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Abstract: Cinnamaldehyde, a natural product that can be extracted from a variety of plants of the
genus Cinnamomum, exhibits excellent biological activities including antibacterial, antifungal, anti-
inflammatory, and anticancer properties. To overcome the disadvantages (e.g., poor water solubility
and sensitivity to light) or enhance the advantages (e.g., high reactivity and promoting cellular
reactive oxygen species production) of cinnamaldehyde, cinnamaldehyde can be loaded into or
conjugated with polymers for sustained or controlled release, thereby prolonging the effective action
time of its biological activities. Moreover, when cinnamaldehyde is conjugated with a polymer, it can
also introduce environmental responsiveness to the polymer through the form of stimuli-sensitive
linkages between its aldehyde group and various functional groups of polymers. The environmental
responsiveness provides the great potential of cinnamaldehyde-conjugated polymers for applications
in the biomedical field. In this review, the strategies for preparing cinnamaldehyde-contained
polymers are summarized and their biomedical applications are also reviewed.

Keywords: cinnamaldehyde; reactive oxygen species; stimuli-responsive; drug delivery

1. Introduction

Natural products are renewable resources and widely present in nature. They are
produced by a variety of natural sources, such as marine organisms and plants, and include
both complex mixtures (e.g., plant essential oils) and small-molecule compounds (e.g.,
amino acids). According to the production route of natural products, they can be divided
into primary or secondary metabolites [1]. For example, plant essential oils are mainly
composed of an array of secondary metabolites produced by plants to cope with external
environmental stressors (e.g., ultraviolet radiation and unfavorable pH) or to defend against
the invasion of pathogenic microorganisms (e.g., bacteria, fungi, and viruses) [2].

Cinnamon essential oil, one of the most popular researched plant essential oils, can
often be extracted from various plant parts (e.g., bark and leaf) of several trees of the genus
Cinnamomum, and has been applied in food, cosmetics, and other fields due to its unique
aroma and excellent antibacterial activity [3–5]. However, the complex composition of
cinnamon essential oil makes it difficult to control the consistency of its composition and
bioactivity, thus limiting its application. It is worth noting that cinnamaldehyde is an
important component of cinnamon essential oil, although the composition of cinnamon
essential oils vary depending on the cinnamon species and the plant parts from which it
is extracted. In some cinnamon essential oils, such as those extracted from Cinnamomum
zeylanicum and Cinnamomum cassia, the content of cinnamaldehyde can be as high as about
90% [6].

Cinnamaldehyde, denoted CA, has already been reported to be one of the most active
compounds in cinnamon essential oils, with various biological activities. The reported
biological activities of cinnamaldehyde mainly include insecticidal [7], antibacterial [8–11],
antifungal [12], antioxidant [13], anti-hyperglycemic [14], anticancer [15,16], and other
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bioactivities [17]. Therefore, cinnamaldehyde has attracted widespread and great interest
in various fields, especially in the fields of food [18] and biomedicine [13]. For instance, in
2021, Thirapanmethee et al. reported that cinnamaldehyde showed potent antibacterial
activity against clinically isolated multidrug-resistant (MDR) Acinetobacter baumannii
strains from various sources (e.g., sputum, urine, and blood) with low minimum inhibitory
concentrations ranging from 0.01–0.04% (v/v), as well as some synergistic effects when
applied with other antibiotics. The results suggest that cinnamaldehyde may be an alterna-
tive to control infectious diseases [8]. Moreover, cinnamaldehyde is also a reactive oxygen
species (ROS) generation agent, and thus can be used to induce tumor cell apoptosis by
promoting intracellular ROS production [19].

In 2022, the results of a phase I clinical trial of cinnamaldehyde for the treatment of
fungal infections caused by Candida spp. revealed that the three ointments evaluated were
proved to be safe and tolerable with a reduction of >99% Candida spp. CFU (35 individuals;
orabase ointment containing 200 µg/mL, 300 µg/mL, or 400 µg/mL cinnamaldehyde;
3 times a day; 15 days) [20]. Another randomized, double-blind clinical trial for the
treatment of minor recurrent aphthous stomatitis showed that cinnamaldehyde mucoad-
hesive patches were effective in reducing aphthous lesions and pain intensity in patients
(44 individuals) [21].

However, the poor water solubility (approximately 1.1 g/L at 20 ◦C), sensitivity to
light/air, and allergic reactions of the skin of cinnamaldehyde limit its applications. In order
to overcome the aforementioned disadvantages, one strategy is to develop a sustained or
controlled-release polymeric system for loading or encapsulating cinnamaldehyde [22,23].
Since there is no chemical reaction between the loaded cinnamaldehyde and the polymers
used for encapsulation, the resulting complex is referred to as “(1) cinnamaldehyde-loaded
polymer” in this review (Figure 1).
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The other strategy to fully exploit the efficacy of cinnamaldehyde is to develop novel
cinnamaldehyde derivatives [24]. For example, Tang’s group designed and synthesized a
tryptamine–cinnamaldehyde twin drug with an acid-cleavable linkage, and tryptamine–



Polymers 2023, 15, 1517 3 of 21

cinnamaldehyde can be emulsified to form nano-prodrugs for targeted synergistic glioma
therapy [25]. Chen et al. linked pimonidazole (decreasing intracellular glutathione (GSH)
level) and a pH-responsive cinnamaldehyde derivative (acetal between cinnamaldehyde
and tris(hydroxymethyl)ethane, increasing ROS level) to lysine to enhance the efficacy
of tumor therapy [26]. Besides small-molecule cinnamaldehyde derivatives, polymers
containing cinnamaldehyde moieties also play important roles. Since cinnamaldehyde is
involved in chemical reactions, the resulting cinnamaldehyde-derived polymer is referred
to as “(2) cinnamaldehyde-conjugated polymer” in this review.

