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Abstract: Adhesive joints possess a number of advantages over traditional joining methods and
are widely used in composite structures. Conventional non-destructive examination techniques do
not readily reveal joint degradation before the formation of explicit defects. Embedded fiber Bragg
grating (FBG) sensors and the resistance of carbon nanotube (CNT)-doped conductive joints have
been proposed to monitor the structural integrity of adhesive joints. Both techniques will be employed
and compared in the current work to monitor damage development in adhesive joints under tensile
and cyclic fatigue loading. Most of the previous works took measurements under an applied load,
which by itself will affect the monitoring signals without the presence of any damage. Moreover, most
FBG works primarily relied on the peak shifting phenomenon for sensing. Degradation of adhesive
and inter-facial defects will lead to non-uniform strain that may chirp the FBG spectrum, causing
complications in the peak shifting measurement. In view of the above shortfalls, measurements
are made at some low and fixed loads to preclude any unwanted effect due to the applied load.
The whole FBG spectrum, instead of a single peak, will be used, and a quantitative parameter to
describe spectrum changes is proposed for monitoring purposes. The extent of damage is revealed
by a fluorescent penetrant and correlated with the monitoring signals. With these refined techniques,
we hope to shed some light on the relative merits and limitations of the two techniques.

Keywords: adhesive joint; fiber Bragg grating; carbon nanotubes; tensile failure; fatigue failure; full
spectral response; structural health monitoring

1. Introduction

Adhesively bonded joints have a number of advantages over traditional bolt or weld
joints. They help to keep the structure surface smooth and avoid localized bearing load
at stress-concentrating holes or material degradation due to localized heating. Adhesive
joints significantly reduce stress by spreading load transfer over a large area, leading to
better stiffness, better strength-to-weight ratios, and markedly reduced fatigue problems.
In composite structures, they provide additional merits in helping to avoid fiber discontinu-
ity [1,2] and possible edge delamination due to hole drilling. However, a severe weakness
of adhesive joining is that it cannot be disassembled to inspect its integrity. On the other
hand, service loading conditions such as impact, occasional overload, and long-term fluc-
tuating loading may induce joint degradation/damages that lead to eventual structural
failure. Some means to evaluate the structural health of an adhesive joint are required to
ensure safe operation.

Non-destructive examination (NDE) techniques are available to detect defects in ad-
hesive joints. These include ultrasonic techniques such as the traditional pulse-echo [3–5]
or through transmission [4] methods, as well as the more advanced guided wave [6,7],
acoustic microscopy [8,9], and electromagnetic acoustic transducer [10]. Non-ultrasound
techniques such as electromechanical impedance spectroscopy using external [11] or em-
bedded piezoelectric sensors [12–14], thermography [5,15,16], and shearography [4,17,18]
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have also been proposed. It has been pointed out that non-destructive inspection for defect
techniques are mainly helpful at the fabrication stage for quality assurance and at the late
stage of failure where explicit defects have formed but are ineffective for bonds weakened
by degradation during the service stage [19,20]. In addition, NDE cannot reliably and
readily detect kissing bonds, which are zero-volume fabrication defects with little or no
strength [20].

Instead of directly looking for defects, there are techniques suitable for real-time monitoring
of the integrity degradation of adhesive joints. These include strain/stiffness monitoring
using back face strain gages [21–23], optical fiber sensors signal surveillance [24–49], and
resistance monitoring of conductive adhesive joints [50–67]. Strain gages can only be applied
to the outer surface. They will disrupt an otherwise smooth surface and are susceptible to
environmental degradation. In addition, they may not possess sufficient fatigue life for long-
term monitoring [68]. The resistance method is economical to deploy to large adhesive joints,
but its applicability to adherends with high resistivity may be limited.

Optical fibers are known to have excellent fatigue endurance [68]. They can be embed-
ded inside the bond to leave the external surface smooth, which is essential for aerodynamic
structures. They are relatively free from environmental attack and have been used for gen-
eral structural health monitoring [26–28]. There are different kinds of optical fiber sensors.
In adhesive joints, both distributed sensing [29–31] and discrete fiber Bragg grating (FBG)
sensors have been used [6,32–47]. The distributed sensors measure strain along the fiber
and are equivalent to a train of strain gages, with the best available spatial resolution going
down to the millimeter range. Discrete FBG sensors encode measured information in the
wavelength of a characteristic spectrum. FBGs have often been treated as embedded strain
gages to monitor the deformation of adhesive joints under mechanical load [32–38] and
hygrothermal swelling [24,25,44,45]. This requires the FBG spectrum to be single-peaked.
FBGs embedded in adhesive joints sometimes showed spectrum splitting on adhesive
curing [24,44,47–49]. Moreover, applied loading and damages may cause heavy chirp-
ing [6,46,47]. It has been shown that if the deformation of the spectral shape instead of
a single peak of the FBG is used, information regarding the initiation and development
of degradation and damages may be gained [6,46,47]. However, in these works, changes
in spectral shape relied on subjective visual judgment. A quantitative description of
the spectral shape change may give a more objective evaluation and better sensitivity to
small changes.

