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Abstract: A series of Schiff-based cyclotriphosphazenes with different alkyl chain length terminal
ends, 4a (dodecyl) and 4b (tetradecyl), were synthesized and the structures were characterized using
Fourier-transform infrared spectroscopy (FT-IR), and 1H, 13C, and 31P nuclear magnetic resonance
(NMR) and carbon, hydrogen, and nitrogen (CHN) elemental analysis. The flame-retardant and
mechanical properties of the epoxy resin (EP) matrix were examined. The limiting oxygen index
(LOI) of 4a (26.55%) and 4b (26.71%) revealed a good increment compared to pure EP (22.75%). The
LOI results corresponded to their thermal behavior studied using thermogravimetric analysis (TGA)
and the char residue analyzed under field emission scanning electron microscopy (FESEM). The
mechanical properties of EP showed a positive impact on tensile strength with a trend of EP < 4a < 4b.
The tensile strength went from 8.06 N/mm2 (pure EP) to 14.36 and 20.37 N/mm2, indicating that the
additives were compatible with epoxy resin.

Keywords: cyclotriphosphazene; Schiff-based; flame retardant; mechanical property; epoxy resin

1. Introduction

Being fire retardant is one of the main concerns regarding fire safety. A fire retardant
is a substance that is used to slow down the spread of fire by eliminating the cycle of fuel.
In other words, this means reducing or isolating the source of fire such as combustible gas,
heat and oxygen. The involvement of synthetic chemistry in manufacturing to improve
polymer’s properties has become of great importance to fire safety.

Epoxy resin (EP) had already gain attention due to its outstanding characteristics
and wide application as an adhesive, flooring/automotive coating as well as in electronic
devices and construction as an asphalt/concrete mixture [1,2]. In general, an unmodified
polymer material such as EP is flammable because it is made up by hydrocarbons chains and
easily burns rapidly when exposed to fire; thus, it still cannot meet the requirements of many
industrial fields [3,4]. Therefore, as a way to improve its properties, halogen-containing
flame retardants (FR) were widely incorporated into this matrix, using either reactives
or additives. Unfortunately, halogenated FR, such as tetrabromobisphenol A (TBBPA),
[tris(1,3-dichloro-2-propyl) phosphate] (TDCPP), chlorocyclotriphosphazene (HCCP) and
more, have become widespread global contamination issues, especially to the environment
and human health [5–8].

It has been proven that the effects of various modifying additives and fillers on the
flammability reduction, and physical and chemical properties of EP composites, is deter-
mined by some factors. A good fire resistance of EP was affected by the protective layer
formed on the surface which acts as a physical barrier during combustion. This can be
achieved as the yield of carbonized structures increase in the presence of phosphorus [9–11].
Additionally, the content of nitrogen is considered as the main factor in designing a high-
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efficiency flame retardant EP. Ammonia was released during combustion which blocked
the entry of air and broke the cycle of fire [12].

At present, an approach to overcome these issues is using alternative free-halogen FR
such as hexasubstituted cyclotriphosphazene derived from a well-known FR agent, which is
HCCP [13–15]. HCCP is commonly used as starting material for the synthesis, because the
presence of a reactive P-Cl bond makes it eligible to undergo nucleophilic substitution [16].
In addition, the content of phosphorus, acting as a radical scavenger, and nitrogen, which
is responsible for being a charring agent by releasing inert gaseous by-products during
combustion, can greatly enhance the flame resistance of a material [17,18].

The authentic characteristics of cyclotriphosphazene have become more fascinating
and varied substituent groups could be explored with desirable applications in industry,
such as being a flame retardant, in nanomaterials, biomedicine and more [19–21]. Interest-
ingly, the properties of this compound can be functionalized depending on the nature of
the substituents attached to the core compound [22]. The incorporation of the substituent
into the core compound usually affects their compatibility when added into a polymer. As
such, more studies on improving ways of introducing flame-retardant additives without
failure is highly worthwhile. For example, Zhang et al. synthesized hexaphenoxycyclot-
riphosphazene (HPCTP) with different weight percentages, which provided excellent flame
resistance to EP [23]. Qu et al. also improved the flame-retardant properties of EP by synthe-
sizing capsulated polymethyl methacrylate (PMM) with a HPCTP additive [24]. Another
study by Tarasov et al. successfully synthesized a phosphazene-containing EP based on
Bisphenol F, which had a positive impact on its flame-retardant properties, yet maintained
its mechanical properties with a low phosphazene fraction [25].

