
Citation: Lebedev, M.P.; Startsev,

O.V.; Kychkin, A.K.; Petrov, M.G.;

Kopyrin, M.M. Contributing Factors

of Uneven Climatic Aging for

Polymeric Composite Materials:

Methods and Modelling. Polymers

2023, 15, 1458. https://doi.org/

10.3390/polym15061458

Academic Editors: Ivana Salopek
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Abstract: Regarding a wide variety of PCMs, the materials’ strength properties which decrease no
more than 20% after 30 years of operation are of special interest. One of the important regularities
of the climatic aging of PCMs is the formation of gradients of mechanical parameters across the
thickness of the plates. The occurrence of gradients must be taken into account when modeling
the strength of PCMs for long periods of operation. At present, there is no scientific basis for the
reliable prediction of the physical-mechanical characteristics of PCMs for a long period of operation
in the world of science. Nevertheless, “climatic qualification” has been a universally recognized
practice of substantiating the safe operation of PCMs for various branches of mechanical engineering.
In this review, the influence of solar radiation, temperature, and moisture according to gradients
of mechanical parameters across the thickness of the PCMs are analyzed according to the data of
dynamic mechanical analysis, linear dilatometry, profilometry, acoustic emission, and other methods.
In addition, the mechanisms of uneven climatic PCM aging are revealed. Finally, the problems of
theoretical modeling of uneven climatic aging of composites are identified.

Keywords: polymer composite materials; aging; internal stresses; thermo-moist cycling; microcracks;
strength gradients

1. Introduction

Polymeric composite materials (PCMs) based on glass, carbon, basalt, organic, and
other fibers are widely used in various branches of mechanical engineering [1,2], and their
strength characteristics decrease over time due to aging [3–5]. Designing engineering
elements always requires information on the durability of used PCMs in conditions of
exposure to external environments, with their aggressiveness being defined by a combi-
nation of temperature, humidity, solar irradiation, and chemically active particles. [3,4].
Since the very beginning of the application of PCMs in various branches of engineering,
prediction of their durability at aging has been the focus of attention for numerous re-
searchers, and still remains an important problem [6–15]. Factors in external environments
causing the aging of PCMs are the temperature and humidity of air, precipitation, oxygen,
ozone, presence of chemically active compounds, and the ultraviolet (UV) radiation of the
sun [5–8,14,15]. In typical climatic regions (hot dry deserts, humid tropics and subtropics,
regions with moderate, low, and extremely low temperatures, etc.), daily and seasonal
variations of temperature, humidity, and solar radiation intensity are determined. The
data provided in [6–9] shows a 20–30% and even 40% decrease in strength after a long
exposure of PCMs to various climatic conditions. The effect of aging depends on the place
of exposure, composition of PCMs, and the measured parameter of interest. As a rule [5,13],
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the shear strength τ and bending strength σb are more sensitive to climatic influences
than the tensile strength σt. For example, carbon plastics are more resistant to aggressive
climatic influences than organoplastics. When a PCM is tested under New Zealand and
Brazilian conditions, the greatest amount of moisture is absorbed in the specimens [6]. In
the conditions of Hawaii, UV radiation is the strongest [6]. The mechanical performance of
the PCMs tested in Frankfurt changes to a lesser extent than when exposed in the tropics. It
is generally recognized that the atmospheric aggressiveness in temperate climates is lower
than in the humid tropics.

Carbon fiber reinforced plastics (CFRPs), glass fiber reinforced plastics (GFRPs),
organoplastics (OPs), basalt fiber reinforced plastics (BPs) and other PCMs based on various
epoxy, cyanoether, phenolic, and polyester matrices are the most common materials used
in construction and other industries [16–19]. PCM-based structural components during
operation are exposed to aggressive environmental factors such as temperature fluctuations,
humidity cycling, UV radiation from the sun, precipitation, wind, aggressive aerosols, and
mechanical loads. Affected by these factors, materials age and their mechanical properties
deteriorate. Extensive data on the effects of PCM aging have been accumulated, including
those in [10,13,20–22].