For resistance monitoring, the adhesive joints were made conductive by adding par-
ticles such as carbon black [50], graphene [51,52], and carbon nanotubes (CNTs) [53–67].
Owing to their extremely high aspect ratio, CNTs are especially suitable for forming a
conductive network and so are used extensively in research works on the health monitoring
of adhesive joints. CNTs are either dispersed into the adhesive [53–58] or prepared into a
conductive sensing layer and embedded in the bond line [59–67]. The conductivity of the
CNT-doped adhesive may come from direct contact between the CNTs [69,70] as well as the
tunneling effect through neighboring tubes in close proximity [70–72]. When a CNT-doped
adhesive joint is loaded, resistance changes may result from four different mechanisms:
(1) change in the amount of direct contact of the overlapping nanotubes [69,70]; (2) change in
the tunneling resistance resulting from changes in inter-tube distance between neighboring
CNTs [70–72]; (3) the intrinsic piezoresistivity of individual CNTs due to strain-dependent
energy band gap opening [73,74]; (4) reduction in conductive cross-sectional area due to
debonding crack growth.

In demonstrating their health monitoring capability, some works employed the double
cantilever bending specimen with a mode I crack in the adhesive joint [52–54,64,67]. Crack
extension reduces the remaining ligament, and so resistance increases by mechanism
(4) above. Other works [55–67] employed lap-shear joint specimens. This configuration
is more relevant to the practical structural application of adhesive joints. They showed
that on monotonically loading to failure, the resistance across the joint increases with
applied load. All four mechanisms mentioned above have probably played some role in
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the observed increases in resistance. It should be noted that such resistance increases may
not all be attributable to damages in the joint. Straining alone, without the occurrence
of any damage, can increase the resistance through mechanisms (1)–(3). More nuanced
differentiation between the effects of straining and damages is needed to obtain a clearer
picture of the damage monitoring capability of CNT-doped adhesive joints. Moreover, the
effect of different kinds of damage on the change in resistance needs to be clarified for the
method to be of practical use.

Both the FBG sensor and the resistance method will be employed to monitor the
occurrence and development of damages in adhesive joints, and their relative merits will
be compared. In view of the shortfalls in the demonstrations of these methods on adhesive
joints mentioned above, an attempt to quantify the FBG spectral shape change will be made
to detect the onset and follow the development of damages. The resistance change due to
joint damage will be separated from that due to straining. Supplementary liquid penetrant
examination will also be applied to differentiate debonding and internal damages inside
the joint. With these refined measuring procedures and techniques, the relative merits and
limitations of the resistance monitoring and embedded FBG sensors in the monitoring of
the structural integrity of adhesive joints will be compared.

2. Materials and Methods
2.1. Single Lap Joint Specimen and Conductivity Measurement

100 mm × 25.4 mm strips were cut from a 220 mm × 220 mm 10-ply uni-directional
graphite-epoxy laminate. Single lap joint specimens with dimensions shown in Figure 1 were
fabricated by gluing together two strips with conductive epoxy resin. The fiber direction
in the composite is along the loading axis. Copper foil was pre-embedded at the end of
the composite strips to allow for conductivity measurement. The areas to be joined were
sanded, and masking tape was applied to the immediate vicinity beyond the boundary of
the joint area. The purpose of the tape was to prevent excess glue from forming additional
but unpredictable adhesion between the two parts. Excess glue is difficult to clean off
thoroughly, especially with the optical fibers in place. Three optical fibers were embedded
in the joint as spacers. The bond line was approximately as thick as the diameter of the
optical fiber, i.e., 125 µm. In some of the specimens, there were FBGs in the optical fibers to
act as sensors. The FBGs on the right, middle, and left sides are designated FBGL, FBGM,
and FBGR, respectively. Stress analysis of single lap joint [75] indicated that for each of
the stress components, stress concentration occurs right at or very close to the longitudinal
edges of the joint (AB and CD in Figure 1). These will therefore be the most likely locations
for initial damage and debonding to occur. Previous work [76] showed that an FBG along
the loading direction straddling the longitudinal joint edge is more sensitive than other
configurations in detecting joint damage. As the FBGs cannot cover the whole joint length,
they were placed on one side of the joint so that their endpoints were slightly outside one
longitudinal edge of the joint (see Figure 1) to stand a better chance of detecting damages.
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Preliminary tests on the above fabrication procedures showed that the bond line has
an even thickness and is free from gas bubbles. A section of the same composite strip was
also glued to each end of the specimen to ensure the loading axis passed through the center
of the adhesive layer.