Studies related to Schiff-based compounds were reported showing a wide range
of applications, especially as a flame retardant [26–29]. The presence of a Schiff-based
moiety was characterized using FT-IR to show the functional group of C=N at the range of
1600–1610 cm−1 and NMR showed the proton -N=CH- downfield [30]. The purity content
of carbon and nitrogen in C=N was further confirmed using CHN elemental analysis with
a convincing percentage error of calculated and found values below 4%. A functioning
Schiff-based compound effectively improved the fire resistance of a polymer matrix by
forming a continuous and compact char layer [28].

In this research, two Schiff-based compounds bridged by hydrazine, with different
length alkyl chain end terminals attached to cyclotriphosphazene as a substituent, were
synthesized in order to studied their effect on the flame retardant and mechanical behaviors
of epoxy resin. This study focuses on achieving the highest fire-retardant properties with
fewer additives used, which is a 1wt% fire-retardant compound as an additive. In this
contribution, the Schiff-based compound is expected to encourage the char-forming ability
by maintaining the linearity and forming a stable cross-link, which is also expected to
enhance flame resistance [31,32]. The different length alkyl chain (dodecyl and tetradecyl)
was taken into consideration as it facilitates the toughening of the epoxy resin, contributing
to a good mechanical property [33].

2. Experimental
2.1. Chemicals

The chemicals and solvents that were used in this research were 4-hydroxybenzaldehyde,
1-bromododecane, 1-bromotetradecane, N,N-dimethylformamide (DMF), dichloromethane
(DCM), hydrazine sulfate, phosphonitrilic chloride trimer (HCCP), potassium carbonate,
potassium iodide, methanol, ethanol, acetone, glacial acetic acid, triethylamine, and epoxy
resin/amine. All these chemicals and solvents were used without purification and pur-
chased from Merck (Darmstadt, Germany), Qrëc (Asia) (Selangor, Malaysia), Sigma-Aldrich
(Steinheim, Germany), Acros Organics (Geel, Belgium), and BDH (Dubai, UAE). Table 1
shows the typical properties of epoxy resin and HCCP.
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Table 1. Typical properties of epoxy resin and HCCP.

Properties of Epoxy Resin [34]

Appearance Clear liquid
Specific gravity at 25 ◦C 1.12 gm/cc

Viscosity at 25 ◦C 550 centipoises
Tensile strength 6.9 MPa

Properties of Phosphonitrilic Chloride Trimer, HCCP (SDS, Sigma-Aldrich)

Appearance Crystalline/light gray powder
Formula Cl6N3P3

Molecular weight 347.66 g/mol
Melting point 112–115 ◦C

Initial boiling point and boiling range 127 ◦C at 17 hPa
Relative density at 25 ◦C 1.98 g/mL

2.2. Syntheses
2.2.1. Synthesis of 4-alkoxybenzaldehyde, 1a–b

Both 0.1. mol 4-hydroxybenzaldehyde and 0.1 mol 1-bromodecane were dissolved
separately in 20 mL of N,N-dimethylformamide, DMF, and mixed into a 250 mL round-
bottom flask. Added to the mixture were 0.15 mol Potassium carbonate, K2CO3, and
0.1 mol potassium iodide, KI, and it was then refluxed for 12 h. The reaction progress
was monitored using a thin-layer chromatograph (TLC). Upon completion, the mixture
was poured into 500 mL of cold water and extracted using dichloromethane (DCM). The
organic layers were collected and dried in anhydrous sodium sulphate to remove excess
water. The product was filtered and evaporated overnight to fully removed access solvents.
The same method was used to synthesize compound 1b.

4-dodecyloxybenzaldehyde, 1a:

Yield: 23.66 g (81.45%), light-yellow oil. FTIR (cm−1) 2922 and 2852 (Csp3-H stretch-
ing), 2732 (C-H aldehyde stretching), 1689 (C=O stretching), 1599 (C=C stretching), 1253
(C-O stretching). 1H-NMR (600 Hz, CDCl3) δ, ppm: 9.76 (s, 1H), 7.72 (d, J = 4.8 Hz, 2H),
6.90 (d, J = 8.94 Hz, 2H), 3.93 (t, J = 6.18 Hz, 2H), 1.71 (m, J = 8.94 Hz, 2H), 1.38–1.18 (m,
J = 7.56 Hz, 18H), 0.80 (t, J = 6.9 Hz, 3H). 13C-NMR (150 Hz, CDCl3) δ, ppm: 190.27, 164.12,
131.73, 129.69, 68.25, 31.11, 29.61, 29.57, 29.53, 29.32, 29.00, 26.19, 25.91, 22.63.