An important regularity of the climatic aging of PCMs is the formation of gradients of
mechanical parameters across the thickness of the plates. An example is provided in [23],
where, after 10 years of exposure in a warm and humid climate, GFRPs based on EDT-10P
binder showed the interlaminar shear strength τ at the initial values (38 MPa) in the inner
layers of an 8 mm-thick plate, but decreased to 21 MPa in the surface layers. After 6 years
of similar climatic aging of 5 mm-thick OP Organit 7T plates at a depth of 2.5 mm, the
parameter τ also retained its original value of 18 ± 2 MPa, while in the surface layer
exposed to the sun it decreased to 7–8 MPa.

A similar pattern of change in τ was found in CFRP KMU-9TK after 10 year of exposure
in a moderately warm climate [24]. Gradients of strength, elastic moduli, coefficient of
linear thermal expansion, and glass transition temperature of the polymer matrix over the
thickness of the plates form not only in reinforced plastics [23,24] but also in separately-
cured epoxy compounds [25] and thermoplastic polymers [26].

The relevance of studies of the inhomogeneity of PCM aging is confirmed by the data
of many authors [27–32]. For example, it was determined in [27] that in fiberglass based
on DEN438 and EPON828, after 2 years of exposure in the tropics, the glass transition
temperature Tg of the polymer matrix decreased by 37 ◦C in the surface layer of the plates,
while in the central part of the plates, a similar decrease was only 5◦ WITH. In [28], a
decrease in Tg and an increase in the concentration of amines, ketones, and quinones
revealed the effects of the destruction of the epoxy matrix in the surface layer and its
absence in the inner layers of fiberglass based on DGEBA.

Determining the gradient of mechanical parameters over the thickness of PCM samples
is a complex experimental problem. The works [29,30] show the possibility of revealing
the UV degradation profile of a polymer over the thickness of the samples. For this, the
strength of thin films cut at different depths from the surface of the polypropylene and
polyethylene copolymer samples after UV irradiation in a Xenotest 1200 chamber was
measured. It was shown that after 300 h of irradiation, carbonyl groups accumulate in a
surface layer 250–300 µm thick. With distance from the surface, the concentration of these
groups decreases exponentially. In proportion to this decrease, the strength in the polymer
microlayers increases. For polyethylene exposed in a Xenotest 1200 chamber under UV
irradiation and in natural conditions of a temperate and subtropical climate, the results are
similar to [22]. Relative stretching, density of microtome films, and the content of CH2=CH
groups determined by IR were found to be sensitive characteristics of the degradation
profile over the polyethylene thickness.

According to [31], when epoxy fiberglass was exposed in South Africa, a network
of cracks appeared on the surface of the samples, with the structure of the inner lay-
ers unchanged. It was established in [32] that the content of C=O and −OH groups
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increases in the surface layer of an epoxy coating based on DGEBA under the influence of
solar radiation.

Thus, under the influence of radiation, temperature, and moisture, the destruction of
epoxy matrices occurs on the side of the PCM plates facing the sun. In this layer, the effects
of aging are more pronounced [27–32].

To clarify the causes of PCM aging the following effects are usually studied:

– plasticization of polymer matrices by atmospheric moisture [33,34];
– swelling (increase in thickness) of samples when adsorbing moisture [35];
– destruction of polymer matrices affected by solar UV radiation and air oxygen [32,36];
– hydrolysis of polymer matrices affected by moisture [37–39];
– recoating of polymer matrixes under the influence of temperature and the plasticizing

effect of moisture [20,39,40];
– misorientation of organic fibers affected by solar UV radiation, thermal and moisture

cycling, and mechanical loads [39];
– structural relaxation and shrinkage of the fibers forming the frame of the reinforcing

filler [20,39,40];
– physical aging and structural relaxation of polymer matrices [41,42].

In [43,44] it was shown that the above-mentioned physico-chemical transformations in
PCMs lead to microcrack formation on the surface of the samples, in the volume of polymer
matrices, and at the polymer–filler interface which reduces the ultimate strength and elastic
moduli of the composites.

Thus, the examples considered show that the effects of PCM aging at different depths
from the surface are different. The uneven aging is accompanied by the formation of a
significant strength gradient in interlaminar compression and shear across the thickness of
the plates, and affects the ultimate compressive strength in the central and surface layers of
carbon fiber plastics [15,16].