A batch of seven single lap joint specimens can be made from a 220 mm × 220 mm
composite laminate. Preliminary tests showed that their tensile strengths are affected by
environmental conditions such as temperature and humidity during the joining operation.
Different specimen batches had average batch strengths from 5.9 to 6.5 kN. However, within
the same batch, the worst-case standard deviation of tensile strength was within 6.5%. For
each batch, two specimens were tested under monotonic loading to failure to obtain the
average batch tensile strength.

Conductive epoxy resin adhesive was prepared by mixing 0.3 wt% of amino-functionalized
multi-walled carbon nanotubes (CNTs) in a room-temperature-cured Wah Hong WH-610S epoxy
resin (Wah Hong Industrial Corp., Taipei, Taiwan). The CNTs (MWCNT-NH3-STD, Euflex
Technology Corp., New Taipei City, Taiwan) have a nominal diameter of 9.5 nm and a nominal
length of 1500 nm. To ensure good dispersion, the mixture was first sonicated with an ultrasonic
homogenizer (UP200S, Hielscher Ultrasonics, Teltow, Germany) at 100 W for 5 min. This
was followed by homogenization with a high-speed homogenizer (MiniBatch D-9, MICCRA,
Heitersheim, Germany) at 21,000 rpm for 5 min. The mixture was buffered in iced water to
cool down before the hardener was added and mixed thoroughly. The resulting mixture was
degassed in a vacuum for one hour before application.

The change in conductivity of the adhesive joint was monitored via lead wires soldered
to the pre-embedded copper foils at both ends of the lap joint specimen. A constant current
was sent across the joint with a source meter (Keithley 2450, Tektronix, Inc., Beaverton, OR,
USA), which also recorded the corresponding voltage drop simultaneously. The constant
current employed was approximately 5 mA, and the initial voltage drop was approximately
3 V. This corresponds to an initial resistance of approximately 600 Ω. A 175 mm full-length
composite strip without the joint has a resistance of approximately 3 Ω, so most of the
voltage drop was across the adhesive joint. As the current was kept constant throughout a
test, a change in voltage drop reflects a change in the resistance of the joint.

2.2. Fiber Bragg Grating Sensor

A fiber Bragg grating (FBG) is a specific section on an optical fiber with a periodic
variation of refractive index. With a uniform period Λ, the grating will reflect a characteristic
single narrow peak spectrum with wavelength λ from an incident broadband light [77]:

λ = 2nΛ (1)

where n is the effective refractive index. When an FBG is subjected to a uniform longitudinal
stress/strain, Λ will change due to the resulting strain and n will change by the photoelastic
effect [77]. This causes a change in λ, and the reflected spectrum will shift as a whole, as
shown schematically in Figure 2a. Typically for an FBG with λ = 1550 nm, a tensile strain of
1 µε shifts the spectrum by approximately 1 pm towards the longer wavelength. Transverse
stresses acting on the FBG will bring about a birefringence effect, resulting in a splitting
of the spectrum peak (Figure 2b) [78]. If the stress/strain varies along the length of the
FBG, different λ’s will satisfy the condition of Equation (1) and the spectrum will broaden
or chirp, as shown schematically in Figure 2c. The shape of the chirped spectrum will be
governed by the pattern of stress distribution.

Temperature change will change Λ and n, respectively, through thermal expan-
sion/contraction and the thermo-optics effect [77]. For a freely standing FBG, this will
lead to a shift of the whole reflected spectrum, such as that shown in Figure 2a. Typically
for an FBG with λ = 1550 nm, a 1 ◦C rise shifts the spectrum by approximately 10 pm
towards the longer wavelength. The above effects will superimpose if both temperature
change and mechanical stress are applied to the FBG. When a compressive strain or a
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drop in temperature occurs, the spectrum shifts in the opposite direction towards the
shorter wavelengths.
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Curing of the adhesive involves localized temperature changes and volume contrac-
tion, leading to the occurrence of residual stress inside an adhesive joint. External load and
temperature variation on the joint specimen will induce stress distribution inside the joint.
When damages occur in the joint, they will act as local stress raisers. These will affect the
load-induced stress distribution and cause a re-distribution of the residual stress. For an
FBG embedded in a joint, the change of the FBG spectrum may therefore come from four
contributions: (1) stress distribution in the joint caused by the applied load; (2) temper-
ature change of the FBG; (3) residual stress distribution along the FBG; (4) perturbation
of the stress distribution by damages. The resulting FBG spectrum will be affected by a
superpositioning of all four effects. To reflect the effect of damage, the FBG spectrum is
preferably measured under the load-free condition or at least under a minimal tensile load.
A zero load does away with any contribution of applied load to the FBG spectrum. Any
deviation of the instantaneous spectrum from the initial damage-free spectrum under the
same load will indicate the occurrence and development of damages. A small tensile load
contributes minimally towards the spectrum but may keep any damages open and enhance
their perturbation effects.