Although some papers have reviewed the research progress of cinnamaldehyde,
cinnamaldehyde-derived compounds, and cinnamaldehyde analogs as antifungal [27],
antibacterial [28], and therapeutic agents [16,29] in the food and medical fields, there is
no comprehensive review summarizing the recent developments of “cinnamaldehyde-
contained polymers”. In this paper, we will provide an overview of the up-to-date devel-
opments in cinnamaldehyde-contained polymers. First, the preparation strategies of (1)
cinnamaldehyde-loaded polymers and (2) cinnamaldehyde-conjugated polymers will be
introduced. Next, the applications of cinnamaldehyde-contained polymers in the biomedi-
cal fields will be reviewed. Finally, the potentials of cinnamaldehyde-contained polymers
will be discussed.

2. Preparation Strategies of Cinnamaldehyde-Contained Polymers
2.1. Cinnamaldehyde-Loaded Polymers

Due to the rich biological activities of cinnamaldehyde, cinnamaldehyde is usually
directly encapsulated in polymeric films, microspheres, liposomes, or nanoparticles as
a functional component to improve the performance of polymers, such as antibacterial
properties. Up to now, melt extrusion or pressing, solvent casting, coacervation, electro-
spinning, emulsion–solvent evaporation, and other methods have been reported to load
cinnamaldehyde into various polymers. The reported cinnamaldehyde-loaded polymers
have been summarized in Table 1.

Poly(lactic acid) (PLA) and chitosan (CS) were the most investigated polymers for
loading cinnamaldehyde. Poly(lactic acid), a kind of polyester that can be derived from
renewable resources, is one of the most promising bio-based polymers due to its excellent
biodegradability and has been applied as a packaging film in the food field or as an anti-
adhesion film in the medical field [30–34]. In order to improve food safety, cinnamaldehyde
can be incorporated into PLA film via solvent casting or compression molding technology
to enhance the antioxidant, antifungal, and antibacterial activities of food packages, thus ex-
tending the shelf life of packaged food such as bread and fruits. Additionally, PLA can also
be mixed with other substances (e.g., zein [35], poly(butylene adipate-co-terephthalate) [36],
and starch [37]) to prepare CA-loaded monolayer or bilayer polymeric films with good
antimicrobial activity. Poly(vinyl alcohol) (PVA) [38,39] and low-density polyethylene
(LDPE) [40] are also investigated for preparing cinnamaldehyde-loaded polymeric films.

Particulate carriers (e.g., microspheres and nanoparticles) are another popular studied
way to incorporate cinnamaldehyde due to their advantages in additivity. For instance,
Yeldir et al. [41] prepared cinnamaldehyde-loaded chitosan microspheres successfully by
dropping cinnamaldehyde/chitosan mixture solution (in 7% acetic acid, v/v) slowly into
NaOH solution (10%, m/v) with an insulin syringe, avoiding the use of surfactants or
crosslinkers. Subhaswaraj et al. [42] prepared cinnamaldehyde-loaded chitosan nanoparti-
cles with a mean diameter of around 200 nm by an ionic gelation method using pentasodium
tripolyphosphate (negative charge) as a crosslinker. In addition, casein and poly(DL-lactide-
co-glycolide) (PLGA) have also been investigated as particulate carriers for encapsulating
cinnamaldehyde.
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Table 1. A Summary of Cinnamaldehyde-loaded Polymers.

Polymer Type Preparation Methods Feed Ratio of
CA

EE 1/LC 2 Investigated Biological Activities Ref.

Activities Testing Objects &
Methods

Results

Poly(lactic
acid)
(PLA)

Film
Solvent casting 10–50% (CA/PLA, v/w)

CA/β-CD inclusion:
5–30 wt% of PLA

-

CA/β-CD
inclusion:
63.2% 1/6.46% 2

Antibacterial

Antibacterial

Disk diffusion assay:
(1) S. aureus
(2) E. coli
(1) L. monocytogenes

(2) E. coli

Inhibition zone:
(1) 14–50 mm
(2) 8–20 mm
(1) 60.6% (0.323% CA)
100% (>=0.646% CA)
(2) 37.4% (0.323% CA)
100% (>=0.646% CA)

[32]

[33]

5–10 wt 96–97% 1 Antioxidant DPPH method >90%
(after 3 h in DPPH solution,
10 wt% CA)

[34]

Zein/PLA Film Solvent casting 1–5%
(CA/film solution, v/v)

- Antioxidant

Antibacterial

DPPH method
ABTS method
Disk diffusion assay:
(1) E. coli

(2) S. aureus

11.6–32.3%
0.7–12.9%

(1) 11.75 mm (3%),
15.76 mm (5%).
(2) 2.29 mm (3%),
12.67 mm (5%).

[35]

PBAT/PLA Film Twin-screw extrusion 2–10 wt% - Antifungal Disk diffusion assay:
(1) Penicillium sp.
(2) Aspergillus niger
(3) Rhizopus sp.

Inhibition zone:
(1) 3.44–5.85 mm
(2) 2.68–4.15 mm
(3) 2.96 mm

[36]

Starch/PLA Bilayer
Film

Compression molding 0.2
g/g PLA film

0.117
g/g PLA film 2

- - - [37]

Poly(vinyl
alcohol)
(PVA)

Film Solvent casting 150–600
µL/g film

1.55–12.47
µL/g film 2

Antibacterial
(1) B. subtilis

(2) E. coli

Inhibition:
(1) 67.2% (1.55 µL/g film)
100% (5.59 µL/g film)
(2) 29.2% (1.55 µL/g film)
100% (5.59 µL/g film)

[38]

Starch/PVA Film Solution casting 0.4/4/4
CA/starch/PVA, w/w/w

- Antimicrobial Disk diffusion assay:
S. putrefaciens

Inhibition zone:
10.78 mm

[39]
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Table 1. Cont.