The purpose of this review is to consider the causes of the uneven aging of PCMs
under the influence of solar radiation, temperature, and moisture according to the data
of dynamic mechanical analysis, linear dilatometry, profilometry, and other methods.
Particular attention is paid to the reasons for the formation of microcracks.

2. The Role of the Main Factors on the Uneven Aging of PCM
2.1. Influence of Diurnal and Seasonal Thermal Cycles

Even in the absence of external mechanical loads, internal stresses occur in PCMs due
to differences in the coefficients of the linear thermal expansion (CLTEs) of the compo-
nents [44–47]. In the cured composite, a high adhesive bond between the polymer matrix
(m) and the filler (f ) results in internal tensile stresses which arise in the matrices σT

mL along
the fibers L and compressive stresses in the fibers σT

f L defined by the ratios [44]:

σT
mL =

Vf E f Em

Vf E f + VmEm

[(
α f − αm

)
(T − T0)

]
, (1)

σT
f L = −Vm

Vf
σmL, (2)

that depend on the curing temperature T0, measurement temperature T, coefficients
of linear thermal expansion α, elastic moduli E, and volume content V of matrices (m)
and fibers (f ).

According to [42,43], the levels of internal stresses during daily and seasonal climatic
thermal cycles reach up to 40–60 MPa. This is sufficient to form transverse microcracks and
decrease the strength properties. As shown in [48], the density of microcracks D in CFRP
T300/520 increases exponentially with an increase in the number of cycles N:

D = A
(

1 − eλN
)

, (3)
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where A and λ are coefficients depending on the amplitude of thermal cycles. However,
thermocyclic internal stresses are equally probable for all monolayers of composites, and
cannot cause the observed gradients of mechanical properties across the thickness of aged
multilayer plates.

Thus, daily and seasonal thermal cycles are the reasons for the formation of micro-
cracks due to the occurrence of internal stresses resulting from differences between the
CLTEs of reinforcing fillers and polymer matrices.

2.2. Influence of Moisture

The main cause of non-uniform PCM aging is the action of water [26,49]. In [49],
depending on the laying of hybrid multifiber-reinforced thermoplastic polymer composites,
after 90 days of exposure to water, the bending strength of the composites [R/R/C/C]s,
[R/C/R/C]s, [C/R/C/R]s, and [C/C/R/R]s are reduced by 34.2%, 36.9%, 25.2%, and
25.8%, respectively. In addition, the failure modes of hybrid composites before and after
hygrothermal aging vary from brittle failure to ductile failure.

When moisture is absorbed, the linear dimensions of polymer matrices change (swelling)
in proportion to the concentration of absorbed water [44]:

εw
m = βm(w − w0) = βm∆w, (4)

where w0 is the initial moisture concentration, βm is the moisture expansion coefficient of
the polymer matrix.

The swelling of polymer matrices creates internal stresses in PCM components; their
magnitude is defined by:

σw
mL =

Vf E f Em

Vf E f + VmEm

(
β f w f − βmwm

)
, (5)

σw
f L = −Vm

Vf
σmL, (6)

where σw
L represents mechanical stresses along the fibers caused by swelling. Calcu-

lations [26] showed that hygrothermal stresses peak at the initial moment of moisture
diffusion and depend on relative humidity (increase from 25 to 120 MPa).

When swelling with moisture, stresses occur even in separately-cured polymers. For
example, when absorbing moisture, an epoxy polymer without a filler showed compressive
stresses on the surface of the sample leading to cracking during thermal cycling [50].

Thus, according to the data of [49–51], internal hygrothermal stresses are maximum
on the surface of PCM plates at the initial moments of moisture sorption and d{esorption.
Therefore, the probability of the formation of microcracks in the surface layers increases,
which explains the formation of a gradient in the mechanical strength of PCM over the
thickness of the samples.

2.3. Influence of Oxidation and Physical Aging

Oxidation and physical aging also contribute to the occurrence of stresses and microc-
racks. This has been shown both for epoxy and bismaleimide polymers and for unidirectional
CFRPs based on them [52]. At elevated temperatures, microcracks initiate on the surface of
the samples when the critical value of brittleness in the oxidized layer is reached. The cracks
then propagate inwards depending on the composition and reinforcement pattern.

