were chosen because they exhibit high sensitivity to endotoxin and
are activated by concentrations as low as 0.02 ng/mL LPS (0.1 EU/mL) [22]. Viability,
expression of typical DC activation/maturation cell surface markers and secretion of cy-
tokines were tested when moDCs were cultured in the presence of the hydrogels. Untreated
and LPS-treated moDCs were used as negative and positive controls, respectively. Whilst
LPS treatment significantly reduced moDCs viability compared to untreated moDCs, as
expected, co-culture with NaOH-treated chitosan-genipin hydrogels did not affect moDCs
viability (Figure 6A). Similarly, LPS treatment significantly increased the expression of
moDC cell surface activation/maturation markers and TNF-α secretion, with no signif-
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icant differences observed between the untreated control and moDCs co-cultured with
chitosan-genipin hydrogels (Figure 6B–E). Additional inflammatory cytokines (IL-6, IL-10,
IL-12p70 and IL-1β) were also measured and followed a similar trend (Supplementary
Figure S6). Overall, these results demonstrate that NaOH-treated chitosan is compatible
with this highly endotoxin-sensitive cell type.
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from NaOH-treated chitosan and genipin for 24 h (A). Median fluorescence intensity of the maturation
markers CD83 (B), CD86 (C) and PD-L1 (D) of moDCs cultured without LPS, with 100 ng/mL LPS or
with hydrogels, N = 4. TNF-α production of moDCs cultured without LPS, with 100 ng/mL LPS or
with hydrogels (E). N = 5 (each symbol represents a different donor). * p < 0.05; ** p < 0.01; *** p < 0.001.
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4. Conclusions

This study demonstrates that endotoxin can be effectively removed from medium
molecular weight chitosan by treating powder with 1.0 M NaOH for 2 h at room tempera-
ture. The NaOH treatment preserves DD of chitosan and its chemical structure, enabling
formation of chitosan-genipin hydrogels, and their subsequent degradation by lysozyme.
In vitro studies with moDCs showed that these NaOH-treated chitosan-genipin hydro-
gels did not affect cell viability, nor induce phenotypical maturation or pro-inflammatory
cytokine release. Our results corroborate findings by Lebre and co-workers [41], who
successfully employed acid-alkaline treatment of chitosan. Although chitosan is prone to
endotoxin contamination, it is not a widely discussed problem in the scientific community.
We have evidenced that native chitosan, commonly used in biomaterials research, is con-
taminated with endotoxin and elicits a proinflammatory response In vitro, which may be
the reason behind the vast conflicting reports concerning the immunomodulatory effects of
chitosan. As such, endotoxin removal should be a standard procedure, incorporated into
methodologies for the synthesis of chitosan-based materials, with NaOH treatment being
a simple, inexpensive, and efficient method.
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data in Figure 6. Debris (A) and then doublets (B) were first excluded from the cell population. Live,
early apoptotic and dead cells were determined based on whether they were stained by Zombie
Aqua and Annexin V or not (C). Median Fluorescence Intensity was determined based on the live
cell population.; Figure S2: DSC thermograph for chitosan powder subject to 2 heating/cooling
cycles and a final heat ramp, which are detailed in Supplementary Methods S1.1 (Top graph, 1st
cycle; middle graph, 2nd cycle; bottom graph, 3rd heating ramp).; Figure S3: Appearance of heat-
treated chitin and chitosan samples (180 ◦C for 1.5 hours). (A) Minimal discolouration observed
in chitin. (B) Brown discolouration observed in chitosan. (C) Insoluble particles in heat-treated
chitosan solution.; Figure S4: Proposed mechanism of the Maillard reaction (extracted from [72]);
Figure S5: The Maillard reaction. (A) The optical density of native chitosan and heat-treated chitosan
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hydrogels. N = 1 (black circles indicate repeats).; Table S1: Flow cytometry antibodies used for surface
staining; Table S2: Peak height ratios between amide I and amide II bands in native and heat-treated
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