4-tetradecyloxybenzaldehyde, 1b:

Yield: 29.91 g (93.90%), white powder. FTIR (cm−1) 2914 and 2847 (Csp3-H stretching),
2733 (C-H aldehyde stretching), 1687 (C=O stretching), 1599 (C=C stretching), 1250 (C-O
stretching). 1H-NMR (500 Hz, CDCl3) δ, ppm: 9.85 (s, 1H), 7.80 (d, J = 5.0 Hz, 2H), 6.97 (d,
J = 5.0 Hz, 2H), 4.01 (t, J = 5.0 Hz, 2H), 1.81–1.76 (m, J = 5.0 Hz, 2H), 1.57–1.41 (m, J = 5.0 Hz,
2H), 1.36–1.24 (m, J = 5.0 Hz, 20H), 0.87 (t, J = 5.0 Hz, 3H). 13C-NMR (125 Hz, CDCl3) δ,
ppm: 190.76, 164.29, 131.97, 129.79, 68.45, 31.91, 29.68, 29.66, 29.64, 29. 57, 29.53, 29.34, 29.33,
29.06, 25.96, 22.67. 14.09 CHN elemental analysis: Calculated for C21H34O2: C: 79.19%, H:
10.76%; Found: C: 78.84%, H: 10.67%.

2.2.2. Synthesis of 4-(substituted benzylidene)hydrazinium, 2a–b

0.008 mol of finely powdered hydrazine sulphate was suspended in 20 mL of hot
distilled water and then 10 mol of sodium acetate anhydrous was added to the suspension.
The mixture was boiled for 5 min and stirred until fully dissolved. Then, the mixture was
allowed to cool down to 50 ◦C before 20 mL of hot ethanol was added; a cloudy solution
started to appear. This mixture was filtered, and the filtrate was used for the next step. In a
100 mL round-bottom flask, the filtrate was added dropwise to 0.008 mol of 4-dodecyloxy
benzaldehyde, 1a, and stirred for 12 h at room temperature. TLC was used to monitor the
reaction progress. The precipitate obtained was filtered and dried. The crude product was
then recrystallized from acetone. The same method was used to synthesize compound 2b.
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4-Dodecyloxybenzylidene hydrazinium, 2a:

Yield: 2.26 g (90.94%), light-yellow powder. FTIR (cm−1) 2916 and 2848 (Csp3-H
stretching), 1604 (C=N stretching), 1509 (C=C stretching), 1172 (C-O stretching). 1H-NMR
(500 Hz, DMSO-d6) δ, ppm: 8.47 (s, 1H), 7.79 (d, J = 5.00 Hz, 2H), 6.64 (d, J = 5.00 Hz, 2H),
4.06 (t, J = 5.00 Hz, 2H), 1.78–1.72 (m, J = 10.00 Hz, 2H), 1.46–1.26 (m, J = 5.00 Hz, 18H), 0.88
(t, J = 10.00 Hz, 3H). 13C-NMR (125 MHz, DMSO-d6) δ, ppm: 161.32, 147.55, 141.36, 130.01,
68.57, 31.64, 29.35, 29.33, 29.31, 29.29, 29.15, 29.08, 28.99, 25.88, 25.35, 22.35, 14.07. CHN
elemental analysis: Calculated for C19H32N2O: C: 74.95%, H: 10.59%, N: 9.20%; Found: C:
74.83%, H: 10.47%, N: 9.11%.

4-Tetradecyloxybenzylidene hydrazinium, 2b:

Yield: 2.43 g (89.94%), light-yellow powder. FTIR (cm−1) 2915 and 2848 (C-H sp3
stretching), 1604 (C=N stretching), 1509 (C=C stretching), 1172 (C-O stretching). 1H-NMR
(500 Hz, DMSO-d6) δ, ppm: 8.47 (s, 1H), 7.79 (d, J = 5.00 Hz, 2H), 6.59 (d, J = 10.00 Hz,
2H), 4.02 (t, J = 10.00 Hz, 2H), 1.73–1.67 (m, J = 10.00 Hz, 2H), 1.42–1.22 (m, J = 5.00 Hz,
22H), 0.83 (t, J = 5.00 Hz, 3H). 13C-NMR (125 MHz, DMSO-d6) δ, ppm: 161.32, 147.55,
141.36, 130.01, 68.57, 31.64, 29.36, 29.35, 29.34, 29.33, 29.30, 29.29, 29.15, 19.08, 28.99, 25.88,
22.35, 14.07. CHN elemental analysis: Calculated for C21H36N2O: C: 75.85%, H: 10.919%,
N: 8.42%; Found: C: 75.79%, H: 10.86%, N: 8.38%.