In a similar study of an epoxy polymer aged at 150 ◦C [53], after 900 h of thermal
oxidation, a shrinkage layer with a thickness of ε = 70 µm was found. Stresses in the
polymer layers are defined by the ratio:

σ =
Eε

1 − ν2 , (7)
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where E is the modulus of elasticity, ν is the Poisson’s ratio ranged from 85 MPa on the
surface to −10 MPa at a depth of 200 µm from the surface and caused microcracks.

In [54], the dependence γ = E/E0 − 1 was investigated during thermal oxidation of
the epoxy polymer PR520 at 120 ◦C, where E0 is the modulus of elasticity in the initial
state, and E is the modulus of elasticity after aging. As the surface is approached and the
duration of the test is increased, the E value of the surface layer increases, especially in an
oxygen environment, leading to an increase in the brittleness of the surface layer. Compared
to the initial bending of 3% (using 4-point bending), the aged specimens failure occurs
at 1% bending.

Due to formation of the Young’s modulus gradient, the strength of the epoxide de-
creases to a greater extent in an oxygen environment, but approaches a certain limit value
upon achievement of the highest microcrack density, as follows from relation (3).

Toscano et al. [55] measured the stresses of the epoxy polymers DGEBA and DGEBF,
which were moistened and re-dried at 50 and 80 ◦C. The stress level on the surface of
the samples during sorption was −12 MPa and 12 MPa during drying. Harper and
Weitsman [56] also showed that drying of moisture-saturated CFRP is accompanied by
tensile stresses which can exceed the tensile strength of the material and cause microcracks
in the matrix and destruction of the interface. Cracks and delaminations create new
surfaces for moisture absorption during subsequent thermal and moisture cycles. It is
noted that cyclic exposure (wetting-drying) is more aggressive for CFRP compared to
continuous wetting.

The results of [52–56] suggest that the progressive oxidation of PCM polymer matrices
in open climatic conditions is one of the probable causes of the formation of mechanical
strength gradients across the thickness of the plates.

2.4. Combined Influence of Environmental Factors with the Ultraviolet Component of
Solar Radiation

If thermal and moisture exposure is accompanied by UV irradiation, its simultaneous
or alternate exposure significantly increases the likelihood of microcrack formation. This
regularity was confirmed in [57–63].

When exposed to UV, cracks appeared on the surface of the epoxy polymer SC-15 due
to increased brittleness resulting from cross-linking [57]. With the formation of microcracks
in the polymer, the compressive strength decreases. After 15 days of UV irradiation, the
strength decreases by 22% (from 273 to 212 MPa), the elastic modulus by 16%. After
cycles of UV and condensation of water vapor, the strength decreases by 30% (from 273 to
190 MPa), the modulus of elasticity by 27%.

Specimens of CFRP IM7/997 with dimensions 152 × 12.7 × 1.27 mm with laying
[0]8, [90]8 [0/90]2s were tested for tension after aging under the following conditions: UV
irradiation in the wavelength range of 295–365 nm with a power of 0.68 W/m2 at 60 ◦C
and in an atmosphere of saturated water vapor at 50 ◦C [58]. CFRP specimens after 500 h
of UV irradiation lost 0.27% by weight (volatiles and dissolved moisture). After exposure
to a humid environment, the mass of the samples increased by 0.89%. Humidification
after UV irradiation showed a similar result (−0.25% after 500 h of UV and +0.8% after
humidification. Cycling (UV humidity) resulted in a slight initial increase and a weight
loss of up to 1.2% after 1000 h of testing. The combination of UV and moisture produced
synergistic effects of extensive matrix erosion, matrix microcracking, matrix-fiber boundary
violation, fiber loss, and voiding. For specimens cut in the transverse direction, each type
of aging causes a decrease in strength, but the maximum loss of strength was 29% after
cyclic exposure to UV and moisture.

Similar effects were found for CFRP IM7/997 [59], GFRP based on epoxy and polyester
matrices [60,61], CFRP AS4/8552 [62], and CFRP based on T700 fiber [63]. In all cases, a
decrease in mechanical properties of PCM is accompanied by damage at the polymer-filler
interface and microcracks.