Polymer Type Preparation Methods Feed Ratio of
CA

EE 1/LC 2 Investigated Biological Activities Ref.

Activities Testing Objects &
Methods

Results

Low-density
polyethylene
(LDPE)

Film Melt Pressing 0.2/0.8
CA/β-CD, w/w

76–91% 1

(Affected by
stirring speed:
250–1000 rpm)

Antifungal B. cinerea Inhibition:
25.4% (1 wt%, pure CA)
99.9% (5 wt%, pure CA)
10.9% (1 wt% *, CA/β-CD)

[40]

Chitosan
(CS)

Microspheres Dropping CA/CS
solution into NaOH
solution

25%
50%
CA/CS, w/w

184 mg/g CS 2

350 mg/g CS 2
- - - [41]

Nanoparticles Ionic gelation method (1) 0.5% (v/v)
(2) 0.4–2.4 µg/mL

(1) 65.04% 1

(2) 7.47–27.42% 1
Antibacterial
Antioxidant

P. aeruginosa PAO1;
ABTS method

MIC: 1000 µg/mL
9.24–21.76%
17–39.2% (pure CA)

[42]
[43]

Liposomes Ethanol injection method
& CS decorating

CA-loaded liposomes:
0.1/0.8
CA/lecithin, w/w

38–52% 1

(Affected by CS
concentration:
0–4 mg/mL)

Antibacterial S. aureus MIC was affected by CS
concentration:
MIC (CS concentration)
200 µL/mL (0 mg/mL)
12.5 µL/mL (4 mg/mL)

[44]

Poly(DL-
lactide
-co-glycolide)
(PLGA)

Nanoparticles Emulsion freeze-drying
method

45 µL/50 mg/20 mL
CA/PLGA/H2O, v/w/v

2.36 mg/mL 2 Antifungal C. albicans MIC:
250 µg/mL (CA-PLGA)
32.7 µg/mL (pure CA)

[45]

PLGA-PEG Nanoparticles Nanoprecipitation
method

6.6/0.4/10
(CA/DATS/PLGA-PEG,
w/w/w)

1.0% CA + 1.5%
DATS 2

Anticancer Breast cancer cells:
(1) MDAMB-231
(2) MCF-7

The best synergistic effect for
killing
(1) MDAMB-231: 37.5 µM CA
+ 40.0 µM DATS
Inhibition: 50.6%
(2) MCF-7: 100 µM CA + 50
µM DATS
Inhibition: ~50%

[46]

Casein Agglomerates Coacervation method 30%
(CA/casein)

86.5% 1 Anticancer Lung cancer cells:
A549 NSCLC

IC50:
7.65 µg/mL *
45.89 µg/mL (pure CA)

[47]
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Table 1. Cont.

Polymer Type Preparation Methods Feed Ratio of
CA

EE 1/LC 2 Investigated Biological Activities Ref.

Activities Testing Objects &
Methods

Results

Gellan/PVA Nanofibers Electrospinning
3 nanofibers:
1 mg/mL (NF1000);
2.5 mg/mL (NF1200);
5 mg/mL (NF1400)

17.3 ± 4.1% 1 Anticancer Breast cancer cells:
MCF-7

Inhibition:
20–27.7% (Nanofibers); 44.5%
(pure CA)

[48]

Antimicrobial
(1) C. glabrata;
(2) C. albicans;
(3) S. aureus;
(4) P. aeruginosa

Inhibition:
(1) 71%, 88%, 89%
(2) 40%, 50%, 49%
(3) 69% (NF1400, 60 min)
(4) 59% (NF1400, 60 min)

Gelatin/PVA Nanofibers Electrospinning 13/0.5/2.6/0.2
PVA/GEL/CA/FLU,
wt%

CA: 73.84% 1

FLU: 68.58% 1
Antifungal C. albicans Inhibition: [49]

Polypropylene
(PP)

Matrix Melt extrusion 6 wt%
(CA/O-ZnO)

28.3% 1;
4% CA/O-ZnO in
PP 2

Antibacterial
(1) S. aureus;
(2) E. coli

Inhibition:
(1) 70.9%
(2) 75.6%

[50]

Note: * Calculated based on the percentage of CA in the targeted polymers. Abbreviations: EE = Entrapment Efficiency; LC = Loading Capacity; β-CD = β-cyclodextrin;
PBAT = Poly(butylene adipate-co-terephthalate); PEG = Poly(ethylene glycol); DATS = diallyl trisulfide; FLU = fluconazole; DPPH = 2,2-Diphenyl-1-picrylhydrazyl; ABTS = 2,2′-Azino-
bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt; S. aureus = Staphylococcus aureus; E. coli = Escherichia coli; L. monocytogenes = Listeria monocytogenes; B. cinerea = Botrytis
cinerea; B. subtilis = Bacillus subtilis; C. albicans = Candida albicans; C. glabrata = Candida glabrata. For column EE1/LC2, the data with 1 represent EE, and the data with 2 represent LC.
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Besides film and particulate carriers, nanofiber prepared by the electrospinning
method can also be used for incorporating cinnamaldehyde. Sometimes, cinnamalde-
hyde formed an inclusive complex with β-cyclodextrin (β-CD) first, and then the obtained
cinnamaldehyde/β-CD inclusion was used to prepare cinnamaldehyde-loaded films [33,51]
or nanofiber via electrospinning [52].

2.2. Cinnamaldehyde-Conjugated Polymers

Due to the presence of the highly reactive α, β-unsaturated aldehyde group, cin-
namaldehyde can also react with various functional groups such as primary amine. Thus,
cinnamaldehyde can be coupled to the side chains of polymers, act as a monomer for
polymerizing with other monomers to form the backbone of polymers, or react as a bridge
to connect two polymer segments. The reported cinnamaldehyde-conjugated polymers
have been summarized in Table 2.

