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Abstract: In this present work, a PVA/PVP-blend polymer was doped with various concentrations of
neodymium oxide (PB-Nd+3) composite films using the solution casting technique. X-ray diffraction
(XRD) analysis was used to investigate the composite structure and proved the semi-crystallinity of
the pure PVA/PVP polymeric sample. Furthermore, Fourier transform infrared (FT-IR) analysis, a
chemical-structure tool, illustrated a significant interaction of PB-Nd+3 elements in the polymeric
blends. The transmittance data reached 88% for the host PVA/PVP blend matrix, while the absorption
increased with the high dopant quantities of PB-Nd+3. The absorption spectrum fitting (ASF) and
Tauc’s models optically estimated the direct and indirect energy bandgaps, where the addition of PB-
Nd+3 concentrations resulted in a drop in the energy bandgap values. A remarkably higher quantity
of Urbach energy for the investigated composite films was observed with the increase in the PB-Nd+3

contents. Moreover, seven theoretical equations were utilized, in this current research, to indicate
the correlation between the refractive index and the energy bandgap. The indirect bandgaps for the
proposed composites were evaluated to be in the range of 5.6 eV to 4.82 eV; in addition, the direct
energy gaps decreased from 6.09 eV to 5.83 eV as the dopant ratios increased. The nonlinear optical
parameters were influenced by adding PB-Nd+3, which tended to increase the values. The PB-Nd+3

composite films enhanced the optical limiting effects and offered a cut-off laser in the visible region.
The real and imaginary parts of the dielectric permittivity of the blend polymer embedded in PB-
Nd+3 increased in the low-frequency region. The AC conductivity and nonlinear I-V characteristics
were augmented with the doping level of PB-Nd+3 contents in the blended PVA/PVP polymer. The
outstanding findings regarding the structural, electrical, optical, and dielectric performance of the
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proposed materials show that the new PB-Nd+3-doped PVA/PVP composite polymeric films are
applicable in optoelectronics, cut-off lasers, and electrical devices.

Keywords: PVA/PVP; neodymium oxide-doped PVA/PVP composite films; XRD/FT-IR; nonlinear
optical properties; nonlinear I-V curve

1. Introduction

Polymers have become important materials, in recent decades, in various research
fields. This is as a result of their attractive characteristics, including flexibility, eco-
friendliness, processing simplicity at low temperatures, and inexpensive cost [1]. Moreover,
there are fundamental technological applications of the energy-conversion processing of
polymers such as solar cells, photovoltaics, and biosensors. On the other hand, the growth
in polymeric composite materials obtained from two or more polymer fluctuations suggests
a variety of impressive chemical and physical properties [2]. Therefore, long-term durabil-
ity is vital to the continuous use of composite materials [3]. Additionally, crucial benefits,
including corrosion resistance, durability, and faster assembly, are demanded of polymeric
composites [4]. These demands have led to the successful doping of rare-earth oxides on
composite materials. According to several previously published studies which emphasized
the impacts of doping on polymeric composites, there is a need for further research into
doping synthesized polymeric composite materials with rare-earth elements [5,6].

The polyvinyl alcohol (PVA) polymer exists within the carbon chain associated with
the hydroxyl group. Hence, it exhibits astonishing characteristics such as higher humidity,
increased water absorption, and effective synthesized films, which have motivated research
into this polymeric blend [5]. Pharmaceutical applications [6], drug coating agents [7],
and surgical structures [8] are the kinds of applications that exemplify the importance of
PVA. Moreover, PVA photo-cross-linkable gels, hydrogels, and films represent various
usages of PVA. For instance, PVA photo-cross-linkable gels were found to form a substrate
for enzyme immobilization [9]. In addition, many advantages of PVA gel were detected
in the medical field, corresponding to its excellent biosuitability [10]. Furthermore, the
growing literature has provided a study on the optical properties of PVA containing several
rare-earth sources. For example, Keikhaei et al. investigated the optical properties of PVA
with Nd2O3 using UV-Vis absorption spectroscopy [11]. Meanwhile, polyvinyl pyrrolidone
(PVP) is an excellent polymer which was designed to be a coating and additive to several
materials [12–14]. It is a synthetic polymer created from the radical polymerization of the
monomer [15]. Evidence shows that the PVP polymer is, surprisingly, a bulky, non-ionic,
non-toxic, temperature-resistant, and biocompatible material [16,17]. High polar amide,
polar methylene, and methine groups beyond the ring and backbone of pyrrolidone explain
the water-soluble nature of PVP [18]. Although there are extensive reports in the literature
on the particular applications extent of PVP, these are restricted to the pharmaceutical [19],
cosmetics, and biomedical [16,20] fields.

Due to the successful combination of PVA and PVP polymers, the possibility of estab-
lishing a new material has become a reality; their unique properties can be assessed for
sophisticated optical and electrical applications [21,22]. Such polymers exhibit structural
stability and excellent ionic conductivity [23]. Eco-friendly, easy to fabricate, attractive film-
forming, low-cost method, and water-soluble, each of these terms is applicable to a substantial
PVA/PVP blend polymer. The corporate PVA/PVP polymeric material matrix leads to a
blend polymer. The creative aspiration of developing a new blend polymer begins from
the inter-chain hydrogen bonding of a hydroxyl group of PVA and the carbonyl PVP group.
Blending polymers affects the crystallinity of PVA doped on PVP [24–26]. Future publications
report the dramatic existence of lanthanide in PVA/PVP. Junais et al. declared the potential
conduction and dielectric relaxation of a PVA/PVP hydrogel synthesized with cerium ox-
ide [27]. Rare-earth oxides have attracted the most interest, exhibiting superb characteristics



Polymers 2023, 15, 1351 3 of 29

for various potential applications, including solid UV adsorption, oxygen storage capacity,
excellent catalysis luminescence, ceramic industry, and photoluminescence [28–30]. Further-
more, neodymium oxide (Nd2O3) is considered the most substantial rare-earth oxide in
the lanthanide series. A treasured feature of the Nd2O3 rare-earth element has contributed
to the development of much more advanced applications such as magnetic devices [31],
luminescents [32], photonics [33], thin films [34], and protective coatings [35]. The innova-
tive thermo-luminescent properties of Nd2O3 exhibit a specific tipping point on gamma-ray
dosimetry [36]. Moreover, studies of Nd2O3 suggest it as a compelling study for rare-earth
microwave applications [37] and Nd2O3 is included in dopings with glass for laser materi-
als [38]. Thin films of Nd2O3 have added specific values of interest to anti-reflection coatings,
gas insulators, and protective coatings [29].