In this work, uniform period FBGs were fabricated by side writing using a phase
mask in a Ge-B co-doped single-mode optical fiber. The sensing length of the FBGs was
approximately 10 mm, and the reflectivity of the as-produced FBG was approximately 99%.
The reflected spectra from the FBGs were interrogated using an optical spectrum analyzer
(MS9710C, Anritsu, Kanagawa, Japan). Mechanical testings were carried out in an air-
conditioned room with thermostat control to within 1 ◦C, and the FBGs were embedded in
poor thermal conductors (polymeric adhesive sandwiched between composite laminates) so
that it is relatively insensitive to outside temperature changes. Small ambient temperature
fluctuations will have a negligible effect on the measured spectra during mechanical testing.

2.3. Quantitative Comparison of FBG Spectra

As noted above, to discern the occurrence of internal damage, one should compare the
instantaneous spectra with the initial reference spectrum under the same load to identify
any change in shape or deformation. Visual comparison can only provide qualitative
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judgment. This is not preferable as it is subjective and may not be sensitive to discern
minute changes. In a previous paper [79], a parameter was shown to be able to give an
objective and quantitative assessment of the change in FBG spectra. This parameter, D, has
been refined in the current work and is given by:

D = 100

√√√√∑m
i=1

(
pcurrent

λi
− pre f erence

λi

)2

m
÷ δ (2)

where pcurrent
λi

and pre f erence
λi

are, respectively, the power intensity in dbm of the current
unload spectrum and the reference spectrum at the same corresponding wavelength λi; δ is
a representative intensity of the reference spectrum and m is the number of data points in the
wavelength span chosen to characterize the reference as well as the subsequently deformed
spectra. For a series of spectra to be compared against an initial reference spectrum, the
steps taken to calculate D are as follows: (1) the peak wavelength of each spectrum is
shifted to overlap with that of the reference spectrum. This step aims to remove the effect of
any temperature fluctuation that shifts the whole spectrum; (2) the starting and end point
wavelengths of each FBG spectra are first identified based on the criterion that intensity
changes at a rate greater than ±7 dbm/nm. Among the ranges between the starting and
end points identified in different spectra, the smallest is noted; (3) to avoid irregularities
near the background intensity, 70% of the range noted in step (2) is chosen to be the span
for the calculation of D. The above two steps are to identify a common representative
wavelength range throughout the whole degradation process for computation of D; (4) the
representative intensity, δ, is calculated from the initial reference spectrum by computing
the average power intensity within the chosen span minus baseline intensity, which is the
average power intensities of the starting and end points of the reference spectrum. As the
spectra from different embedded FBGs will differ from one another, normalization with δ
makes the D values comparable across different FBGs.

2.4. Mechanical Testing

Insulating end tabs were bonded to the gripped area of the specimens. Specimens were
subjected to tensile or cyclic loading on a servo-hydraulic testing machine (810 Materials
Testing System, MTS Systems, Eden Prairie, MN, USA). Before testing, the initial reference
FBG spectra were measured under 0 N and 400 N.

During the tensile test, loading was periodically interrupted to allow the reflected light
spectra from the FBGs to be recorded at the instantaneous loading. The specimen was then
unloaded to allow the spectra to be measured at 400 N and 0 N. This loading–unloading
cycle was repeated with progressively higher loads until the specimen failed.

Fatigue testing of the specimens was carried out with a sinusoidal cyclic loading of 8
Hz. The cyclic loading range is 6–60% of the corresponding average batch tensile strength.
Again, the tests were interrupted periodically, and specimens unloaded, to allow the FBG
spectra to be measured at 400 N and 0 N.

2.5. Liquid Fluorescent Penetrant Treatment

As pointed out previously, the most critically stressed and most likely initial debonding
regions are at the longitudinal edges of the joint. In order to show the instantaneous extent
of debonding of the adhesive joint, some of the tensile and fatigue tests were interrupted
before specimen failure. The specimens were then soaked in a fluorescent penetrant (Met-
l-Chek FP-923, McGean, Cleveland, OH, USA). Soaking was carried out under zero load
for 10 min, followed by a tensile loading of 50 N for 20 min, to facilitate the ingress of the
penetrant into defects. The specimens were then wiped dry and cleaned superficially with
a penetrant remover (Met-l-Chek E-59, McGean, USA). Afterward, the specimens were
baked at 90 ◦C under a relative humidity of 30% in an environmental chamber (Model
TTH-B1TP-S, Ten Billion Inc., Tainan, Taiwan) for 36 h. Preliminary tests showed that this
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duration and conditions could thoroughly dry the penetrant in a crevice formed by stacking
together two pieces of the composite strip. After drying, the specimens were pulled to
failure. The fracture surfaces were then observed under a 365 nm ultraviolet light to expose
the extent of the dried penetrant.