Polymers 2023, 15, 1458 6 of 14

Thus, under the influence of UV irradiation, chemical reactions of destruction, oxida-
tion, and cross-linking of the polymer binder [64] occur on the PCM surface, enhancing
changes in color and gloss, liming, chipping, microcracking, blistering, removal of the
polymer resin from the surface without exposing the fibers, complete exposure and delami-
nation of fibers, and delamination of the surface layer. These chemical and morphological
transformations initiate the growth of thermomechanical stresses and, as a consequence,
formation of cracks on the irradiated surface. In the inner layers of the plates, the density
of cracks and the loss of strength decrease, which explains the effects of inhomogeneous
aging of PCMs.

A convincing illustration of the non-uniform climatic aging of PCMs is a comparison
of the thermal expansion of the surface and inner layers of exposed plates. The classical
theory [65] allows expressing the CLTE of a composite along the fiber direction αL in terms
of the corresponding values of the polymer matrix and filler by the formula:

αL =
EmαmLVm + E f a f LVf

EmVm + E f Vf
, (8)

where Em, Ef are elastic moduli, αmL, α f L are CLTE, and Vm, Vf are specific volumes of matrix
(m) and reinforcing fibers (f ). It should be taken into account that PCMs are characterized
by significant anisotropy; for example, in glass-reinforced plastics, the difference in the
values of the coefficient of linear expansion along and across the fibers reaches 5–20%. It has
been experimentally and analytically proven that the formation of transverse microcracks
in layered PCMs leads to a decrease in the CLTE of polymer binders [66,67].

In the research [24], the temperature dependences of the relative thermal dilatation
αL of KMU-9TK carbon fiber plastic along the carbon fibers from the surface layers and the
central part of the plate were presented. According to the results of the study, the author
came to the conclusion that the shrinkage characteristics of carbon fibers are significantly
higher at temperatures exceeding the glass transition temperature of the polymer matrix
for the surface layer irradiated by the sun, due to a decrease in αmL.

Figure 1 demonstrates a typical visual appearance of microcracks formed in PCM 206
during their climatic aging. Typical fractures in the form of microcracks are circled in red.
The study of the microstructure of the samples was carried out on a JSM-7800F scanning
electron microscope (JEOL, Tokyo, Japan) at a low accelerating voltage in the secondary
electron mode. This example shows the microstructure of CFRP based on 207 Cycom 977-2
epoxy binder after 6 years of exposure to a warm, humid climate [68].
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Figure 1. Microstructure of CFRP based on Cycom 977-2 epoxy binder after 6 years of exposure to
a warm, humid climate. Typical fractures in the form of microcracks are circled in red. The study
of the microstructure of the samples was carried out on a JSM-7800F scanning electron microscope
(JEOL, Japan).

Internal stresses cause the appearance of multiple microcracks in the space between
carbon fibers, depending on temperature differences (1) and sorbed moisture in the sur-
face layer (5). Based on the results of [68], it can be concluded that daily and seasonal
thermal cycles act as an analogue of cyclic mechanical fatigue, cause microcracking with a
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microcrack density determined by Formula (3) and a decrease in the mechanical properties
of PCMs.

2.5. Influence of Moisture in a Cold Climate

It should be noted that the main physicochemical transformations listed above are
caused by molecularly distributed moisture. According to the data of differential scan-
ning calorimetry (DSC) [69,70], Raman spectroscopy [70,71], X-ray diffraction [72], free
water [73], bound freezing water, and bound unfrozen water were revealed in the polymer
matrices of PCMs, the share of which is usually predominant. It is this molecularly-
distributed moisture that causes plasticization and chemical reactions, the activity of which
increases with increasing temperature. Therefore, PCM aging due to the impact of water in
regions with warm and hot-humid climates deteriorates the mechanical performance of
these materials to a greater extent than after exposure to cold climates [5–9,12].