The solution casting process represents a cheap and standard method for producing
Nd2O3-doped PVA/PVP composite films. XRD analysis is used to establish their mor-
phological nature. At the same time, FT-IR characterization is used to examine chemical
structures, to study the strong and consistent association between the PVA/PVP blend
polymer and Nd2O3 rare-earth metal oxide. The optical properties of PVA/PVP doping
with Nd2O3 salts are evaluated using UV-Vis-NIR spectroscopy. A new theoretical model
verifies the employment of the energy bandgap to estimate the refractive index. Dielectric
and electric properties are developed and implemented from the composites’ widely stud-
ied dependence on angular frequency and wt%. The exceptional obtained properties of
the proposed PB-Nd+3-doped PVA/PVP polymeric composites suggest them as excellent
candidates for appropriate applications in optoelectronics, cut-off lasers, and electronics.

2. Experimental Work
2.1. Preparation of PVA/PVP–Nd2O3 Polymeric Composite Films

Polyvinyl alcohol (PVA), (C2H4O)n (degree of hydrolysis = 99 percent, molecular
weight = 27,000 g/mol); polyvinyl pyrrolidone (C6H9NO)n, average molecular weight
58,000 g/mol; and Nd2O3 rare-earth elements were supplied from King Khalid University,
Abha, Saudi Arabia under number KKU.18-19-1. The low-cost casting process was used to
prepare polymeric blend composite films (PVA/PVP–x Nd2O3); these included x = 0, 0.05,
0.25, 0.55, 2.5, and 5.5 wt%. PVA/PVP films. They were named PB-Nd+3-0, PB-Nd+3-1, PB-
Nd+3-2, PB-Nd+3-3, PB-Nd+3-4, and PB-Nd+3-5, respectively, with 70 wt% of PVA—30 wt%
PVP composition. The proposed polymeric films were produced using the solution cast
technique with a magnetic stirrer at 60 ◦C for 8 h until a homogenous and transparent solution
was obtained. The polymeric composite films of PVA/PVP–x Nd2O3 were created by adding
the necessary Nd2O3 weight fraction (wt%) to the polymer blend solutions. The Nd2O3 salt
was dispersed uniformly by ultrasonically mixing the solutions. To create free-standing films,
the homogenous mixtures were placed into flat Petri plates and left to dry at room temperature
for one week. Finally, the obtained Nd2O3: PVA/PVP polymeric composite films were split
into 2 × 2 cm2 parts for further investigation, as presented in Figure 1.

2.2. Characterizations and Devices

In developing analysis, XRD patterns express the structural morphology of PVA/PVP–x
Nd2O3 thin composite films. XRD data were measured in reflection mode at a scan rate
of 0.05 degrees/second using a Shimadzu LabX-XRD-6000 model with CuKα radiation
(λ = 1.5406 Å). The operation conditions were a 30 kV voltage and a 30 mA current
with the 2θ range (5–70) in the XRD tube operation. Moreover, the knowledge of the
influence of Nd+3 content on the functional groups of PVA/PVP was investigated
through the transmission spectra in the (400–4000 cm−1) wavenumber using FT-IR
spectrometer (Thermo Nicolet 6700, Thermo Fisher, Waltham, MA, USA).

JASCO V-570 double-beam spectrometer was utilized to assess the linear optical
properties (T(λ) and Abs(λ) in the light wavelength region between 190 and 2500 nm. The
reconstruction of optical measurement was performed at room temperature.
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Figure 1. Schematic diagram of the preparation of PB-Nd+3 polymeric composites.

Furthermore, two excitation laser powers were used to evaluate the optical limiting
(OL) characteristics of the tested designs. The green laser, the first source, had a wavelength
of 532 nm, while the He-Ne laser, the second source, had a wavelength of 632.8 nm with a
red beam. Samples were placed at a distance of 0.1 m from the convex lens. Given sufficient
consideration, the lens and films were placed at the front of the power photodetector,
beyond the line of the incoming laser beam. In addition, superior performers, according to
a digitally sensitive laser power meter, were utilized to better understand the results of the
output ray.

An automated LCR meter (FLUKE-PM6306 model, Test Equipment Solutions Ltd., Alder-
maston, UK) was employed to measure the AC electrical conductivity and dielectric properties
of the proposed PVA/PVP doping with Nd2O3 composites. The 100 Hz–1 MHz frequency
range was employed at room temperature for measurement assessment. The placement of
two copper plates between the samples predicted ohmic contact before measurement. The
capacitance (C), resistance (R), and loss tangent (tanδ) of the as-prepared Nd2O3:PVA/PVP
thin films at each excitation frequency, and all of the values, were recorded. In addition, the
brass electrode was employed as a sample holder for the measurement of the I–V characteristic
curve of all as-synthesized Nd+3-doped PVA/PVP films.

3. Results and Discussion
3.1. X-ray Diffraction (XRD) Patterns of PVA/PVP Doped on Nd2O3 Composites

Accordingly, valuable information was obtained about the structural morphology of
the prepared Nd2O3:PVA/PVP composite polymeric films from the XRD patterns. For
instance, Figure 2 displays the XRD pattern of the PVA/PVP polymeric blend doped on
Nd2O3 composite films. In addition, the structural behavior of PB-Nd+3 on the polymeric
mixture was checked and analyzed. In fact, at the angle of the orthorhombic lattice, regarding
the Miller index (101), the diffraction peak was estimated at PVA/PVP at 2θ = 19.49 [39,40].
Thus, the identified XRD peak is robust and intense.
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Figure 2. XRD pattern of the polymeric blend doped on composite films with various contents of PB-Nd+3.