To realize the controlled release of cinnamaldehyde, cinnamaldehyde-conjugated
polymers are commonly synthesized using stimuli-responsive linkages such as imine,
hydrazone, acetal (pH-responsive), and thioacetal (ROS-responsive) as shown in Figure 2.
The introduction of stimuli-responsive linkages not only enables the controlled release of
cinnamaldehyde, but also gives stimuli responsiveness to the polymer. For example, under
an acidic environment, the acid-cleavable bonds break, which changes the hydrophilicity
and hydrophobicity of the polymer while releasing cinnamaldehyde, ultimately affecting
the self-assembly behaviors of amphiphilic polymers.

Polymers 2023, 15, x FOR PEER REVIEW 7 of 21 
 

 

Besides film and particulate carriers, nanofiber prepared by the electrospinning 
method can also be used for incorporating cinnamaldehyde. Sometimes, cinnamaldehyde 
formed an inclusive complex with β-cyclodextrin (β-CD) first, and then the obtained cin-
namaldehyde/β-CD inclusion was used to prepare cinnamaldehyde-loaded films [33,51] 
or nanofiber via electrospinning [52]. 

2.2. Cinnamaldehyde-Conjugated Polymers 
Due to the presence of the highly reactive α, β-unsaturated aldehyde group, cin-

namaldehyde can also react with various functional groups such as primary amine. Thus, 
cinnamaldehyde can be coupled to the side chains of polymers, act as a monomer for pol-
ymerizing with other monomers to form the backbone of polymers, or react as a bridge to 
connect two polymer segments. The reported cinnamaldehyde-conjugated polymers have 
been summarized in Table 2. 

To realize the controlled release of cinnamaldehyde, cinnamaldehyde-conjugated 
polymers are commonly synthesized using stimuli-responsive linkages such as imine, hy-
drazone, acetal (pH-responsive), and thioacetal (ROS-responsive) as shown in Figure 2. 
The introduction of stimuli-responsive linkages not only enables the controlled release of 
cinnamaldehyde, but also gives stimuli responsiveness to the polymer. For example, un-
der an acidic environment, the acid-cleavable bonds break, which changes the hydro-
philicity and hydrophobicity of the polymer while releasing cinnamaldehyde, ultimately 
affecting the self-assembly behaviors of amphiphilic polymers. 

 
Figure 2. Chemical structures of typical stimuli-responsive linkages between cinnamaldehyde and 
polymers. Note that R1 represents a polymeric chain. 

To conjugate cinnamaldehyde on the side chains of polymers, three types of acid-
cleavable linkages and one ROS-responsive linkage depicted in Figure 2 have been uti-
lized. For instance, chitosan is a natural amino polysaccharide that allows the formation 
of imine linkages via Schiff’s base reaction between the primary amine of chitosan and the 
aldehyde group of cinnamaldehyde. Other polymers containing amino groups, such as 
gelatin, polyethyleneimine, and poly(amidoamine), can also be used to conjugate cin-
namaldehyde to them via imine linkage. However, due to the branched chemical structure 
of polyethyleneimine and poly(amidoamine), the resulting cinnamaldehyde–polymer 
conjugates are also a branched structure. Although hydrazone linkage is also one of the 
common chemical bonds for conjugating cinnamaldehyde with polymers, it is often nec-
essary to modify the polymer first to contain hydrazine groups. Adipic acid dihydrazide 
and hydrazine hydrate are the commonly used reagents for introducing hydrazine groups 
to polymers such as hyaluronic acid [53,54] and poly(itaconic acid) [55]. 

Through the formation of acetal and thioacetal linkages, cinnamaldehyde can be in-
troduced to the side chains, the backbone of polymers, or both. For side chains, the alde-
hyde group of cinnamaldehyde reacts with two primary hydroxyl groups of polyalcohol 

Figure 2. Chemical structures of typical stimuli-responsive linkages between cinnamaldehyde and
polymers. Note that R1 represents a polymeric chain.



Polymers 2023, 15, 1517 8 of 21

To conjugate cinnamaldehyde on the side chains of polymers, three types of acid-
cleavable linkages and one ROS-responsive linkage depicted in Figure 2 have been utilized.
For instance, chitosan is a natural amino polysaccharide that allows the formation of imine
linkages via Schiff’s base reaction between the primary amine of chitosan and the aldehyde
group of cinnamaldehyde. Other polymers containing amino groups, such as gelatin,
polyethyleneimine, and poly(amidoamine), can also be used to conjugate cinnamalde-
hyde to them via imine linkage. However, due to the branched chemical structure of
polyethyleneimine and poly(amidoamine), the resulting cinnamaldehyde–polymer conju-
gates are also a branched structure. Although hydrazone linkage is also one of the common
chemical bonds for conjugating cinnamaldehyde with polymers, it is often necessary to
modify the polymer first to contain hydrazine groups. Adipic acid dihydrazide and hy-
drazine hydrate are the commonly used reagents for introducing hydrazine groups to
polymers such as hyaluronic acid [53,54] and poly(itaconic acid) [55].

Through the formation of acetal and thioacetal linkages, cinnamaldehyde can be intro-
duced to the side chains, the backbone of polymers, or both. For side chains, the aldehyde
group of cinnamaldehyde reacts with two primary hydroxyl groups of polyalcohol (e.g.,
glycerol, 1,1,1-tris(hydroxymethyl)ethane, and pentaerythritol) or the sulfhydryl groups of
two thiol compounds (e.g., mercaptoethanol) to form an acetal or thioacetal linkage first,
and then the resulting cinnamaldehyde-derived acetal/thioacetal compounds are further
grafted onto the polymers by the esterification reaction. For backbone, cinnamaldehyde
typically reacts with the hydroxyl/sulfhydryl groups of two alcohol/thiol compounds and
then the resulting cinnamaldehyde-derived acetal/thioacetal compounds are modified to
introduce acryloyl groups as a monomer for the following polymerization via the Michael
addition reaction.
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Table 2. A Summary of Cinnamaldehyde-Conjugated Polymers with Stimuli-Responsive Linkage and Their Biomedical Applications.