2.2.3. Synthesis of hexakis(4-formlyphenoxy)cyclotriphosphazene, 3

4-hydroxybenzaldehyde (0.08 mol) and triethylamine (0.1 mol) was dissolved in
150 mL of acetone and the mixture was cooled to 0 ◦C in an ice bath. The mixture was
then stirred for 30 min. A solution of hexachlorocyclotriphosphazene, HCCP, was prepared
by dissolving 0.01 mol of HCCP into 50 mL of acetone, and was added dropwise into the
mixture. The temperature was maintained at 0 ◦C for 2 h. Then, the mixture was allowed
to reach room temperature and was continuously stirred for an additional 94 h. Upon
completion, the mixture was monitored using TLC. When the reaction is completed, 250 mL
of cold water was poured into the mixture and left overnight in the fridge. The precipitate
was filtered and washed with water and left to dry. The precipitate was recrystallized
from methanol.

Hexakis(4-formlyphenoxy)cyclotriphosphazene, 3:

Yield: 3.99 g (92.71%), white powder. FTIR (cm−1): 2729 (H-C=O), 1697 (C=O stretch-
ing), 1595 (C=C stretching), 1204 (C-O stretching), 1150 (P=N stretching), 950 (P-O-C
stretching). 1H-NMR (500 MHz, DMSO-d6) δ, ppm: 9.90 (s, 1H), 7.78 (d, J = 10.00 Hz, 2H),
7.16 (d, J = 10.00 Hz, 2H). 13C-NMR (150 MHz, DMSO-d6) δ, ppm: 191.69, 153.59, 133.55,
131.46, 121.03. 31P-NMR (500 MHz, DMSO-d6) δ, ppm: 7.60. CHN elemental analysis:
Calculated for C42H30N3O12P3: C: 58.55%, H: 3.51%, N: 4.88%; Found: C: 58.30%, H: 3.45%,
N: 4.80%.

2.2.4. Synthesis of hexakis{4-((E)-((4-((E)-4-substituted-benzylidene)hydrazine-1-ylidene)
methyl)phenoxy}triazophosphazene, 4a–b

A mixture with a ratio of 1:8 hexasubstituted cyclotriphosphazene (0.58 mol), 3 and
intermediate 2a were mixed with 40 mL of methanol in a 250 mL round-bottom flask. A few
drops of glacial acetic acid were added into the mixture as a catalyst, and stirred for 48 h
at room temperature. TLC was used to monitor the reaction progress. Upon completion,
the mixture was cooled in ice water and the precipitate formed was filtered and dried.
The crude product was recrystallized from methanol. The same procedure was used to
synthesize 4b.

Hexakis{4-((E)-((4-((E)-4-dodecyloxy-benzylidene)hydrazine-1 ylidene)methyl)phenoxy}
triazophosphazene, 4a:

Yield: 1.35 g (90.00%), light-yellow powder. FTIR (cm−1): 2916 and 2848 (Csp3-H
stretching), 1603 (C=N stretching), 1508 (C=C stretching), 1249 (C-O stretching), 1173 (P=N
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stretching), 959 (P-O-C stretching). 1H-NMR (500 Hz, DMSO-d6) δ, ppm: 8.67 (s, 1H), 8.56
(s, 1H), 7.96 (d, J = 5.00 Hz, 2H), 7.88 (d, J = 10.00 Hz, 2H), 7.57 (d, J = 10.00 Hz, 2H), 7.05
(d, J = 5.00 Hz, 2H), 4.08 (t, J = 10.00 Hz, 2H), 1.79-1.73 (q, J = 5.00 Hz, 2H), 1.47–1.30 (m,
J = 5.00 Hz, 18H), 0.88 (t, J = 5.00 Hz, 3H). 13C-NMR (150 MHz, DMSO-d6) δ, ppm: 162.09,
162.03, 159.48, 149.82, 149.15, 136.57, 130.56, 129.31, 122.34, 115.49, 68.64, 31.64, 29.31, 29.26,
29.13, 19.12, 29.09, 28.97, 25.88, 22.35, 14.08. 31P-NMR (500 MHz, DMSO-d6) δ, ppm: 8.50.
CHN elemental analysis: Calculated for C156H210N15O12P3: C: 72.61%, H: 8.20%, N: 8.14%;
Found: C: 72.55%, H: 8.16%, N: 8.09%.