Furthermore, this XRD peak was in agreement with the semi-crystallinity nature of the
PVA/PVP blend polymer, which increased the impact of the incorporation and dispersal of
the PVA/PVP intermolecular interaction [40]. However, the dwindling and broadening of
the peaks come from the addition of PB-Nd+3 to the host PVA/PVP polymeric blend. In
addition, the XRD peaks were absent for the high-doping content of PB-Nd+3-5. Indeed,
its recognizable behavior revealed the high dispersion of PB-Nd+3 in the pure PVA/PVP
polymeric blend. The most striking findings from these XRD peaks were the composite
formation’s location [39,41]. A further result of the investigation was the decrease in the
degree of crystallinity, owing to the interaction of hydrogen bonding in the amorphous
Nd2O3-doped PVA/PVP composites. These structural and morphological studies agree
well with the XRD results in the literature, from Sadiq et al. [41].

3.2. FT-IR Analysis of PVA/PVP Doped on Nd2O3 Composite Film

For further investigation, ordinary FT-IR analysis is the most effective method to eval-
uate the composite films’ structural and chemical characteristics. In addition, FT-IR spectra
were employed to identify the infrared absorption and functional group of the Nd+3-doped
PVA/PVP composite films [42]. The collected FT-IR measurements were in the wavenumber
range from 4000 to 400 cm−1. Figure 3 shows the FT-IR analysis of the PVA/PVP doped
with PB-Nd+3 composite films at various concentrations. It was interesting to note, from
Figure 2, that the robust band at 3284 cm−1 revealed the O-H stretching vibration for the pure
PVA/PVP [43,44]. For PB-Nd+3-5, the transmittance peak was more pronounced, considering
the high wt% content on the PVA/PVP blend polymer. In addition, asymmetric stretch-
ing at 2915 cm−1 was induced by the CH2 group, while the C=C stretching vibration was
recorded at 1656 cm−1 [44]. In addition, C-H bending was taken as evident in the IR region at
1428 cm−1; on the other hand, IR bands at 1090 cm−1 were manifested by C=O stretching [44].
The evidence of the precise formation of CH2 bending was at the wavenumber 842 cm−1 [44].
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composite films.

In contrast, the doped PB-Nd+3 established some peaks due to the irregular shift and
declined. Nevertheless, the intensity of the peaks can be attributed to variation due to
doping. The FT-IR results confirm the link between the PVA/PVP blend polymer and
PB-Nd+3 composites. There was little agreement between the established FT-IR analysis of
the Nd+3-doped PVA/PVP polymeric films and the optical data published in the literature
by V. Parameswaran et al. for the NH4Br in a polyvinyl alcohol/poly (N -vinyl pyrrolidone)
blend polymer [44].

3.3. The Optical Analysis of Nd2O3-PVA/PVP Polymeric Composite Film

Continuous study has established the UV-Vis- NIR spectrophotometer as the best
method of analysis to demonstrate the electronic band, optical behavior, and optical param-
eters. As illustrated in Figure 4a,b, measurements of the optical spectra for the synthesized
Nd+3-doped PVA/PVP polymeric composites were reported in the light wavelength range
from 190 to 2500 nm. Figure 4a highlights the optical absorption spectra of the PVA/PVP
doped with different wt% of the PB-Nd+3 composite films. Surprisingly, the absorbance
data offered no evidence of the intense peak in the UV- region, while there were multi-
oscillation peaks in the IR area. However, the addition of Nd2O3 at high wt% elevated the
absorbance spectrum compared to the pure PVA/PVP blend polymeric sample. In addition,
the absorption edge moved to the lower energy state, as it was affected by the high doping
content. Perhaps the following absorbance behavior was indicative of the complex charge
carrier formation. A similar well-controlled study of prepared Nd2O3- PVA/PVP compos-
ites by A. Hashim [45] agreed with these reported optical results. The blend polymer’s
structural, optical, and electronic properties were enhanced through doping with In2O3
and Cr2O3 nanoparticles.

Meanwhile, Figure 4b details the optical transmission spectra of the PVA/PVP blend
polymer with various doping concentrations of the PB-Nd+3 composite films. The maxi-
mum transparency inhibited was around 88% for the pure PVA/PVP polymeric matrix,
while 36% for (PB-Nd+3-5) corresponds to the lowest transmission value. The transmission
spectra confirmed the diverse absorption data obtained from the prepared Nd+3-doped
PVA/PVP composite polymeric films. Here, the precise doping application caused the spec-
trum to drop in value. This finely tuned action confirmed the correlation of the PB-Nd+3
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with the composite blend backbone [46]. The obtained linear optical results also persua-
sively suggested PB-Nd+3 as a scattering harbor for the PVA/PVP blend polymer [47].
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The theoretical framework of the absorption coefficient established by Beer’s law suggests
a direct relationship between the absorbed radiation and the number of absorbing molecules
in the samples [39]. Moreover, the developed parameter offers significant information about
unknown energy bandgaps. The following equation represents Beer’s law [48]:

α =
2.304 A(λ)

t
, (1)
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where A presents the absorption, and t is the thickness, of the samples. The absorption
edge value of the spectrum of PVA/PVP doped with various concentrations of PB-Nd+3

composite films is displayed in Figure 5a and Table 1. The quantified and analyzed data of
the absorption coefficient indicate the clear impact of the doping of the polymeric blend
with a metal oxide (Nd2O3). The addition of Nd2O3 caused a shift in the absorption
coefficient values of the proposed composites, to the lower energy. Therefore, it also
optically affected the energy bandgap values. There is more agreement in Table 1; the
absorption coefficient value for the pure PVA/PVP polymer was 5.79 eV, whereas, for
PB-Nd+3-5, it was 5.47 eV. The above discussion offers significant evidence of the influence
of the PB-Nd+3 on the blend matrix. One study, so far, provided evidence consistent with
these optical results, La3+-doped PVA composites by H. Elhosiny Ali et al. [49]. There,
the absorption coefficient of the polymeric films decreased with an increase in the doping
level. Urbach’s tail width can be used to explore deficiencies in the levels of the unknown
bandgap. The following equation indicates the energy of Urbach’s tail [50]:

α(hν) = α0 exp
(

hν

Eu

)
, (2)

where Eu is Urbach’s tail, (hν) is the photon light energy, and α0 is the energy of the
independent constant. The calculated values of Eu were extracted from Figure 5b, as
represented in Table 1. It is worth highlighting the contribution of the composite films to
raising the value of Eu compared to the pure PVA/PVP blend polymer. The maximum value
of Eu contributed to the PB-Nd+3-5 value of 12.32 eV. However, the key to the gradually
elevated values is increasing the doping level of the PB-Nd+3 metal oxide, which created a
disturbance which led to dysfunction in the preparation of the composite, and affected the
local state of the bandgap [51]. The process attenuated the absorption since the EM waves
come through the films, as expressed by the extinction coefficient (k), which is expressed
through the following equation [52]:

k =
αλ

4π
, (3)
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Figure 5c describes a variation in the extinction coefficient as a function of the light
wavelength of the blended polymer doped with PB-Nd+3 composite film. Figure 5c
shows that the k increased with the rare-earth doping on the PVA/PVP blend polymer.
As a result, the highest value of k for PB-Nd+3-5 reached 0.18 × 10−2. The behavior
of the energy optical bandgap defines semiconductors’ ability to insulate materials,
corresponding to excellent design and modeling [53]. Hence, the bandgap value was
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elicited from the transition states from the valence to the conduction band. Tauc’s
equation determined the values of the bandgap [54].

(αhυ)
1
n = C

(
hυ− Eg

)
(4)

where C is constant, and n is a practical value representing a different set; 1/2, 2/3, 2, and 3
indicate the film’s electronic transition. These values expressed the allowed and forbidden
direct and indirect transitions. Moreover, a new equation was employed to estimate
the energy optical bandgap values. This new calculation relies on absorption spectrum
fitting (ASF) without the film thickness. The ASF analysis was performed according to the
following relation [55]:

A(λ) = Dλ

(
1
λ
− 1

λg

)
(5)

where D = B(hc)m−1 d
2.303 . The leverage of λg affirms the specific value of this study,

EASF
gap = 1240/λg. The direct and indirect energy bandgaps of the blend polymer doped

with PB-Nd+3 are depicted in Figure 6a,b, and the variation in the A1/2/λ versus 1/λ is
present in Figure 7. All the obtained values of the energy bandgap for Tauc’s law and the
ASF for the Nd2O3: PVA/PVP composites are included in Table 1. The recorded direct- and
indirect-energy-bandgap values indicate a slight reduction with high doping content. For
instance, in the case of the pure PVA/PVP blend polymer, the recorded energy bandgap
values were 5.6 for Eind and 6.09 eV for Ed. By contrast, the value was estimated to be
4.82 eV for Eind and equaled 5.83 eV for Ed of the PB-Nd+3-5 film. In addition, the ASF
model’s bandgap exhibited the same behavior as predicted by Tauc’s equation. These
bandgap results indicate the creation of defects in the PVA/PVP polymeric matrix [56]. In
addition, the decreased values were associated with the formation of charge transfer due to
the trap levels identified during the transition between LUMO and HUMO on the blend
matrix, resulting in a reduction in the energy required for electron transition [57]. The
results suggested the high dispersion of the blend polymer matrix doped with PB-Nd+3

composite films. Previous reports on the energy optical bandgap provided confirmation of
the suitability of the prepared Nd+3–PVA/PVP polymeric composite films [57].

Table 1. Optical energy bandgap of the PVA/PVP polymer blend doped with the PB-Nd+3

composite films.

Samples
Eg (ind), (eV)
(the Indirect

Bandgap)

Eg (d), (eV)
(the Direct
Bandgap)

Eu, (eV)
(Urbach’s Tail)

PB-Nd+3-0 5.6 6.09 5.42

PB-Nd+3-1 5.49 6.07 4.66

PB-Nd+3-2 5.52 6.05 6.474

PB-Nd+3-3 5.36 6.005 8.69

PB-Nd+3-4 5.36 5.95 7.88

PB-Nd+3-5 4.82 5.83 12.33
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3.3.1. Extraction of the Refractive Index from the Energy Bandgap

Generally, two optical parameters are indicative of a semiconductor’s electronic and
optical status, the refractive index and energy bandgap. For instance, semiconductors’
refractive index (n) relies on the energy bandgap to deliver outstanding performances in
optoelectronic devices, such as a light-emitting diode [58]. However, an indirect relationship
was established between these two vital parameters. The high-frequency, static dielectric
constant and nonlinear optical properties are directly related to the refractive index. Various
empirical equations claim to establish the relationship between the refractive index and the
optical energy bandgap. Moss’s equation was the first attempt to express this relation [59].
Moss’s theory divided the solid material’s energy level by the factor of the square root of
the dielectric constant, 1/Eeff

2. The following form depicts the Moss equation [59]:

n4
M = K/Eg, where K = 95 eV, (6)

Additionally, Ravindra et al. develop the Moss equation by including a new value, K.
The Ravindra equation calculates the refraction loss by upgrading solar cells’ efficiency [60].
The formula of the Ravindra equation is written as [60]:

n4
R =

K
Eg

, where K is equal to 108 eV, (7)