Polymer Linkage between CA and
the Following Substances

Linkage Position * Combined
Ingredients

Design
Purpose

Testing Objects Ref.

HA-CA Hyaluronic acid Hydrazone S (1) β-Phenethyl
isothiocyanate
(2) Protoporphyrin

Anticancer (1) 4T1-bearing mice
(2) B16F10-bearing C57BL/6 mice

[53]
[54]

PIAT-CA Poly(itaconic acid) derivative Hydrazone S - Anticancer MCF-7 cells [55]
Cinnamaldehyde dimer Diethylenetriamine Imine - Sorafenib;

PTX
Anticancer 4T1 tumor-bearing BALB/c mice [56]

PEG-b-PMPMC-CA PEG-b-PMPMC Acetal S (1S,3R)-RSL3 Anticancer 4T1 tumor-bearing mice [57]
pCA; CZP Ethanolamine;

Acrylic acid 2-hydroxyethyl
ester

Acetal B (1) DOX
(2) Protoporphyrin IX
zinc (II)

Anticancer A549 tumor-bearing nude mice [58,59]

CS-CA Chitosan Imine S (1) DOX
(2) Enrofloxacin
(3) Acetaminophen

(1) Anticancer
(2) Treating bacterial
infections
(3) Excipient

(1) MCF-7/ADR tumor-bearing
mice
(2) S. aureus

[60–71]

Poly(disulfide acetal) Hexamethylene diisocyanate;
2,2’-Dithiodiethanol

Acetal B DOX Anticancer MCF-7/ADR tumor-bearing mice [72]

PEG-PTA1-MT 1,3-dimercapto-2-propanol Thioacetal B 1-Methyl-DL-
tryptophan

Anticancer CT26 tumor-bearing BALB/c mice [73]

mPEG-b-poly(thioacetal-
thioether)

mPEG; 2,2’-Thiodiethanol;
3-mercaptopropionic acid

Thioacetal B DOX Anticancer 4T1 cells
HeLa cells

[74]

POEGMA-b-PCAMA;
p(Gal-b-CAMA);
PEG-b-P(CAMA-co-
ImOAMA)

Methacryloyl chloride;
1,1,1-
Tris(hydroxymethyl)ethane

Acetal S (1) DOX
(2) Pheophorbide A
(3) ProCPT

Anticancer (1) MCF-7/ADR cells
(2) HepG2 tumor-bearing female
mice
(3) 4T1 tumor-bearing mice

[75]
[76]
[77]

mPEG5k-TA-CA-block-
poly(TA-CA-PTX-co-DPA)

Methacryloyl chloride;
cysteamine; mercaptoethanol

Thioacetal B, S PTX Anticancer 4T1 tumor-bearing mice [78]

Gelatin-CaCO3 hydrogel Gelatin Imine S - Bone substitute Adult male Wistar rats [79]
PEEGE-b-PAHGE-CA PEEGE-b-PAHGE Imine S - Anticancer SW620 cells [80]
Polyethyleneimine-
cinnamaldehyde
coating

Polyethyleneimine Imine - - Antibacterial coating E. coli
S. aureus

[81]

Dextran-CA Dextran Acetal S 10-Hydroxy
camptothecin

Anticancer HCT116 tumor-bearing female
mice

[82]
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Table 2. Cont.

Polymer Linkage between CA and
the Following Substances

Linkage Position * Combined
Ingredients

Design
Purpose

Testing Objects Ref.

Pss-(NIPAm-CA-TPGS)
nanogel

Dihydrazide itaconate;
N-isopropylacrylamide

Hydrazone - - Anticancer MCF-7 cells [83]

Cinnamaldehyde-
conjugated
maltodextrin

Maltodextrin Acetal S Camptothecin
-

Anticancer SW620 tumor-bearing BALB/c
mice

[84,85]

HRGP-IR 2-Hydroxyl ethyl acrylate;
trimethylenedipiperidine;
tyramine; mPEG acrylate

Acetal B Ferrocene
IR-820

Nanotheranostic
agent for cancer
treatment

SW620 tumor-bearing nude mice [86]

mPEG2k-b-(NTA-HD)n 3-Mercaptopropionic acid;
1,6-Hexanediol

Thioacetal B DOX Anticancer 4T1 cells
HeLa cells

[87]

PCAE Acrylic acid 2-hydroxyethyl
ester;
trimethylene dipiperidine

Acetal B Camptothecin
Ferrocene

(1) Anticancer;
(2) Relieve coronary
vasospasm;
(3) Antibacterial
agents

(1) SW620 tumor-bearing nude
mice
(2) Porcine hearts & Circumflex
coronary arteries
(3) Drug-resistant P.
aeruginosa-bearing mice

[88]
[89]
[90]

TPE-CB-CA-TPP PUs Pentaerythritol;
Hexamethylene diisocyanate

Acetal S - Anticancer HeLa cells [91]

Poly(amidoamine) Poly(amidoamine) Imine - Ferrocene Anticancer 4T1 tumor-bearing BALB/c mice [92]
P(PEG-co-(MAA-CQ)) P(PEG-coMAA) Acetal S DOX Anticancer 4T1 tumor-bearing BALB/c mice [93]
PSO-475a Glycerol;

Methacryloyl chloride;
mPEG-methacrylate

Acetal S Nile Red Anticancer A375 melanoma cells;
B16 melanoma cells

[94]

TSEOP PLG-N3 Acetal S - Anticancer CT26 tumor-bearing BALB/c mice
4T1 tumor-bearing BALB/c mice

[95]

* B = backbone; S = side chains; I = bridge. Abbreviations: DOX = doxorubicin; PTX = Paclitaxel; ProCPT = Phenylboronic pinacol ester-caged camptothecin; IR-820 = new
indocyanine green.
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In addition, cinnamaldehyde can also be utilized to link two polymer segments (e.g.,
PEG) as a bridge via acetal linkage [96]. Interestingly, Hirose et al. [97] reported that
cinnamaldehyde can be conjugated with cellulose in an ionic liquid by an oxidative esterifi-
cation reaction to synthesize cellulose cinnamate, but the release of cinnamaldehyde from
cellulose cinnamate was not discussed. Manukumar et al. [98] reported that cinnamalde-
hyde can be grafted onto low-density polyethylene via C–O–C bond by treating them
together with UV radiation at 365 nm.