3. Results
3.1. Monitoring of Tensile Damages
3.1.1. FBG Spectrum under Progressively Loading Up-Unloading Cycle

Figure 3 shows the spectra from the three FBGs in a typical tensile specimen under
different loading. With progressively increasing load, the spectra shift towards longer
wavelengths. Only slight changes in the spectrum shapes are evident up to 6300 N. This
was the load after which the last spectra were recorded before failure and corresponding to
approximately 95% of the failure load.
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Figure 3. FBG spectra at various loadings in a typical tensile specimen.

To isolate any contribution of joint damages from that of applied load on the spectral
shapes, load-free FBG spectra were measured on unloading after progressively loading up
and are shown in Figure 4. Only the initial spectra and the last spectra measured before
tensile failure are shown for clarity. The intermediate spectra during the course of loading
lay between these two extremes and changed very little. In each of the spectra from the
three FBGs, a slight shift to the longer wavelength is evident. However, the shape of the
waveforms remained nearly unchanged. This trend was observed in 21 out of 24 FBGs. In
these FBGs, not only the fully unloaded spectra but also the spectra measured on unloading
to 400 N exhibited the same phenomena. Of the remaining three FBGs, one showed
a progressively deformed waveform and the other two showed increasing background
intensity, which gradually masked the peak. A shift in the peak wavelength with an
unchanged waveform shape suggests that some uniform permanent tensile deformation
has occurred, while the original strain distribution along the FBG has not been disturbed.
The latter implies that any internal damages, if occurred, have not been serious enough to
cause local stress concentration to perturb the strain field along the FBG.

3.1.2. Conductivity Changes under Progressive Loading Up-Unloading

The percentage voltage changes during the progressive loading up and unloading of
the above specimen is shown in Figure 5. It is clear that not only does the voltage drop
and thus the resistance of the lap joint specimen increases with load, but also that part of
the increase is irreversible. The latter is evident from the percentage voltage change after
unloading to 400 N and 0 N in each loading–unloading cycle. This trend was observed in
22 out of 25 tensile specimens. The remaining three specimens showed fluctuation within
±1% changes toward the end of the tests. Of those showing an increasing resistance with
load, the load-free percentage change in voltage after unloading from 95% of the failure
load varied widely from approximately 3% to 30%, with an average of 7%.
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Application of tensile load to the lap-joint specimen will cause deformation of and
possibly microscopic damages in the adhesive joint, thus breaking some of the CNT contacts
and increasing the inter-tube distances. This will result in a rise in electrical resistance,
exemplified by an increase in voltage across the joint where a constant current passes.
On unloading, elastic deformation will be recovered, while plastic deformation will not.
Internal defects may be partially or totally closed up when the deformation is recovered.
Thus, the percentage voltage changes after each loading–unloading cycle may be attributed
to the irreversible plastic deformation and microscopic internal defects that remained open.

A graph depicting the specimen elongation against the maximum load at each pro-
gressively loading-up cycle (Figure 6) shows that the data points virtually lie on a linear fit
up to 98% of the failure load. This suggests that the deformation is essentially elastic. The
corresponding peak shifts of the unloaded spectra of the three embedded FBGs, which are
much more sensitive deformation sensors, corroborated with this induction. They recorded
small permanent tensile strains of 40–60 µε after various loading cycles in this specimen.
From Figure 6, a deformation of 60 µε, or 0.0015 mm out of the 25 mm long adhesive joint,
corresponds to an applied load of approximately 40 N. Figure 5 shows that the voltage
changes by 0.52% under 1200 N. Thus, a loading of 40 N, or deformation of 60 µε, by itself
should only lead to a negligibly small conductivity change. Therefore, the observed 7%
voltage change after unloading from 95% of the failure load may be attributed to damages
inside the joint.
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Figure 6. Specimen elongation versus maximum load for each progressive loading cycle.