After that, based on vibration theory (Penn’s oscillator theory), Hervé and Vandamme
proposed the following estimation [61]:

nH,V =

√
1 + (

13.6
Eg + 3.4

)2, (8)
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Meanwhile, Reddy et al. extracted the refractive index by correcting some weaknesses
of the Moss equation, as in the following relation [62]:

nR = ln
(

36.3
Eg

)
, (9)

Anani et al. anticipated the given relation of the refractive index [63]:

nA = 3.4− 0.2Eg, (10)

The correlation between the bandgap and refractive index was used to suggest a new
empirical equation, by Kumar and Singh. They defined the refractive index as the power
law on a bandgap [64]:

nK = k EA
g(dir,ind), (11)

where A =−0.32234 and K = 3.3668. Recently, the Hosam–Ibrahim–Heba relation employed
the Reddy equation to confirm an empirical equation to study the association between the
refractive index and bandgap [65]. The study was validated with more than 96 materials,
and can be seen in the next relation [65]:

n =

√
A

E0.5
g
− B, (12)

Herein, A = 3.442, whereas B =
√

3.44. The deviation values of the refractive index
from the experimental equation were calculated and arranged in Table 2. In addition, for
more accurate values, the mean refractive index (nAV) is detailed in Table 2. In addition,
Figure 8a,b shows the deviation in the calculated refractive index as a function of the
bandgap of the blend polymer doped with PB-Nd+3 composite films. The obtained values
become increasingly different from either empirical equation, which is vital to optical
applications. As a consequence of adding the PB-Nd+3 to the blend PVA/PVP polymer, the
refractive index values slightly increase. The great behavior of the values contributes to
expanding the reflection, which can help improve free-carrier generation [66]. Furthermore,
the capability of creating an anti-reflection surface is among the most influential results
from the elevated refractive index values achieved by doping with PB-Nd+3 [67]. The
average mean value of the refractive index for the pure PVA/PVP polymeric matrix was
1.970; meanwhile, it was 2.082 for the PB-Nd+3-5 composite film. These two refraction
values established the PB-Nd+3 in the blended polymer as a guide for a denser material,
and the reduction in the bandgap affected the refractive index value. These complete results
are the new yardstick for optoelectronic applications [67].
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Table 2. The refractive index values obtained from Moss, Ravindra, Hervé, Reddy, Anani, Kumar-
Singh, and Hosam–Ibrahim–Heba relations and the average refractive index parameters for the
investigated PVA/PVA blend polymeric films with various Nd2O3 additions for (a) direct band
transition and (b) indirect band transition.

Samples

(a) Refractive Index (n) Values Using Direct Band Transition

Moss Relation Ravindra et al.
Relation

Herve and
Vandamme

Relation
Reddy et al.

Relation
Anani et al.

Relation
Singh-Kumar

Relation

Hosam—
Ibrahim—

Heba
Relation

Mean Values

PB-Nd+3-0 1.987 2.052 1.747 1.785 2.182 1.880 1.714 1.907

PB-Nd+3-1 1.988 2.053 1.749 1.788 2.186 1.882 1.717 1.909

PB-Nd+3-2 1.990 2.055 1.752 1.791 2.19 1.884 1.719 1.912

PB-Nd+3-3 1.994 2.059 1.758 1.799 2.199 1.889 1.724 1.917

PB-Nd+3-4 1.998 2.0640 1.765 1.808 2.21 1.894 1.731 1.924

PB-Nd+3-5 2.009 2.074 1.780 1.828 2.234 1.907 1.745 1.939

Samples

(b) Refractive Index (n) Values Using Indirect Band Transition

Moss Relation Ravindra et al.
Relation

Herve and
Vandamme

Relation
Reddy et al.

Relation
Anani et al.

Relation
Singh-Kumar

Relation

Hosam—
Ibrahim—

Heba
Relation

Mean Values

PB-Nd+3-0 2.029 2.095 1.812 1.869 2.28 1.932 1.773 1.970

PB-Nd+3-1 2.039 2.106 1.827 1.888 2.302 1.944 1.787 1.985

PB-Nd+3-2 2.036 2.103 1.823 1.883 2.296 1.941 1.783 1.981

PB-Nd+3-3 2.051 2.118 1.846 1.912 2.328 1.959 1.804 2.003

PB-Nd+3-4 2.051 2.118 1.846 1.912 2.328 1.959 1.804 2.003

PB-Nd+3-5 2.107 2.175 1.933 2.019 2.436 2.027 1.880 2.082

Ideally, based on the increased refractive index values from the seven equations,
the PB-Nd+3 filler can be proposed for electronic devices. The high frequency and static
dielectric constant were explored by the given equations [68]:

ε∞ = n2, (13)

ε0 = −33.26876 + 78.61805Eg − 45.70795E2
g + 8.32449E3

g, (14)

Table 3 includes the values of the high-frequency and static dielectric constant of
the blend polymer doped with PB-Nd+3 composite films. The high-frequency and static
dielectric constant values of the proposed polymeric films increased with increased Nd+3
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doping content. The success of doping on the PVA/PVP matrix explains the increased
importance of the two parameters of the dielectric constant.

Table 3. Nonlinear calculated optical values for direct and indirect bandgaps of the various systems.
(a) Direct bandgap of the various systems. (b) Indirect bandgap of the various systems.