3. The Applications in the Biomedical Field

Because cinnamaldehyde-contained polymers exhibit excellent antimicrobial activities
against a variety of bacteria (e.g., Staphylococcus aureus and Escherichia coli) and fungi
(e.g., Candida albicans and Botrytis cinerea), their applications have been investigated in
depth in the field of food packaging over the past few decades. Cinnamaldehyde-loaded
polymeric films are one of the research focuses. However, in addition to antimicrobials,
cinnamaldehyde has also shown some special advantages in the biomedical field, such as
promoting cellular ROS production and inhibiting MDR strains. Moreover, cinnamalde-
hyde can also be conveniently applied to synthesize prodrugs with other drugs (e.g.,
Polymyxin B [99]) and stimuli-responsive polymers for drug delivery due to its high reac-
tivity. Therefore, this review will focus on the applications of cinnamaldehyde-contained
polymers in the biomedical field.

3.1. The Applications of Cinnamaldehyde-Loaded Polymers

The antimicrobial activity of cinnamaldehyde can be used not only in the field of food
packaging but also in the field of biomedicine. For example, Mishra et al. [48] prepared a
cinnamaldehyde-loaded gellan/PVA nanofiber that exhibited excellent anti-biofilm activity
against Candida; thus it has potential for eradicating biofilms as wound dressing material.
In addition, a double-layer PVA/gelatin nanofiber loaded with cinnamaldehyde (first layer)
and fluconazole (second layer) also showed that the addition of cinnamaldehyde enhanced
the antifungal activity of fluconazole against Candida albicans, and this bilayer nanofiber
may have potential to treat fungal keratitis due to its anti-biofilm activity (Figure 3) [49].

Besides antimicrobial activity, cinnamaldehyde has also been reported to be an ef-
fective ingredient that can induce apoptosis in several human tumor cells (e.g., lung
cancer A549 cells, human breast cancer MCF-7 cells, and MDA-MB-231 cells) by elevat-
ing intracellular ROS levels. A nanohybrid carrier based on casein and calcium ferrite
nanoparticles (casein-CFNP) was prepared by Purushothaman’s group, and cinnamalde-
hyde was successfully loaded into this carrier via a pH-based coacervation method. The
obtained cinnamaldehyde-loaded casein-CFNP showed a controlled release of cinnamalde-
hyde which can be triggered by a magnetic field or acidic conditions. Significantly, the
results of in vitro cell viability studies showed that the biotin-modified casein-CFNP greatly
enhanced the anticancer activity against lung cancer A549 cells, and the IC50 value of cin-
namaldehyde decreased from 45.89 µg/mL to 2.53 µg/mL [47]. Moreover, cinnamaldehyde
can also be encapsulated into polymers along with other agents to improve therapeutic
efficacy. The agents that can deplete cellular GSH or promote ROS generation are often
a suitable choice to combine with cinnamaldehyde. For instance, diallyl trisulfide, as a
GSH-depleting agent, had been loaded into PLGA–PEG copolymer with cinnamaldehyde
together to prepare nanoparticles for enhancing the effect of tumor suppression [46].
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In addition, cinnamaldehyde can also be reacted with other agents to obtain pro-
drugs first, and then the resulting cinnamaldehyde prodrugs are loaded into polymeric
nanoparticles [100]. For example, the prodrug based on two dopamine molecules and one
cinnamaldehyde molecule was synthesized via thioacetal linkage and then loaded into
P-SS-D (an amphiphilic polymer)-based polymeric nanoparticles with Fe3+/Gd3+ by the
nanoprecipitation method. The cinnamaldehyde prodrug-loaded nanoparticles exhibited
great potential for magnetic resonance imaging-based visual tumor treatment [101]. More-
over, ferrocene is an iron-containing catalyst to enhance chemodynamic therapy efficacy by
promoting the Fenton reaction, and has host–guest interaction with the hydrophobic cavity
of β-cyclodextrin. Thus, Xu et al. designed a ferrocene-modified cinnamaldehyde prodrug
with a hydrazone linkage, and then loaded this prodrug to β-cyclodextrin-functionalized
hyaluronic acid (HA-CD) via host–guest interactions between the ferrocene moieties in
the prodrug and β-cyclodextrin moieties of HA-CD. The combination of activating tumor-
specific oxidative stress amplification and cascading enhancement of the Fenton reaction
results in a superior cancer therapeutic effect [102].

Although cinnamaldehyde has a variety of biological activities, treatment with cin-
namaldehyde alone has limited efficacy. As can be seen from the data in Table 1, load-
ing cinnamaldehyde into the polymers to achieve its controlled or sustained release can
usually prolong its treatment time, but it is difficult to greatly enhance its therapeutic
effect [40,48]. This may limit the biomedical applications of cinnamaldehyde-loaded
polymers. Surprisingly, the combination of cinnamaldehyde with other active ingredi-
ents/drugs (e.g., DATS [46] and biotin [47]) often shows excellent synergistic effects. There-
fore, for cinnamaldehyde-loaded polymers, studying the synergy between cinnamaldehyde
and other active ingredients/drugs may be beneficial to improve their therapeutic effects.
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In addition, the treatment effects of cinnamaldehyde-loaded polymers are also af-
fected by the dosage form and the biological activity of the polymers themselves (e.g.,
chitosan has bacteriostatic and anti-inflammatory properties). Therefore, multifunctional
cinnamaldehyde carriers may be a potential research direction.

