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Abstract: Water pollution has spurred the development of membrane separation technology as a
potential means of solving the issue. In contrast to the irregular and asymmetric holes that are easily
made during the fabrication of organic polymer membranes, forming regular transport channels
is essential. This necessitates the use of large-size, two-dimensional materials that can enhance
membrane separation performance. However, some limitations regarding yield are associated with
preparing large-sized MXene polymer-based nanosheets, which restrict their large-scale application.
Here, we propose a combination of wet etching and cyclic ultrasonic-centrifugal separation to meet
the needs of the large-scale production of MXene polymers nanosheets. It was found that the
yield of large-sized Ti3C2Tx MXene polymers nanosheets reached 71.37%, which was 2.14 times
and 1.77 times higher than that prepared with continuous ultrasonication for 10 min and 60 min,
respectively. The size of the Ti3C2Tx MXene polymers nanosheets was maintained at the micron
level with the help of the cyclic ultrasonic-centrifugal separation technology. In addition, certain
advantages of water purification were evident due to the possibility of attaining the pure water flux of
36.5 kg m−2 h−1 bar−1 for the Ti3C2Tx MXene membrane prepared with cyclic ultrasonic-centrifugal
separation. This simple method provided a convenient way for the scale-up production of Ti3C2Tx

MXene polymers nanosheets.

Keywords: Ti3C2Tx MXene; yield; polymers nanosheets; cyclic ultrasonic-centrifugal separation

1. Introduction

Water pollution from sewage and wastewater produced by industries harms the en-
vironment and human health [1,2]. Numerous treatment methods have been adopted for
treating pollution and purifying water. Flocculation [3], ultrasonic [4], chlorination [5],
adsorption [6], ozonation [7,8] and membrane separation technology [9,10] are some of
the methods used in sewage treatment plants for the purification of water. Among the
many wastewater treatment processes, membrane separation technology has gained un-
precedented development and a good reputation due to its easy operation, reasonable
energy consumption, extension possibilities, small footprint and reduction in secondary
pollution [9,11]. For example, preparing asymmetric polymer membranes with the phase
inversion method is one of the mature methods currently used to produce industrial mem-
branes [12]. This method prepares structures that contain finger-like pores using wet-phase
inversion [13,14]. This kind of membrane plays a major role in the separation performance
of the epidermal layer, which is easy to form irregular transmission channels but difficult to
achieve accurate size screening. In addition, the separation membranes prepared with the
electrostatic spinning process [15,16] and the sol-gel method [17–19] also result in irregular
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transmission channels. More importantly, membranes prepared with organic materials
may deform easily in the actual separation process, changing their pore size and ultimately
affecting the stability of permeate quality. Therefore, in the field of membrane separation,
a regular and stable transmission channel is often needed to improve the precise selectiv-
ity [20,21]. A significant amount of work has focused on designing and forming regular
transmission channels.

Membrane design is a direct application field of nanomaterial research. Two-dimensional
materials play an important role in wastewater treatment due to their excellent mechanical
properties, ultra-thin layered structure and unique chemical properties [22,23]. In this
regard, two-dimensional layered films are attractive because of their regular and stable
layered transport channels. Layered separation membranes, such as those prepared from
graphene-family materials [24], exfoliated hexagonal boron nitride (h-BNs) [25], layered
double hydroxides [26,27], transition metal dihalides (TMD) [28] and transition metal
carbides, nitrides or carbonitrides (MXenes) [29], have excellent and precise separation
selectivity in molecular or ionic separation. The literature indicates that MXene was discov-
ered in 2011 [30], and research in this field is growing significantly for two-dimensional
nanomaterials. So far, more than 30 MXenes have been reported [31]. In the MXene family,
Ti3C2Tx is the basis of MXene nanomaterials because of the low cost of the precursor
Ti3AlC2 and the easy etching of aluminum [32–34]. In the Ti3C2Tx, Tx stands for the surface
termination group (OH, O or F). Each Ti3C2 monolayer consists of five layers stacked in
the order of Ti(1)—C—Ti(2)—C—Ti(1), which can be described as a Ti6C octahedron with
shared edges formed by three Ti atomic layers splitting with two C atomic layers [35].