(a)

Samples

High-
Frequency
Dielectric
Constants,

(
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3.3.2. Nonlinear Optical Properties of Nd2O3-Doped PVA/PVP Composite Films

The reality of a nonlinear attitude becomes evident as the light emerging from the solid
material reduces. Directly, the material’s polarization significantly depends on the strength
of the electric field. Here, the distributed light on the solids leads to the representation of
polarization, with the electric field as a nonlinear fraction. Thus, investigating the nonlinear
refractive index (n2), linear susceptibility

(
χ(1)

)
, and third nonlinear optical susceptibility(

χ(3)
)

of the solid films is very significant. For instance, the direct association of the
polarization with the electric field is expressed by the given equation [69]:

P = χ(1) E + PNL, (15)

where
PNL = χ(2)E2 + χ(3)E3, (16)

Herein, PNL is the nonlinear polarizability of the material. By extension, the refraction
coefficient n(λ) could be defined by the following relation [70]:

n(λ) = n0(λ) + n2

(
E2
)

, (17)
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The higher collective values of the linear refractive index n0(λ) can be compared to the
nonlinear refraction, since the nonlinear optical parameter is considered an encouraging
characteristic for optical communication and the transformation of data, etc. Thus, the
linear optical susceptibility is established by the following equation [71]:

χ(1) =
nAV

2 − 1
4π

, (18)

The third-order nonlinear optical susceptibility
(

χ(3)
)

can be determined according
to the following equation [72]:

χ(3) = A (χ(1))
4
, (19)

The nonlinear refraction index is established by the following formula [73]:

n2 =
12πχ(3)

nAV
, (20)

The distributed values of
(

χ(1)
)

,
(

χ(3)
)

, and n2 are illustrated in Table 3, where the
calculation considered the restricted direct and indirect bandgaps. The representatives of
the database are recorded in Table 3, and optically confirmed that the values of the nonlinear
parameters were exposed to a consequent increment with the addition of PB-Nd+3 to the
PVA/PVP polymer. The apparent similarities in the performance of the nonlinear refraction
index and the third nonlinear susceptibility are due to their sequence relation. For example,
concerning the direct bandgap, the optical values of χ(1) ranged from 0.209 esu to 0.220 esu,
while χ(3) varied between 3.30 × 10−13 esu and 3.984 × 10−13 esu, and n2 values ranged
from 0.65 × 10−11 esu to 0.773 × 10−11 esu. The obtained values of the nonlinear optical
parameters for the synthesized Nd+3-doped PVA/PVP polymeric composites appear to
coordinate with the reported data by H. Elhosiny Ali et al. [74,75]. The absorption and
linear/nonlinear properties of polyvinyl alcohol (PVA) polymeric thin films are optically
enhanced through doping with fullerene [74]. Corresponding to the conducting results,
significant attention has been paid to the material’s ability to be employed in nonlinear
optical devices [75]. The existence of PB-Nd+3 is set to improve the nonlinear optical
parameters when doped on the host PVA/PVP matrix.

3.4. The Optical Limiting Effects of PVA/PVP Doping with Nd2O3 Composite Films

The importance of establishing the optical power limiters arises from the valuable
benefits of eye protection and equipment of an optically delicate nature. However, more
vital information is provided by the optical power limiter, since it is proposed to be primarily
responsible for reducing the density from radiation laser power [76]. Herein, two crucial
laser powers, a red laser of (632.8 nm He-Ne) and a green laser of 532 nm, were used to
identify the optical laser power of the PVA/PVP doped with a Nd2O3 composite film.
Figure 9a,b demonstrates the optical power and limiting of the PVA/PVP doped with
PB-Nd+3 composite films. Clear evidence shows the contribution of the PB-Nd+3 on the
blend matrix: it minimizes the output power given a share in the high nonlinear absorption.

Furthermore, as shown, the concentration affects limitation capacity. The response
of the optical limiter to a high content to become weaker; meanwhile, a lower content
results in high limitation capacity. The reason for this behavior is the high molecule per
unit volume of the high doping concentration [77]. The behavior previously confirmed by
the laser attenuation, Figure 9b, suggests a CUT-OFF in the visible light. Consequently, the
optical limitation efficiency somewhat predicts the transmission value of the film within
the same wavelength as the light entering. In particular, the cut-off laser device seeks to
address promising applications for the film polymer when the transmission value is exactly
or close to zero. Different studies have been able to reproduce these findings [77].
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3.5. Dielectric Properties of PVA/PVP Doped with Nd2O3 Composite Films

An insight into the dielectric-behavior study of the composite films establishes the
material’s capacitance to store a charge. Furthermore, the investigation of relaxation
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and conduction establishes the importance of dielectric analysis. Thus, the formulas for
calculating the real, imaginary, and tangent represented in these relations are [78,79]:

ε′ =
Cpd
Aε0

, (21)

ε′′ =
d

2π f Aε0
, (22)

tanθ =
ε′′

[ε′]
, (23)

where Cp is the capacitance; d is the thickness; A is the area of the electrode plate; and ε0
represents the absolute permittivity of absolute space, which is equal (8.85 × 10−12 F/m).
Figure 10 depicts the real (a) and imaginary (b) parts of the dielectric permittivity, and
(c) the tangent of loss angle (tanθ) of the blend polymer doped with the PB-Nd+3 composite
films. Figure 10a–c demonstrates the significant trend of reduced dielectric constants with
frequency increases. The high frequency reveals a diminished space charge polarization
within the binding with an electrode. The ε′ convincingly shows the correlation with
PB-Nd+3 wt%, which indicates the drop in the ion–ion interface and high conductivity [80].
The elevated ε′ is commonly associated with increased carrier mobility and concentration.
Dipoles and polarization relate to the ε′ permittivity, establishing an increase in the particle
size with the high PB-Nd+3 content [67].