3.2. The Applications of Cinnamaldehyde-Conjugated Polymers

Unlike cinnamaldehyde-loaded polymers, cinnamaldehyde-conjugated polymers not
only enable controlled and/or sustained release of cinnamaldehyde but also can be used
as drug delivery systems. Thus, cinnamaldehyde-conjugated polymers have been exten-
sively studied for various biomedical purposes, such as pharmaceutical excipients, wound
dressings, anti-inflammation, and anti-tumor.

3.2.1. Controlled or Sustained Release of Cinnamaldehyde

For controlled or sustained release, cinnamaldehyde is commonly introduced to the
side chains of polymers via acid-cleavable linkages to obtain cinnamaldehyde-conjugated
polymers with pH responsiveness. As mentioned in Section 2.2, chitosan is one of the
most studied polymers in cinnamaldehyde-conjugated polymers due to the amino groups
in its structural units. Chitosan–cinnamaldehyde conjugates, denoted as CS–CA, exhibit
higher antibacterial and antioxidative effects than chitosan due to the acid-cleavable imine
linkages between chitosan and cinnamaldehyde moieties; thus it may be applied as an
excipient to replace chitosan in pharmaceutical formulations (e.g., tablet) for delivering
active pharmaceutical ingredients such as acetaminophen [70].

Gelatin is a kind of protein and also has many functional groups, including amino
groups. Dewi et al. prepared a Plaster of Paris–CaCO3 hydrogel containing gelatin, in
which gelatin was conjugated with cinnamaldehyde via imine linkages, and the results
regarding physical properties in vivo biocompatibility showed that it may be a promising
bone substitute containing cinnamaldehyde as an anti-inflammatory agent [79].

Moreover, cinnamaldehyde can also be released as an oxidative stress-inducing
chemotherapeutic agent from cinnamaldehyde-conjugated polymers for the treatment
of cancer. For instance, cinnamaldehyde was conjugated with diblock copolymer PEEGE-b-
PAHGE via imine linkage, and the resulting conjugate can self-assemble to form polymeric
micelles that can release cinnamaldehyde to induce colon cancer SW620 cells’ apoptosis
with the disintegration of micelles under acidic conditions by cleaving the imine bonds
(Figure 4) [80]. In addition, the controlled release of cinnamaldehyde can also be com-
bined with other strategies (e.g., near-infrared laser-induced photothermal therapy [85]) to
achieve better anticancer efficacy.
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3.2.2. Drug Delivery

For drug delivery, cinnamaldehyde–polymer conjugates can also be used, in which cin-
namaldehyde can be present in their side chains and/or backbone. The simplest strategy for
preparing cinnamaldehyde–polymer conjugates for drug delivery is to graft cinnamalde-
hyde directly to the side chains of the polymers through cleavable linkage. Thus, the
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resulting cinnamaldehyde–polymer conjugates are generally responsive to external stimuli
(e.g., pH and ROS), enabling the controlled release of encapsulated drugs. In addition, the
released cinnamaldehyde can elevate intracellular ROS level and further accelerate the
degradation of ROS-responsive polymers (thioacetal linkage), while the released drugs can
directly kill cancer cells or accelerate the apoptosis of cancer cells by consuming GSH to
enhance oxidative stress (Figure 5).
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Polymers with Cinnamaldehyde in the Side Chains

Polysaccharides are commonly used to prepare conjugated polymers containing cin-
namaldehyde in the side chains due to their excellent biocompatibility and biodegradability.
For instance, Liu et al. synthesized a pH-responsive cinnamaldehyde–hyaluronic acid conju-
gate containing hydrazone linkage, which can be applied to deliver drugs (e.g., β-phenethyl
isothi-ocyanate) for tumor treatment [53,54]. In addition, Yang et al. conjugated cinnamalde-
hyde with chitosan via imine linkages and the obtained CS–CA conjugates were used as a
drug carrier to load the broad-spectrum antibacterial agent enrofloxacin. Enrofloxacin was
released faster in an acidic environment (pH 5.0) than in a normal environment (pH 7.4).
It may be used to target the treatment of sites infected by acid-producing bacteria [63].
Besides hyaluronic acid and chitosan, cinnamaldehyde has also been conjugated with
dextran via acetal linkages. The resulting dextran–CA conjugate can also self-assemble into
nanoparticles in an aqueous solution, and 10-hydroxy camptothecin has been successfully
encapsulated into the self-assembled nanoparticles as a model drug. Both 10-hydroxy
camptothecin and cinnamaldehyde can be fast-released from dextran–CA conjugate in
an acidic condition via the cleavage of acetal linkages and have shown good synergistic
anticancer effects against colon cancer HCT116 cells in both in vitro and in vivo anticancer
studies [82]. Moreover, a starch glycolate and cinnamaldehyde conjugate with acetal or
hemiacetal linkage has also been reported, and it can be applied as a gastro retentive
drug delivery system to prepare an artesunate emulsion for the treatment of H. pylori
infection [103].
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In comparison with single pH-responsive polymers, dual and multi-responsive poly-
mers are more promising as drug carriers, which can both improve therapeutic efficacy and
reduce side effects [104]. For instance, Chen et al. designed a novel dual pH-responsive
chitosan derivative, DCCA, containing both β-carboxylic amide and imine bonds, corre-
sponding to responsive pH values of 6.5 (tumor extracellular pH) and 5.0 (intracellular
pH), respectively. Doxorubicin was successfully loaded in the nanoparticles prepared from
DCCA. In the tumor extracellular environment, the surface charge of DOX-loaded DCCA
nanoparticles reversed from negative (−6.3 mV, -COOH) to positive (+11.4 mV, -NH2)
due to the break of β-carboxylic amide, which improved cellular uptake efficiency. When
DOX-loaded DCCA nanoparticles were taken up by the tumor cells, the cleavage of imine
linkages under intracellular pH trigged the release of cinnamaldehyde and disrupted the
hydrophilic/hydrophobic balance of DCCA, ultimately releasing DOX. In vivo anticancer
results showed that the DOX-loaded DCCA nanoparticles not only could induce more
tumor cell apoptosis, with an inhibition rate of up to 84.94%, but also decrease the adverse
effects of DOX [62].