To compare the results of damage sensing by the FBGs and conductivity changes,
the distortion in the load-free FBG spectra after progressive loading has been quantified
with the D value proposed above. Figure 7 shows these load-free D values and percentage
voltage changes at zero load against the previous maximum load reached in the loading–
unloading cycle. On progressively loading up, the percentage voltage change increases
monotonically to approximately 7% near specimen failure. The D value for the FBGR
spectra closely follows the same trend. The rising trend of the D values from FBGL starts
somewhat later at approximately 50% of the failure load. That of FBGM fluctuates and
shows no clearly increasing trend. The differences among the three FBGs may be caused by
different amounts of localized damage near the corresponding FBG. The D values involved
range from 1 to 6. As noted in Figure 4 above, these correspond to barely discernible
changes in the FBG spectra, and the internal damages involved are believed to be small.
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3.1.3. Examination of Damage in the Progressively Loaded Tensile Specimens

In two of the progressively loaded tensile specimens, tests were interrupted after
loading up to close to the failure load. The specimens were soaked in fluorescent penetrant,
baked dry thoroughly, and pulled to failure. Figure 8 shows the fracture surfaces on the two
halves of an adhesive joint specimen lying side by side under visible and ultraviolet light in
a dark environment. This specimen was loaded to 5820 N (92% of the batch tensile strength)
before soaking in the fluorescent penetrant. The maximum D values recorded among
different FBGs was 7, and the percentage voltage change was 5% just before penetrant
treatment. The red dotted squares in Figure 8 are the boundary of the joint. Alphabet
pairs such as A & A’ represent the same points in the original lap joint specimen. The
bright green color outside the joint boundary is the remnant of the dried penetrant. As
pointed out above, maximum stress and deformation occur at both longitudinal edges AB
and CD, which are the most likely place to find indications. Within the joint boundary,
everywhere except inside the white dotted circle showed no fluorescent indication. Inside
the white dotted circle, a straight-line indication approximately 1 mm in length can be seen
on corresponding locations on both halves. The shape of this indication is not typical of
micro-cracking or debonding failure. Incidentally, this is the location of one of the optical
fibers (indicated with white arrows) and may be the result of a small lack of bonding under
the optical fiber. The above observations show that at a load that is above 90% of the
failure strength, the joint was still largely intact. Essentially, the same phenomena were
observed in another similarly treated specimen. The above observation corroborates the
phenomenon that the characteristic FBG waveform remained virtually unchanged in shape,
even when close to the failure load. We may tentatively assume that D values below 7
and a percentage change of voltage within 5% are associated with insignificant internal
damages and no debonding.
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Figure 8. Fractured adhesive joint observed under visible light (top) and UV light (bottom) after
fluorescent penetrant treatment.

Typical scanning electron microscope (SEM) fractography for two different tensile
specimens is shown in Figure 9. Dominating the fracture surfaces are carbon fibers, with
epoxy resin between the fibers. Final failure clearly occurred in the carbon fiber epoxy
composite adherent close to the adhesive–composite interface. Apart from occasional
debris, the surface of the optical fibers is very smooth without any remnant adhesive
attached. On the left micrograph, a thin layer of epoxy adhesive can be seen between the
optical fiber and the composite adherent. This layer of adhesive appears to have been de-
bonded from the optical fiber. Interfacial bonding between the optical fiber and the epoxy
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adhesive is probably relatively weaker than the adhesive, leading to cleavage at the optical
fiber-adhesive interface during failure. This is in marked contrast to the SEM fractographs
in our previous paper [46], which shows that the optical fiber is fully covered with adhesive
after failure. Cracking and deformation of this attaching adhesive can be seen all over
the optical fiber exterior. The reason for this difference may be that the CNTs added for
conductivity purposes may also have reinforced the epoxy to make the adhesive stronger.
The inferior adhesive strength to interfacial strength in Ref. [46] facilitated extensive micro-
cracking and fracture in the adhesive, while the adhesive was still well bonded to the
optical fiber. Localized strain concentration and perturbation due to internal damages
in the vicinity of the optical fiber is easily transferred to the grating. This explains the
early and significant changes in the unloaded FBG spectrum shapes after approximately
70% of failure strength in Ref. [46]. In the current case, the stronger reinforced adhesive
probably limited its own micro-cracking and so the FBG spectra remained unchanged in
shape, even beyond 90% of the failure load. Better adhesive strength also corroborates the
lack of debonding fluorescent indication along the longitudinal edge.
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Figure 9. Typical SEM fractographs from two progressively loaded tensile specimens. (a) higher
magnification; (b) lower magnification.