Hexakis{4-((E)-((4-((E)-4-tetradecyloxy-benzylidene)hydrazine-1 ylidene)methyl)phenoxy}
triazophosphazene, 4b:

Yield: 1.41 g (88.68%), light-yellow powder. FTIR (cm−1): 2916 and 2848 (Csp3-H
stretching), 1603 (C=N stretching), 1509 (C=C stretching), 1250 (C-O stretching), 1173 (P=N
stretching), 959 (P-O-C stretching). 1H-NMR (500 Hz, DMSO-d6) δ, ppm: 8.66 (s, 1H), 8.54
(s, 1H), 7.96 (d, J = 10.00 Hz, 2H), 7.87 (d, J = 10.00 Hz, 2H), 7.55 (d, J = 10.00 Hz, 2H), 7.04
(d, J = 10.00 Hz, 2H), 4.08 (t, J = 5.00 Hz, 2H), 1.79–1.73 (q, J = 5.00 Hz, 2H), 1.48–1.30 (m,
J = 5.00 Hz, 22H), 0.88 (t, J = 10.00 Hz, 3H). 13C-NMR (150 MHz, DMSO-d6) δ, ppm: 162.18,
162.14, 159.33, 150.70, 150.04, 136.54, 130.54, 129.28, 122.30, 115.56, 68.77, 31.68, 29.38, 29.34,
29.20, 29.18, 29.13, 29.12, 29.02, 29.00, 25.92, 22.34, 14.01. 31P-NMR (500 MHz, DMSO-d6)
δ, ppm: 8.52. CHN elemental analysis: Calculated for C168H234N15O12P3: C: 73.41%, H:
8.58%, N: 7.64%; Found: C: 73.38%, H: 8.54%, N: 7.61%.

2.2.5. Preparation of Molded Epoxy Resin with Compounds 4a and 4b

The same method was used to prepare the epoxy matrix for the flame retardant and
mechanical properties test. The molded EP was prepared by blending 1 wt.% of the final
compounds, 4a and 4b, with epoxy resin and mixing it until the compound was completely
dissolved. DDM was then added into the mixture with a 1:3 ratio, and stirred until it was
homogenous. The mixture was poured into a silicon mold and cured at 30 ◦C for 24 h. The
molding dimension for fire retardant (LOI test) and mechanical testing was according to BS
2782: Part 1: Method 141, and ISO 4589 and ASTM D638, respectively. Three replicates of
each additive were prepared for the LOI test, with five replicates for the mechanical test.

2.3. Measurement and Characterization

The structure of all the synthesized intermediates and final compounds were character-
ized using spectroscopy analysis. The functional group was detected on a Fourier-transform
infra-red (FT-IR) spectroscopy Bruker Alpha II (Platinum ATR) over the wavenumber range
500–4000 cm−1. 1H, 13C, and 31P nuclear magnetic resonance (NMR) spectra were obtained
by a Bruker 500 MHz Ultrashield spectrometer (Bruker, Coventry, UK) using CDCl3 and
DMSO as a solvent system. Carbon, hydrogen and nitrogen (CHN) elemental analysis was
used to compare the theoretical and laboratory values of carbon, hydrogen and nitrogen of
the compounds (PerkinElmer, Waltham, MA, USA).

For thermal analysis, thermogravimetric analysis (TGA) was performed on a TGA/DSC
(Mettler Toledo, Selangor, Malaysia) from 50–600 ◦C at heating rate of 10 ◦C min−1 in N2
atmospheres. The limiting oxygen index (LOI) values were measured using S.S Instruments
Pvt. Ltd. (Delhi, India) in accordance with BS 2782: Part 1: Method 141 and ISO 4589 with
a dimension of 120 mm × 10 mm × 4 mm. Three specimens for each sample were tested
and the average value was reported. Field emission scanning electron microscopy (FESEM)
was conducted using JEOL JSM-7900F (Petaling Jaya, Malaysia) magnified 5000 times.

The mechanical behavior was determined according to tensile strength using a univer-
sal tensile machine (UTM) GOTECH/AI-7000L-10 (Taichung City, Taiwan). The dumbbell-
shaped tensile sample was measured according to ASTM D638. Five specimens for each
sample were tested and the average value was reported.
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3. Results and Discussion
3.1. Synthesis of the Intermediates and Final Compounds

In this study, a new hexasubstituted cyclotriphosphazene has been synthesized and
characterized. Intermediates 1a–b were synthesized using an alkylation reaction of 4-
hydroxybenzaldehyde with different alkyl chains (dodecyl and tetradecyl) (Scheme 1) [35].
Intermediates 2a–b were synthesized using a condensation reaction of 1a-c with hy-
drazinium sulphate [36]. The reaction of hexachlorocyclotriphospazene, HCCP, with 4-
hydroxybenzaldehyde gave intermediate 3 [37] and further reacted with intermediates
2a–b to formed final compounds 4a–b [35]. The overall synthesis pathway for hexasub-
stituted cyclotriphosphazene compounds with different alkyl chain terminal ends with
hydrazine bridged is shown in Schemes 1–4.