Polymers with Cinnamaldehyde in the Backbone

Cleavage of the polymer backbone often results in different stimuli-responsive be-
haviors of the polymer (e.g., faster response speed) due to the loss of structural integrity.
Xu’s group designed amphiphilic copolymers poly(thioacetal-thioether) and poly(ester-
thioacetal), in which cinnamaldehyde binds to other structural units on the backbone
via ROS-responsive thioacetal linkages. DOX was encapsulated into poly(thioacetal-
thioether)/poly(ester-thioacetal)-based micelles. The obtained DOX-loaded micelles can
respond to the high concentration of ROS in tumor cells via the cleavage of thioacetal
linkages, resulting in the degradation of poly(thioacetal-thioether)/poly(ester-thioacetal)
to rapidly release DOX and cinnamaldehyde. The released cinnamaldehyde can further
promote the generation of ROS, forming a synergistic effect with DOX to accelerate the
apoptosis of tumor cells [74,87].

Additionally, Raffai et al. prepared an amphiphilic polymer containing cinnamalde-
hyde in its backbone with acetal linkages (PCAE), and found that its micelles had vasodila-
tor properties different from the relaxation mechanism of cinnamaldehyde. Thus, it may
be applied to relieve coronary vasospasm [89]. Moreover, PCAE also has been reported to
load ferrous ions successfully. In vivo results of mice revealed that the ferrocene-loaded
PCAE micelles can reduce pulmonary infection and lung damage [90].

Polymers with Cinnamaldehyde in Both Side Chains and Backbone

So far, only a limited number of polymers that contain cinnamaldehyde in both side
chains and backbone have been reported. Wang et al. designed a novel amphiphilic block
copolymer mPEG5k-TA-CA-block-poly(TA-CA-PTX-co-DPA), in which cinnamaldehyde
moieties were incorporated in both side chains and backbone via thioacetal linkage [78].
In addition, paclitaxel (PTX) was also conjugated in the side chains of mPEG5k-TA-CA-
block-poly(TA-CA-PTX-co-DPA). This amphiphilic block copolymer can self-assemble
into micelles which release the conjugated PTX and cinnamaldehyde via the cleavage of
ROS-responsive thioacetal linkages after endocytosis into cancer cells. Then, the release
of PTX was further enhanced owing to the generation of ROS that was promoted by the
released cinnamaldehyde, thus accelerating the apoptosis of cancer cells. This cascaded
ROS-feedback strategy may be an effective way to develop cinnamaldehyde-conjugated
polymers for cancer treatment.

Compared to cinnamaldehyde-loaded polymers, cinnamaldehyde-conjugated poly-
mers have higher designability and generally exhibit better treatment effects. As can be
seen from Table 2, some cinnamaldehyde-conjugated polymers consist of non-degradable
carbon–carbon backbone, which may limit their biomedical applications due to their poor
degradability. Cinnamaldehyde-conjugated polymers containing cinnamaldehyde moieties
in their backbone generally have good biodegradability due to the presence of cleavage
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linkages in their backbone, but the degradation products need to be considered due to
their irritation, toxicity, and safety. Therefore, designing biodegradable, non-toxic and safer
cinnamaldehyde-conjugated polymers may be the future development trend.

4. Conclusions

Cinnamaldehyde is a natural product that exhibits various biological activities includ-
ing antimicrobial, anti-inflammatory, and anticancer, but the application of cinnamaldehyde
is limited by its sensitivity to light and poor water solubility. In order to obtain long-lasting,
better treatment effects and extend its applications, cinnamaldehyde can be loaded into
polymers for sustained and/or controlled release. Moreover, cinnamaldehyde can also
be modified to form a prodrug before being loaded into polymers, or directly loaded into
polymers with other agents to obtain a synergistic therapeutic effect. Therefore, although
many cinnamaldehyde-loaded polymers are investigated in the food field, they also show
good application prospects in the biomedical field.

Additionally, cinnamaldehyde can also be conjugated in the side chains or the back-
bone via cleavable linkages for preparing stimuli-responsive cinnamaldehyde-conjugated
polymers as smart drug delivery systems. The stimuli-responsive behavior of cinnamaldehyde-
conjugated polymers not only induces the release of cinnamaldehyde but also triggers the
release of encapsulated drugs due to the degradation of polymers. On the other hand, as a
ROS generation agent, the released cinnamaldehyde can enhance intracellular ROS levels
for amplified oxidative stress. Therefore, cinnamaldehyde-conjugated polymers exhibit
great potential for biomedical applications, especially for cancer treatment.

In conclusion, due to the biological activities of cinnamaldehyde and its convenience
for the design and preparation of stimuli-responsive polymers, cinnamaldehyde-contained
polymers show tremendous promise in the biomedical field. It is expected that more interest-
ing cinnamaldehyde-contained polymers, such as cinnamaldehyde-contained poly(amino
acid)s derivatives, will be designed for biomedical applications in the future. In view of
the fact that poly(amino acid)s have attracted much attention in the field of biomedicine,
and their easily functionalized and biodegradable properties, cinnamaldehyde-contained
poly(amino acid)s derivatives may be a promising direction. In addition, the synergy
between cinnamaldehyde and other drugs or ingredients is also worth paying attention to
and studying in depth.
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