3.2. Monitoring of Fatigue Damages
3.2.1. FBG Spectra under Cyclic Fatigue Loading

A number of specimens have been subjected to cyclic loading, with the spectra of
the embedded FBGs monitored periodically. Again, FBG spectra were recorded with the
specimens unloaded to 400 N and 0 N. Figure 10 shows some of the spectra from a typical
fatigue specimen. During the initial loading cycles, the waveform mainly shifts gradually
to the right, with nearly no change in shape. When the specimen is getting close to final
failure, marked changes in the waveform shape of the spectra start to occur. The starting
point for this change varies with specimen, but in general it occurs after 80% of fatigue
life has elapsed. Figure 11 shows the spectral shape changes quantified in D value. For
FBGL and FBGM, the waveform shape starts to change significantly at 26,000 cycles, or
91% of fatigue life. Their D values remained below 5 before this and rose sharply afterward.
For FBGR, the intensity of the spectrum increased at about 20% of fatigue life without
significantly changing in the waveform shape. This persisted to 24,500 cycles, or 86% of
life. The reflected peak disappeared in the next measurement. This makes the D value
jumps to above 10 at the beginning and stays between 8 and 14 for the rest of life until
the disappearance of the FBG spectrum at 25,500 cycles. It is not clear whether the above
phenomena are due to a malfunction of the optical fiber or the effect of localized damage in
the joint. The majority of FBGs (30 out of 35) behave in a similar way as FBGL and FBGM.
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3.2.2. Development of Percentage Voltage Change under Cyclic Fatigue Loading

Conductivity across the adhesive joint decreases with increasing loading cycle. In
Figure 11, the percentage change in voltage has been shown alongside the D values from
the FBGs in the same specimen. The D values remained more or less unchanged before 80%
of fatigue life and rose steeply after that. On the other hand, there are roughly three stages
of change in the voltage. The percentage voltage change remains low at approximately
1–2% before 26% of life. It rises gradually but significantly to 32% at 70% of fatigue life.
More abrupt rising then occurred and reached 249% at 98% of life. It appears that the joint
resistance sensed some progressive damages from 26% of life on. The FBG spectra gave no
response, perhaps because such damages have not yet spread to their vicinity. Beyond 80%
of life, damages spread to the FBGs and aggravated rapidly, causing steep rises in both the
D values and the percentage voltage change.

A comparison of the percentage voltage changes after unloading to 400 N and 0 N may
reveal some finer details about the nature of the joint damage. Figure 12 compares these for
two fatigue specimens. Figure 12a is the same specimen as that in Figures 10 and 11. The
difference between the percentage changes in voltage under 400 N and 0 N are within a few
tenths percent initially. This corroborates a previous observation that an applied loading
of 1200 N changed the voltage by 0.52%, and so the difference between 400 N and 0 N are
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minimal. However, at some point in life, the 400 N reading is more than 2% higher than the
0 N reading (e.g., at 60% life in Figure 12a and 45% life in Figure 12b). As cyclic loading
continues, their difference reverts to a much smaller value. This kind of phenomenon has
been marked with red dotted ellipses in Figure 12. This probably occurred when part of the
broken contacts/increased inter-tube distances in the CNT network due to fatigue damage
was undone by recovery of elastic deformation by fully unloading but was held open by
the 400 N load. On further damage development, this part of broken contacts/increased
inter-tube distances became permanent, and the difference in voltage changes under 400 N
and 0 N reverted to a fraction of a percent.
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Figure 12. Comparison of percentage voltage change development measured at 0 N and 400 N in
two fatigue specimens, note the difference at (a) 60% life; (b) 45% life.

3.2.3. Examination of Damages in the Fatigue Specimens

In some specimens, cyclic loading was interrupted when the percentage change in
voltage reached either 10% or 15%. These specimens were then soaked in fluorescent
penetrant and baked dry before cyclic loading was resumed until failure. Unlike that in
the tensile tests, fluorescent indications on the adhesive joint can be seen in all fatigue
specimens examined. Figure 13 shows a typical fractured joint under visible and UV light.
Figure 14 shows the development of the percentage change in voltage and the D values
in the same specimen. The percentage change in voltage reached was 15% just before
penetrant treatment. Schematic representations of the optical fibers and relative locations
of the FBGs (pink dotted lines) have been drawn on the joint in Figure 13. Clear fluorescent
markings are evident under FBGL and FBGM. No indication is seen in the vicinity of
FBGR. Incidentally, the D values from the FBGL and FBGM spectra rose to above 30 just
before penetrant treatment (Figure 14). The shape of the spectrum from FBGR showed
no significant change, and this was reflected in the D values, which remained below 4
throughout. It is worth pointing out that FBGR has not responded to the debonding
approximately 4mm away under FBGM, suggesting that the sensing capability of FBG is
highly localized.
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after fluorescent penetrant treatment.
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Figure 14. Load-free D values from 3 FBGs and the percentage voltage change development before
the application of fluorescent penetrant in a fatigue specimen.

The depth of penetration of the fluorescent indications immediately under or within
1 mm vicinity of each FBG has been measured. These are plotted against the D values of
the corresponding FBG spectra just before penetrant treatment in Figure 15. Apart from
a few points (symbols boxed in dotted squares), the data fall roughly onto a scatter band,
suggesting a strong correlation between the D value and the de-bonded depth. The boxed
points that fall out of the scatter band are from the 5 FBGs with abnormal behavior in
spectrum development, possibly due to malfunction. No debonding was evident in the
penetrant examination of the tensile specimens, and D values remained below 7. These data
from the tensile specimen fall into the same scatter band in Figure 15. Summarizing the
above observations, it may be concluded that although the D value from the FBG spectrum
is only loosely quantitative, it helps to relate the condition of debonding damage in the
adhesive bond around the FBG in both the tensile and fatigue specimens.
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Figure 15. D values just before penetrant treatment versus the debonding length under or in the close
vicinity of FBGs.