The effect of cold climates increases for PCMs containing moisture in capillaries,
pores, and micro voids. For example, in the porous epoxy polymer studied in [74] by the
DSC method, the proportion of freezing water increases with increasing porosity. At low
porosity, all water is in a bound state. When temperature decreases, freezing of free and
bound water is revealed by an exothermic DSC peak with a heat flux minimum at −18 ◦C,
and when heating, an endothermic peak at 0.6–1.0 ◦C associated with ice melting is seen.
The heat flux absorption peak caused by bound unfrozen water is observed at −38 ◦C.
This result proves that for the transformation of water into ice in the volume of PCMs,
depending on the amount of moisture contained and the size of pores, it is necessary to
reduce the temperature to −18 ◦C or more.

According to [69], when the temperature decreases, water concentrated in microvol-
umes does not crystallize due to the lack of free volume but forms a vitreous state, causing
a further increase in the level of internal stresses.

A decrease in temperature by 1 ◦C increases the pressure by 1.13 MPa. A decrease
in air temperature to −60 ◦C in Yakutsk conditions can increase the internal stresses in
PCMs with capillary-condensed moisture to 68 MPa, which exceeds the level of across-the-
thickness gradient for a number of PCMs [20] and is another cause of microcracks and the
reduction of strength indicators kR.

In [75–78] the kR indicators of moisture-containing PCMs were studied after cycling
in the “cooling-heating” regime. The results of these studies are ambiguous. Therefore, the
authors of [75] determined the effect of 20 cycles of 8 h at −18 ◦C + 16 h in hot water on
the properties of the epoxy adhesive bonding plates of water-saturated GFRP. The shear
strength of the control specimens was 16.2 MPa and decreased to 9.2 MPa (by 57%) after the
cycles. The effect was explained by an uneven distribution of the adhesive and the resulting
voids. During freezing, water can generate cleavages due to expansion that weaken the
adhesive strength. In [76], a unidirectional 3-layer CFRP based on vinyl ester VE8117
and a separately cured binder were studied at room temperature and 50% humidity. The
samples were cured for 25 days in water at room temperature. The water absorption of
the polymer samples was 1.3%. The dry and water-filled samples were then incubated at
−18 ◦C or thermocycled with a daily cycle (12 h at −18 ◦C + 12 h at 20 ◦C). After 450 days
of low-temperature exposure, dry samples increased σt by 9% and water-filled samples
decreased this parameter by 14%. After 450 cycles, the σt decreased by 22%. The effect of
low temperatures in CFRP is explained by the disruption of adhesive bonding of the fiber
with the polymer and the formation of voids.

On the other hand, in [77], the effect of 125 and 250 cycles (−20 to +20 ◦C) on the
adhesion strength of CFRP with steel (adhesive epoxy) was studied. The durability of dry
and conditioned samples in distilled and salt water at 45 ◦C for up to 90 days was measured
(water absorption was 1.7 and 1.4%). The effects of the σt and Et reduction characteristics of
plasticization were observed in the samples soaked in water. Additional “cooling-heating”
cycles showed no significant change in strength. Thermal cycles from −55 to +130 ◦C,
typical for supersonic aircraft flight regimes, were created for IM7/977-2 [78] aviation CFRP.
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No noticeable difference in mechanical properties was found after 300 cycles for dry and
moistened samples with 0.8% water content [78].

Thus, if the water saturation of PCMs does not cause the growth of the defectiveness
of the polymer matrix and its interface with fiber, and water is not localized in the form of
a separate phase—in microcapillaries—but is a molecularly-distributed polar plasticizer,
then additional cycling in the regime “cooling-heating” does not significantly degrade the
mechanical properties of PCMs.

If water is localized in the macrodamages of PCM (cracks) in free or capillary con-
densed states, its transformation into ice at temperature decrease promotes the additional
growth of internal stresses; indicators of arising microdamages in a polymer matrix and on
the border of its interface with a filler are the rms stress of acoustic emission.

This conclusion is confirmed by the model experiment in the work [79]. The effect
of low temperature on the properties of dry and water-saturated fiberglass KAST-V was
studied by the method of acoustic emission (AE). KAST-V specimens cut from 2.5 mm-thick
plates had dimensions of 130 × 30 mm. For a part of the specimens from the side of the
edge, splitting was carried out with the formation of a crack, located between the layers of
the composite. The specimens were dried in the thermostat and then subjected to water
saturation. After that, the specimens were cooled to the temperature of dry ice with the
recording of acoustic emission during the cooling process according to the method [79].
RMS acoustic emission voltage U was used as an informative parameter. AE signals were
recorded in the frequency range from 50 to 500 kHz. The signals were recorded with a
sampling frequency of 2.5 MHz.