All intermediates and final compounds were characterized using spectroscopic analy-
sis: FT-IR, NMR, and CHN elemental analysis. In addition, the effects of hexasubstituted
cyclotriphosphazene as a fire retardant was studied using TGA and LOI, and the surface
morphology of char residue was investigated under FESEM. The tensile strength was used
to determine the mechanical behavior of the final compounds.
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3.2. Characterization of Chemical Structure
3.2.1. Fourier-Transform Infrared (FT-IR) Spectral Analysis

The infrared spectra of all the compounds, 1a–b, 2a–b, 3, and 4a–b were measured
using FT-IR spectrometry and data were illustrated in Figures 1–3. Figure 1 presents the
FT-IR spectra of compounds, 1a–b and 2a–b. The absorption existing at 2922 and 2852 cm−1

was attributed to Csp3-H stretching. The C-H aldehyde can be seen at 2732 cm−1, and
at peak 1689 cm−1, it corresponds to C=O stretching for compounds 1a–b. Moreover,
the disappearance of these peaks for 2a–b confirmed the condensation reaction had been
successfully completed. In addition, the adsorption at 1599 cm−1 and a sharp peak at
1253 cm−1 was assigned to C=C on an aromatic ring and C-O stretching, respectively. The
characteristics of the Schiff-based compound was attributed to the appearance of a C=N
peak at 1604 cm−1.

The FT-IR spectrum of compound 3 is shown in Figure 2. The characteristic of
hexakis(4-formlyphenoxy)cyclotriphosphazene can be observed at 2729 cm−1 for H-C=O.
The peaks at 1697 and 1595 cm−1 were assigned to C=O and C=C stretching for the aromatic
ring, respectively, while the peak at 1204 cm−1 corresponded to the adsorption peak of
C-O. The cyclotriphosphazene peak attached to the compound can be seen at the peak
1150 cm−1, associated with the P=N ring, and 950 cm−1 for the P-O-C stretching vibration
of aromatic groups connected to the cyclic phosphorus atoms.
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The FT-IR spectra for the final compounds, 4a and 4b, are presented in Figure 3. As
seen in Figure 3, a similar peak pattern corresponding to C-H stretching, appeared at 2867
and 2929 cm−1. In addition, the C=N stretching for the Schiff-based linkage appeared at
1603 cm−1. Moreover, C=C stretching for the aromatic ring and C-O stretching are shown
at 1509 cm−1 and 1249 cm−1, respectively. For cyclotriphophazene, the P=N ring was
assigned at 1173 cm−1, with P-O-C bending at 959 cm−1.

3.2.2. Nuclear Magnetic Resonance (NMR) Characterization of Final Compound

Compound 4a was used as a representative structure for the other compounds. The
structure of compound 4a with complete atomic numbering is shown in Figure 4.
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Figure 5a shows the 1H-NMR spectrum of compound 4a. Two singlets downfield at δ
8.67 and 8.56 ppm were ascribed to two azomethine proton signals. The doublets at δ 7.96,
7.88, 7.57, and 7.05 ppm were assigned to the eight protons from two aromatic rings. The
triplets in the upfield region of δ 4.08 ppm corresponded to an aliphatic chain and another
methylene appeared from δ 0.89 to 1.79 ppm.

Figure 5b shows the 13C NMR spectrum of compound 4a. The total carbon presence
in the compound corresponding with the peaks shown in the spectrum indicated that
4a has 23 carbons in its side arms. These consist of two azomethine, four aromatic, four
quaternary, 11 methylene, and one methyl carbon. Figure 5c shows the 31P NMR spectrum
of compound 4a. The peak at 8.52 ppm supported the hexa-functionality in the chemical
structure of the phosphorus atom in compound 4a.
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3.2.3. CHN Elemental Analysis

All compounds were fully characterized using CHN elemental. The content of C, H,
and N atoms listed in Table 2 fitted well with those calculated according to their molecular
structures in Schemes 1–4. The percentage error was calculated and proved the purity,
as the percentage error was below 2% for all compounds. Elemental analysis provides
essential information about the elemental composition and guarantees the sufficient purity
of a substance [38].
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Table 2. CHN elemental analysis of compounds 1b, 2a–b, 3a, and 4a–b.