Moreover, imperfections and deficiencies may exist, causing the loss of the dielectric
properties of the blend polymer. The importance of ε′ in electronics and insulating materials
is established. However, the dependence on frequency is revealed with the permittivity
of ε′′. At a high frequency, the ε′′ permittivity is low; this pattern provides convincing
evidence of the minor participation of ionic polarization at this frequency. Meanwhile, the
production of the polarization mechanism is discovered at lower frequencies. Including
PB-Nd+3 increases the ε′′ permittivity values, which rely on increased ionic carriers and
conductivity [81]. The existence of rotating polar bonds is related to conductivity. The tanθ
represents the same behavior as the ε′′ permittivity. The increase in the Nd+3 filler on the
host PVA/PVP blend polymer produced high values of tanθ. The spectrum depicted no lose
of peaks corresponding to the conduction, which could obscure the dielectric relaxation.
This much broader perspective highlights the relevance of this study.
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Figure 11a,b rules out a correlation between the dielectric permittivity of a given
selective frequency and the wt% of the PB-Nd+3-doped blend polymer at a temperature
of 30 ◦C. Immediately noted from Figure 11 is the increase in the dielectric permittivity
in case of a decrease in the frequency values. The ε′ values offer a linear connection with
impulse; there is a dramatic increase in the values following the addition of PB-Nd+3 content
to the PVA/PVP composite films. In addition, the estimated value of ε′ permittivity at
1 MHz is less than 2.5. Therefore, the blend polymer doped with PB-Nd+3 films can be
approved for participation in the manufacturing of microelectronic and electrical devices
such as substrates and insulators, based on this ε′ low permittivity value [82]. Figure 11b
draws attention to the higher ε′′ values compared to ε′ values. Initially, the lower frequency
represents the high value of ε′′, where the shift in the ε′′ maximum values is suggested
following the doping of PB-Nd+3 on the blend polymer. Meanwhile, the massive inequality
between ε′′ and ε′ values motivated consideration of a PVA/PVP doped with PB-Nd+3

composite films as an effective method for energy storage in micro capacitors [82]. A
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current study by S. Choudhary demonstrated similar dielectric properties for PVA/PVP
blend polymeric composites in flexible nanodielectric devices [82].
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3.6. Electric Module Study of PVA/PVP Doped with Nd2O3 Composite Films

Typically, the term electric modules M*(ω) explains the influence of electrode polariza-
tion (EP) on the dielectric permittivity presented at low-frequency values. The following
relation establishes the formula of M* [83]:

M∗ = M′ + jM′′ =
ε′

ε′2 + ε′′ 2
+ j

ε′′

ε′2 + ε′′ 2
, (24)
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Figure 12a,b highlights the real M′ and imaginary M′′ parts of the electric modules
of the blend polymer doped with PB-Nd+3 composite films at room temperature. The
constant behavior of the M′ values for the proposed composites offered at high frequencies
is shown in Figure 12a. Therefore, the M′ pattern of the obtained spectra was nonlinear
to that of the ε′ permittivity spectra. In addition, there was no peak on the M′ spectra.
These findings contributed to the realization that the lowest value of ε′ is achieved a higher
frequency, while the maximum value of M′ is in the high-frequency region of M∞ = 1

ε∞
.

Furthermore, the addition of the PB-Nd+3 concentration to the PVA/PVP blend polymer
causes a slight reduction in the M′ values. Figure 12b shows the M′′ values of the Nd2O3-
doped PVA/PVP composite films. Similarly, identical behavior of the M′′ and ε′ spectra
was observed for all synthesized polymeric composites. The Nd2O3: PVA/PVP composite
films had no relaxation peaks in lower frequency regions. Therefore, the disappearance
of peak relaxation in the low-frequency area was because of the interaction of the filler on
the PVA/PVP blend matrix. Furthermore, the M′′ values tended towards the maximum
and shifted to the lower frequency region as the doping level of PB-Nd+3 increased on
the host PVA/PVP polymer. Thus far, these results suggested a significant turn towards a
diminished relaxation time and increased ionic conductivity [84]. These electrical results
were relevant to the literature, for example, Choudhary [82].
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The central focus of the electrical measurements was to confirm the conduction mech-
anism of Nd+3-doped PVA/PVP composite polymeric films, which constitutes a new
electrical examination approach. The equations to calculate the AC conductivity for the
as-prepared doped PVA/PVP blend polymeric films are provided below [85]:

σTotal.AC(ω) =
t

ZA
, (25)

σTotal.AC(ω) = σDC(ω → 0) + σAC(ω), (26)

σAC(ω) = Aωs, (27)

Herein, σTotal.AC is represented by the AC conductivity, the impedance is Z, and A is
the constant-value variable according to the temperature. Equation (26) is known as the
DC and AC electrical conductivities. In addition, in Equation (26), the angular frequency is
presented by ω, and s is the frequency exponent parameter. A linear relation defines the
AC conductivity with applied frequency in Figure 13. The contribution of charge-carrier
mobility is a possible result of this finding. With the addition of the PB-Nd+3 dopant, the
AC conductivity pattern increased to its high maximum value. A good summary of the
contribution of dopants suggests a higher number of free ions [86]. Moreover, the effective-
ness of the applied frequency is established by the extreme values of AC conductivity in
high-frequency regions. In contrast, the DC values extracted from Equation (27) estimated
values of σDC induced from the spectra of AC conductivity. Table 4 lists the values of σDC
according to the extent of PVA/PVP doping with PB-Nd+3 composite films.
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Nevertheless, the frequency exponent (s) can be used to demonstrate the cross-section
correlation between material impurities and charge carriers. The s values of the prepared
Nd+3-doped PVA/PVP composites varied from zero to one. From Table 4, it can be seen that
s values decreased with an increase in the doping level on the host PVA/PVP matrix. This
significant analysis offered the precise coordination of s behavior with many hopping systems.
Therefore, this establishes a correlated hopping system (CHF) controlled by the conduction
mechanism [87]. The listed values of the s exponent ranged from 1.006 to 0.996, confirming
the disordered nature of the dielectric medium [88]. However, there is a feasible network
route in the Nd+3-doped PVA/PVP composite films, due to the increase in the charge carrier
on the polymer matrix, as almost the same results were previously reported [89].
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Table 4. Values of DC electrical conductivity σDC determined from the lower frequency fit of σAC

spectra to the power law and their corresponding fractional exponent s.