The measurements showed that for all dried specimens, as well as for water-saturated
specimens with surface defects during cooling, the AE is within the background noise
limits. The characteristic example for a dried specimen with a 15.7 mm long crack is shown
in Figure 2. The AE parameter U is characterized by small single emissions caused by
mechanical noise from the movement of dry ice pellets after putting the specimen into
the container.
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The AE for KAST-V specimens containing 0.98% water with edge-split layers is differ-
ent. As can be seen from Figure 3, acoustic emission with the pulse amplitude exceeding
the background by more than two orders of magnitude is observed in these specimens.
This allows us to relate the AE pulses to the processes of ice crystallization, the increase of
internal stresses during the transition of water into ice at the crack tip, and multiple acts of
microdamage of the binder, which generate acoustic pulses.
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The examined results show that the gradients of mechanical parameters over the
thickness of aged PCMs are caused by the dominant damage to the surface layers of the
plates due to the propagation of microcracks under the influence of thermal and moisture
cycling enhanced by exposure to solar UV irradiation. To model non-uniform aging,
additional information is needed on the density of microcracks across the thickness of the
plates for various types of PCM climatic tests.

The analysis carried out showed that under the influence of UV components of solar
radiation, even in a cold climate, the surface of PCMs undergoes destruction and mi-
crocracking, increasing the number of sources of internal stresses. Seasonal and daily
thermocycles worsen mechanical properties of composites, especially if freezing water
accumulates in their micropores and capillaries. Examining this pattern, we can consider
modeling the aging of PCM in cold climates.

3. Modeling Uneven Aging of PCMs

Predicting the change in the strength of PCMs during uneven aging is still a difficult
problem. Satisfactory solutions have been obtained only for certain simple cases. In [49],
the model for the evolution of moisture diffusion and behavior during hygro-thermal
aging was constructed using finite element analysis. At the same time, a clear convergence
with the experimental results of moisture absorption was obtained and differences in the
evolution of moisture diffusion in R/C hybrid composites were shown. In [80], the thermal
moisture aging of glass-reinforced plastics on a VK-36r binder was studied. This material
was kept for 150 days at a temperature of 90 ◦C and a relative humidity of 98 ± 2%. During
aging, a linear decrease in compressive strength (σc) was found with an increase in the
moisture content (w) to 3.9%. To simulate aging, the formation of microdefects ν under the
action of water is assumed. In the process of moisture saturation, defects move into the
inner layers of fiberglass according to Fick’s law

∂ν

∂t
= Dh

∂2ν

∂h2 , (9)

where ν is the concentration of defects at depth h from the surface at time t, Dh is the
diffusion coefficient of defects, which coincides with the diffusion coefficient of moisture
to the depth of the samples. The diffusion model of defects (9) satisfactorily describes the
experimental dependence of σc on the aging time.

The theoretical approach to modeling the non-uniform aging of PCMs is considered
in [81]. It was assumed that damage occurs during aging, such as microcracks and em-
brittlement of the polymer matrix of the material. Damage moves linearly into the inner
layers of the plate with unidirectional reinforcement. In this case, the influence of moisture
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sorption and desorption is not taken into account, and the properties of the reinforcing
fibers are considered unchanged. The generalized Hooke’s law is presented in the form

σij = C0
ijklεkl + Nijklεkl , (10)

where σij is stress tensor, εkl is strain tensor. The first term includes the stiffness tensor
C0

ijkl for a volume element without defects. In the second term, Nijkl is the stiffness tensor,
which takes into account the shape of defects.

The calculation of the tensor Nijkl in Equation (10) is presented in a general form
for ellipsoidal microcracks. For the practical use of the theoretical approach [81] in cases
of the uneven aging of PCMs, it is necessary to have additional detailed experimental
information about the structure of the composite reinforcement, the shape and size of
defects in the damaged layer, the rate of defect propagation, the effect of moisture, the
stability of reinforcing fibers, and other factors. Therefore, a systematic study of gradients
of strength indicators and physical characteristics of PCMs at different depths of plates
from the surface is important for further modeling of uneven aging of PCMs.