Compound
Calculated (%) Found (%)

C H N C H N

C21H34O2, 1b 79.19 10.76 - 78.84 10.67 -
C19H32N2O, 2a 74.95 10.59 9.20 74.83 10.47 9.11
C21H36N2O, 2b 75.85 10.92 8.42 75.79 10.86 8.38

C42H30N3O12P3, 3 58.55 3.51 4.88 58.30 3.45 4.80
C156H210N15O12P3, 4a 72.61 8.20 8.14 72.55 8.16 8.09
C168H234N15O12P3, 4b 73.41 8.58 7.64 73.38 8.54 7.61

3.3. Effect of Hexasusbstituted Cyclotriphosphazene Derivatives on the Flame Retardancy
3.3.1. Thermogravimetric Analysis of Final Compounds

Thermal behavior of composite materials was analyzed using thermogravimetric
analysis (TGA). It has an important role in the study of flame-retardant composites, as
it provides important information for evaluation through the thermal decomposition
profile [39].

The information related to TGA is shown in Figure 6 and the detailed data are tabulated
in Table 3. Other related information on char residue and a derivative thermogravimetry
(DTG) graph are shown in Figures 7 and 8, respectively. The thermal stability of the samples
was evaluated under nitrogen atmospheres, and showed a two-stage degradation process,
which was attributed to the rearrangement of the EP structure with the additives and the
decomposition of EP [40].
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Table 3. Thermal properties of EP and modified EP.

Sample T5% (◦C) T20% (◦C) Tmax (◦C) Char Yield at 600 ◦C (wt.%)

Pure EP 168.7 344.6 372.6 8.0
EP/4a 164.3 337.9 372.3 11.57
EP/4b 164.4 334.5 374.0 12.33
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As shown in Figure 6, a slow mass loss take place which defined the decomposition
temperature at 5% (T5wt%) and 20% (T20wt%) for all compounds. It can be seen that EP
with flame-retardant (FR) additive compounds 4a and 4b has a much lower thermal
decomposition than that of pure EP. Compared with T20wt% of EP with FR additives, the
temperature dropped from 344.6 ◦C (pure EP) to 337.9 and 334.5 ◦C. This might be due to
the contribution of the synergetic FR additives in the EP. The P-N content decomposes at a
lower temperature allowing the carbonization of the EP matrix [41,42].

On the other hand, the DTG graph shows that the Tmax decomposition of EP incor-
porated with FR additives shows a contradictory where a slight increment can be seen
(Figure 8). This might be due to the increasing thermal degradation activation energy of
the matrix, which therefore enhanced the stability of the matrix [41,43]. It is noteworthy
that the incorporation of FR additives into the EP showed an effect of promoting the char
residue yield at 600 ◦C. The char yield was from 8.0 to 11.6% when compound 4a was added
and increased to 12.3% when compound 4b was added, indicating a strong catalyzing
carbonization and deceleration of the heat transfer by providing a physical barrier.
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Besides the well-known P-N which provides a synergetic effect to enhance the FR of a
matrix, the Schiff-based compound attached to the system improved the stability of the
FR compounds. It is also noticeable that the alkyl chain contributes to the promotion of
thermal stability. Thus, this leads an enhanced thermal resistance of the EP.

3.3.2. Limiting Oxygen Index (LOI) Test

The fire-retardancy for all intermediates, 2a–b, 3, and the final compounds of hexasub-
stituted cyclotriphosphazene, 4a–b, was measured using the LOI test, as summarized in
Table 4.

Table 4. LOI test results.

Sample LOI Value (%) Sample LOI Value (%)

Pure EP 22.75 (±0.00) EP/3 24.90 (±0.00)
EP/2a 23.42 (±0.00) EP/4a 26.55 (±0.00)
EP/2b 23.53 (±0.00) EP/4b 26.71 (±0.00)

It can be seen that the LOI values of EP incorporated with non-halogenated cyclot-
riphosphazene (ratio EP 1:3 with 1wt.% additive) showed a significant increase from 22.75
(pure EP) to 26.55% when compound 4a with alkyl group dodecyl was incorporated, and
keep increasing to 26.71% when compound 4b with alkyl group tetradecyl was added.
This result can be related to the Schiff-based linkage and the alkyl chain length attached
to the P-N system bringing a better fire-retardant performance. In addition, the effect
of hexa-functionality from cyclotriphosphazene with a high content of phosphorus and
nitrogen is clear, as it is a well-known compound with a high thermal stability [35,44].