Samples σDC, (S/m) s

PB-Nd+3-0 6.750 × 10−11 1.00633

PB-Nd+3-1 1.184 × 10−10 1.00219

PB-Nd+3-2 1.060 × 10−10 1.00299

PB-Nd+3-3 1.520 × 10−10 1.00204

PB-Nd+3-4 2.088 × 10−10 0.99926

PB-Nd+3-5 4.220 × 10−10 0.99656

3.7. I-V Characteristic Plot of PVA/PVP Doping with Nd2O3 Composite Films

The majority of voltage-dependent resistance can be traced to the development of the
massive transient biasing of the elements in the electronic circuit and is designed to protect the
components. This is established by a series number of nonlinearly current-voltage properties.
Figure 14a,b exhibit I-V nonlinear plots of the PVA/PVP blend polymer films doped with
various concentrations of PB-Nd+3 rare-earth elements. A high current value was noticed
after introducing the significant amounts of PB-Nd+3 to the host polymeric matrix. However,
the tendency of the pure PVA/PVP film was high ohm’s law resistivity. In a systematic review
of the samples from the spectra, initially, with increasing the applied voltage, the proposed
composites slowly increased; then, when elevated to higher values, the current increased and
resistance decreased. As seen in Figure 14b, the lnI-lnV spectra establishes the considered
films’ nonlinearity and degree of responsibility for the conduction mechanism. Figure 14c,d
illustrates the two different regions that exist, which are indicated as regions (I) and (II).
Therefore, the claimed nonlinearity has two possible reasons: the first one is the ability of
the applied voltage to get through the nominal voltage, which mainly decreases the sample’s
resistance; thus, the conductance and the current increase [90]. Optically, a narrow region on
the energy bandgap allows for more carrier charge between the levels and coordinates with
an increased current from nA to mA. The other argument suggests developing the conduction
route while adding the PB-Nd+3 content to the PVA/PVP polymeric matrix, which causes an
increase in the current values [90]. The attained electrical results suggest that the proposed
Nd+3-doped PVA/PVP polymeric composites are a promising candidate for varistors devices.
Detailed examination of the considered polymeric composites was in-line with the previously
published work by H. Elhosiny Ali et al. The electrical characterization of PVAL flexible
composites was affected by Ru-metal dopants [90].
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4. Conclusions

The low-cost solution casting technique offers the successful synthesis of PB-Nd+3-
doped PVA/PVP composite films. Furthermore, the XRD study confirmed the semi-
crystalline nature of the blend polymer. FT-IR analysis performed on the blend-polymer
production confirmed the complexity of the PB-Nd+3 composite films. The optical absorp-
tion offered no evidence of the UV-region; in contrast, the transmission dropped along
with the increased PB-Nd+3 content. The direct and indirect bandgap calculated using
ASF and Tauc’s equation showed slightly reduced values, according to the high doping
content of PB-Nd+3 composite films. The Eu values were estimated from the absorption
coefficient, which ranged from 5.41 eV to 12.32 eV, where the high values cause the dys-
function of the composite preparation, which may contribute to the bandgap’s local state.
The refractive index concerning the bandgap was evaluated using the seven suggested
theoretical equations. The refractive index values were likely to increase with the addition
of PB-Nd+3 doping on the PVA/PVP polymeric blend matrix. The nonlinear optical pa-
rameters reconstructed from the bandgap depict a noticeable increase and the influence of
PB-Nd+3 concentrations. The optical limiting effects of the composite films were enhanced
and attenuated, as PB-Nd+3 increased.

The real and imaginary parts of the dielectric respond to the inclusion of PB-Nd+3

content. Carrier mobility and imperfections may exist on the real dielectric permittivity.
Meanwhile, the imaginary dielectric permittivity revealed increased ionic-carrier and
conductivity behavior. In addition, the relation of dielectric, corresponding to the wt% of PB-
Nd+3, suggested an instant impact on the energy storing of the Nd2O3:PVA/PVP composite
films. The absence of a relaxation peak on the M′′ of the electric modules at lower frequency
regions indicates an interaction between PB-Nd+3 and the blend matrix. In addition, AC
conductivity affirmed composite dispersion as they increase with a high concentration of
PB-Nd+3 dopants, which indicates a higher number of free ions. The s exponent obeyed the
hopping system, where the I-V nonlinear characteristics results indicate the films as possible
candidates for varistors. Moreover, the PVA/PVP blend polymer doped with different wt%
PB-Nd+3 films can be used in many potential applications, such as optoelectronics, cut-off
lasers, and electrical devices.
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rasayanjournal (accessed on 23 February 2023).

30. Yang, W.; Qi, Y.; Ma, Y.; Li, X.; Guo, X.; Gao, J.; Chen, M. Synthesis of Nd2O3 nanopowders by sol–gel auto-combustion and their
catalytic esterification activity. Mater. Chem. Phys. 2004, 84, 52–57. [CrossRef]

31. Yang, H.; Zhao, L.; Yang, X.; Shen, L.; Yu, L.; Sun, W.; Yan, Y.; Wang, W.; Feng, S. The synthesis and the magnetic properties of
Nd2O3-doped Ni–Mn ferrites nanoparticles. J. Magn. Magn. Mater. 2003, 271, 230–236. [CrossRef]

32. Bazzi, R.; Flores-Gonzalez, M.; Louis, C.; Lebbou, K.; Dujardin, C.; Brenier, A.; Zhang, W.; Tillement, O.; Bernstein, E.; Perriat, P.
Synthesis and luminescent properties of sub-5-nm lanthanide oxides nanoparticles. J. Lumin. 2003, 102–103, 445–450. [CrossRef]

33. Sreethawong, T.; Chavadej, S.; Ngamsinlapasathian, S.; Yoshikawa, S. Sol–gel synthesis of mesoporous assembly of Nd2O3
nanocrystals with the aid of structure-directing surfactant. Solid State Sci. 2008, 10, 20–25. [CrossRef]

34. Du, J.; Gu, X.; Wu, Q.; Liu, J.; Guo, H.-Z.; Zou, J.-G. Hydrophilic and photocatalytic activities of Nd-doped titanium dioxide thin
films. Trans. Nonferrous Met. Soc. China 2015, 25, 2601–2607. [CrossRef]
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