In [20], a model based on the assumption of a linear law of damage summation under
the action of external factors was proposed to extrapolate the results of full-scale tests of
PCMs. This approach involves full-scale and accelerated tests, the results of which reveal
the limit states of the studied material (maximum degree of hardening, limit levels of
plasticizing action, internal stresses, destruction, etc.) with varying regimes and duration
of aging. The possibility of modeling the mechanical parameters R by the time dependence
is shown:

R = η(1 − exp(−λt)) − β(1 + χt) + R∞, (11)

where η and β are material parameters determined by laboratory accelerated methods;
λ and χ are material and environmental characteristics. The validity of dependence (11) has
been tested and confirmed for different sets of experimental data obtained during exposure
in different climatic zones.

Prediction of conservation indices (kR) by means of rigorous physical models is ap-
parently still impossible due to a large number of significant influencing factors and the
insufficiently-studied synergistic effects of seasonal and diurnal temperature, humidity,
and solar radiation variations. In our opinion, extrapolation methods can be used to predict
the mechanical properties of PCMs.

4. Conclusions

Long-term exposure of PCMs in open climatic conditions causes an irreversible change
in their mechanical and various physical parameters due to plasticization, swelling, hy-
drolysis, post-curing, and the destruction of polymer matrices under the influence of
temperature, humidity, and UV radiation from the sun. An important regularity of the
climatic aging of PCMs is the formation of gradients of mechanical parameters across the
thickness of the plates. An example is provided in [23] where, after 10 years of exposure in
a warm, humid climate, GFRP based on EDT-10P binder showed the interlaminar shear
strength τ at the initial values (38 MPa) in the inner layers of an 8 mm-thick plate, but
decreased to 21 MPa in the surface layers. After 6 years of similar climatic aging of 5 mm-
thick OP Organit 7T plates at a depth of 2.5 mm, the parameter τ also retained its original
value of 18 ± 2 MPa, while in the surface layer exposed to the sun, it decreased to 7–8 MPa.
A similar pattern of change in τ was found in CFRP KMU-9TK after 10 years of exposure in
a moderately warm climate [24].

The occurrence of gradients of indicators must be taken into account when modeling
the strength of PCMs for long periods of operation. The progress in modeling the strength
of PCMs under long-term exposure in open climatic conditions depends on obtaining
new experimental information about the microdamage profiles along the PCM thickness
associated with the dominant impact factors.
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The present review has analyzed the known causes of the uneven aging of carbon
fiber reinforced plastics, fiberglass, and other PCMs which are used in construction and
various branches of engineering under the influence of solar radiation, temperature, and
moisture. As the result, it is possible to draw the following conclusions:

1. The dominant cause of the uneven aging of PCMs is the effect of water. When
swelling with moisture, internal hygrothermal stresses arise which are distributed
unevenly over the thickness of the plates. The maximum internal stresses are maxi-
mum on the surface of the PCM plates at the initial moments of moisture sorption
and desorption. Therefore, the probability of the formation of microcracks in the
surface layers increases. The unevenness of aging depends on changes in air tempera-
ture and humidity, and increases with daily and seasonal transitions from sorption
to desorption.

2. Progressive oxidation of PCM polymer matrices under open climatic conditions in
combination with the action of UV radiation is one of the probable reasons for the
formation of mechanical strength gradients across the thickness of the plates.

3. Physical and chemical transformations in PCM polymer matrices activated by temper-
ature, moisture, and solar radiation promote the capillary condensation of moisture,
which can turn into a solid phase at temperatures below 0 ◦C, be a source of additional
internal stresses that cause the formation of new damage in the surface layers, and be
the reason for the decrease in the strength of PCMs.

Predicting the change in the strength of PCMs during uneven aging is still a difficult
problem. Satisfactory solutions have been obtained only for certain simple cases. An urgent
research task for the coming years is a comprehensive microscopic study of the density and
shape of microcracks at different depths from the surface, depending on the composition
and structure of the PCM reinforcement and the current climatic factors.
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