A better insight into the Schiff-based compound and hydrazine bridge as well as
alkyl group chain terminal end effects on EP was also sought, by incorporating 1wt.% of
4-(substitutedbenzylidene)hydrazinium, 2a–b, with 1:3 EP. A slight increase in the LOI
value can be seen, with 23.42 and 23.53% for dodecyl and tetradecyl, respectively. This
behavior can be explained by the Schiff-based compound and hydrazine bridge forming
stable cross-linked structures, which were responsible for the charring promotion [45].

3.3.3. Morphology Study of Char Residue

The morphology of the residual chars after the LOI test were studied, which present
an important understanding of the flame-retardant effect of the additives on the EP matrix.
Figure 9 represents the FESEM image of the char residue of pure EP (a) and EP/4b (b), with
the highest LOI value.
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The observed numerous open-holes in EP (Figure 9a) indicates the loose structure of
the char residue. These open-holes allow the releases of combustible gas and promotes
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the burning rate. The aim of the addition of flame-retardant is to break the combustion
cycle by reducing the factors of combustion such as combustible gas, heat, and oxygen.
Char formation is one of the main elements of a flame-retardant mechanism, as they act as
physical barriers to protect the matrix [46,47]. The denser and more compact char residue
can be seen (Figure 9b) after the addition of compound 4b, and this corresponded to the
char yield in the TGA result, where this compound had a 12.33% higher yield compared
to EP. The FESEM images prove that compound 4b helped strengthen the formation of a
homogenous char residue, leading to excellent flame-retardant properties.

3.4. Effect of Hexasusbstituted Cyclotriphosphazene Derivatives on the Mechanical Behavior

Figure 10 illustrated the mechanical properties including tensile strength, elongation
at break and Young’s modulus of EP and EP with FR additives. The trend shows that both
tensile strength and Young’s modulus were increased with the addition of compounds 4a
and 4b. However, the elongation has a different trend, with a decreasing value.
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Figure 10. Mechanical properties of EP, and EP with FR additives.

The tensile strength and Young’s modulus showed an increasing value for EP < 4a < 4b.
The tensile strength went from 8.06 N/mm2 (pure EP) to 14.36 and 20.37 N/mm2 and the
Young’s modulus went from 58.55 N/mm2 for pure EP to 108.67 and 129.58 N/mm2 for EP
incorporated with compounds 4a and 4b, respectively. These phenomena were influenced
by the increasing molecular weight and cross-linking attributed to the bulk compound
and alkyl chain length of the additives [32]. The higher the tensile strength, the higher
the ability of a material to bear maximum load, and the higher the Young’s modulus, the
harder the material was to bend or deform.

The elongation at break gives information on the capability of a material to resist
changes in shape [48]. Pure EP has a high elongation at break of 48.40%. In comparison,
the elongation decreased drastically when 1 wt% of FR additives was added; 15.74 and
4.71% for compounds 4a and 4b, respectively. The high content of inorganic particles
somehow affects the deterioration of flexibility when added to a polymer matrix [49].
Overall, these mechanical properties express the ability of a material to bear maximum
load before breaking, the elasticity of a material, and the compatibility of the FR additives
with the EP.

4. Conclusions

Halogen-free hexasubstituted cyclotriphosphazene compounds were synthesized and
characterized using Fourier-transform infrared spectroscopy (FT-IR), and 1H, 13C, and
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31P nuclear magnetic resonance (NMR) and CHN elemental analysis. A series of flame-
retardant additives with Schiff-based compounds and different terminal alkyl chain lengths,
labelled 4a and 4b, were prepared, and 1wt.% of these compounds was incorporated into
epoxy resin as a polymer matrix to further investigate their fire-retardant properties and
mechanical behavior. The flame-retardant properties were studied using thermogravimetric
analysis (TGA) and the limiting oxygen index (LOI) test, and the char residue was analyzed
under field emission scanning electron microscopy (FESEM), resulting in positive feedback
with the highest LOI value shown in the EP incorporated with compound 4b (26.71%),
which increased by 17% from pure EP (22.75%). The mechanical behavior was evaluated
using tensile strength, and it is fascinating that the FR additives were slightly affected by
the addition. It shows an increment with a trend of EP < 4a < 4b. The tensile strength went
from 8.06 N/mm2 (pure EP) to 14.36, and 20.37 N/mm2 indicates that the additives were
compatible with epoxy resin.
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