Figure 16 shows the area of debonding against the fractional fatigue life spent just
before penetrant treatment. Within experimental scatters, the fatigue life spent is roughly
directly proportional to the de-bonded area. The data also indicated that the same per-
centage voltage changes could amount to widely different de-bonded areas and elapsed
percentage fatigue lives. Thus, although the percentage voltage change helps to reflect the
occurrence of debonding, it is not a good quantitative parameter to correlate directly with
the de-bonded area or elapsed fatigue lives.
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Figure 16. De-bonded area at different percentages of fatigue life.

Figure 17 shows typical SEM fatigue fractographs of the adhesive joint from two
different fatigue specimens. Similar to the tensile failure cases, fractures mainly occurred
in the composite lamina adjacent to the adhesive joint. The surface of the optical fibers
appears to be very smooth and de-bonded from the adhesive. A secondary crack in the
adhesive roughly perpendicular to the optical fiber can be seen in Figure 17b. This suggests
that the spectral shape changes in the FBG spectra as well as the percentage voltage change
throughout the cyclic loading may be contributed to by microcracking in the adhesive as
well as debonding near the adhesive interface.
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surface and (b) smooth optical fiber surface and secondary crack in adhesive.

Summarizing the above observations, both the D value and percentage voltage change
obtained under the load-free condition increase with applied tensile loading and elapsed
fatigue life. They are more suited for monitoring failure mechanisms that involve a gradual
formation and development of defects and are not so suitable for monitoring overload
failure with little prior damage. A D value below 5 or a percentage voltage change below 5%
may be used as an indicator of no debonding in the current joint specimens. The deviation
of the percentage voltage change from 0, but below 5%, may be attributed to broken
CNT contacts and increased inter-tube distances. The D value has a strong quantitative
correlation with the debonding depth. However, its capability is highly localized and only
reflects debonding in the close vicinity of the FBG, from which spectra the D’s are computed.
On the other hand, the percentage voltage change responds to the bulk condition of the
joint. It reflects joint degradation/damages and the occurrence of debonding qualitatively.
Quantitatively, the same percentage voltage change is associated with widely different
amounts of debonding and remaining fatigue lives, and so it is not a rigorous quantitative
parameter to correlate fatigue lives or de-bonded areas directly. For practical structural
health monitoring purposes, a specific value for the percentage voltage change, obtained
through suitable experimental calibration, may be assigned as an alarm level. When this
alarm value is reached, suitable action should be taken to prevent structural failure. For



Polymers 2023, 15, 1575 17 of 21

example, in the current fatigue specimens, a 10% voltage change may be set as an alarm
level. It corresponds to readily detectable debonding, yet there is still a reasonable safety
margin on fatigue life.

4. Conclusions

The integrity of CNT-doped adhesive single lap joint specimens under tensile and
cyclic fatigue loading has been monitored with embedded FBG sensors and resistance of
the joint specimens. A parameter D has been proposed to describe the change in FBG
spectrum shapes quantitatively. The extent of joint debonding was revealed by fluorescent
penetrant. The key findings can be summarized as follows:

(1) Loading by itself will affect the FBG spectrum and the voltage across a conductive
adhesive joint, even in the absence of joint damage. Hence, for damage monitoring, the
percentage change in voltage and the FBG spectrum should preferably be measured
at zero or a very low load, in order to exclude the effect of load.

(2) The FBG spectrum and the associated D value only reflect the damages in the close
vicinity of the FBG. The resistance or voltage drop across the joint under a constant
current reflects the bulk condition of the joint.

(3) Under tensile loading, the load-free percentage change in voltage and D increased with
progressively increasing loading. At a loading of 95% of failure strength, the average
percentage change in voltage and the D value are 7% and 9%, respectively. Fluores-
cent penetrant testing showed that at 92% of failure strength, where the percentage
change in voltage and D are 5% and 7%, respectively, no debonding in the joint had
been observed.

(4) Under cyclic fatigue loading, the average change in voltage across the joint is 138%.
This was measured at approximately 98% of fatigue life and was much larger than
those recorded during tensile failure. D values from the FBG spectra varied widely,
and most of them were also significantly larger than those recorded in tensile failure.
Fluorescent penetrant tests revealed a strong correlation between the debonding
depth in the vicinity of the FBG and their corresponding D value. However, the same
percentage change in voltage may correspond to widely different de-bonded areas
and elapsed fatigue life fractions.
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