At present, there are two main synthesis methods for the preparation of MXenes. The
first method involves the selective etching of precursor material (MAX) with an etching
agent followed by stripping (top-down process). In contrast, the second is the chemical
vapor deposition (CVD) of molecular precursors (bottom-up method). Although the CVD
method can produce high-quality two-dimensional MXenes, they have a large transverse
size and a few defects [36] that restrict their use for large-scale industrial membrane
manufacturing [37]. Therefore, the top-down approach is currently the focus of researchers
to synthesize MXene. Compared with the earliest direct use of hazardous hydrofluoric
acid etches, the current trend of using hydrochloric acid (HCl) and fluoride salts, including
lithium fluoride or ammonium fluoride (NH4F), to generate HF in situ is emerging rapidly
and has become a research hotspot [38,39]. This is because these in situ hydrofluoric acid-
etched agents are relatively safe and less toxic to the human body and the environment.
Further, the etched Ti3C2Tx MXene nanosheets have a higher O/F ratio, which may benefit
the MXene polymers nanosheets in terms of better interaction with the water molecules [40].
These findings are evidence of the potential of MXene material wettability regulation and
indicate the chemical versatility required to develop membrane technology.

The design of two-dimensional separation membranes with excellent performance
not only requires unique surface chemical properties but also the establishment of regular
channels on the premise of large-size nanosheets that still urge for better yield [41]. For-
tunately, some new strategies have been employed in recent years to increase the yield of
Ti3C2Tx MXene few-layer nanosheets. For example, adding an organic intercalation agent
(such as DMSO) during stripping improves the stripping effect of the nanosheet [42]. A
freeze-and-thaw-assisted approach or hydrothermal intercalation method improves the
preparation effect [43,44]. Meanwhile, the size reduction in the parent MAX phase results
in a high yield of nanosheets [45]. Although the literature shows these new developments,
the actual process is somehow different and does not meet the standard industrial needs.
Therefore, a more convenient method is required for scale-up production.

In the current research, a top-down synthesis route was used for the preparation of
multilayer Ti3C2Tx MXene. Further, a cyclic ultrasonic-centrifugal separation (CU-CS)
method was used to peel off the multilayer MXene solution to prepare micron-scale single-
layer MXene polymers nanosheets. The chemical functional groups and elements of Ti3C2Tx
MXene were characterized with Fourier transform infrared spectroscopy and X-ray photo-
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electron spectroscopy. The morphology and size of Ti3C2Tx MXene were characterized with
atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction
(XRD). The results revealed that the micron-sized MXene polymers nanosheets could be
synthesized with the recycling ultrasonic-centrifugal separation method, and the yield
could be significantly improved. The current method may be a suitable approach for
synthesizing two-dimensional, material-based nanosheets.

2. Experiments and Methods
2.1. Materials

Sinopharm Chemical Reagent Co. Ltd. Shanghai, China supplied the HCl specified
36.50%. Shanghai Aladdin Biochemical Technology Co. Ltd. Shanghai, China provided
lithium fluoride (LiF) with a 99.99% purity (metals basis). Ti3AlC2 (MAX, purity: ≥80 wt%,
particle size: 1–40 µm) was obtained from Nanjing Xianfeng Nano Material Technology
Co. Ltd. Nanjing, China. Polyvinylidene fluoride membrane (diameter: 60 mm, aperture:
0.22 µm) was purchased at the Haining City Yanguan Town Xin Ya filter material business
department, Haining, China. Deionized (DI) water, specified as >18 MΩ cm, was utilized
for all the required experiments.

2.2. Preparation of Ti3C2Tx MXene Polymers Nanosheets

For the preparation of the MXene polymers nanosheets, 2.00 g of LiF and 9 M HCl
solution (40 mL) were efficiently mixed for 20 min. Afterwards, the Ti3AlC2 (1.13 g) was
slowly added and mixed for 48 h in a 35 ◦C temperature-maintained water bath. After
completing the etching reaction, the obtained suspension underwent centrifugation to
separate the sediment. The washing was performed with DI water until it attained a pH
of 6. After dispersing the precipitate in water and ultrasonic treatment in an ice bath for
10 min, centrifugation was carried out for 10 min at 3500 rpm to collect the supernatant.
The sediment was redispersed in the water, and the ice bath ultrasound was continued for
10 min; then, centrifugation was performed, and the supernatant was collected for a total
of 6 cycles (CU-CS method, Figure 1). At the same time, we prepared and collected the
samples of continuous ultrasound for 10 min and 60 min.
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Figure 1. Process Flow Diagram of CU-CS.

2.3. Characterization

For the structural verification, the functional groups of Ti3C2Tx MXene were character-
ized by Fourier transform infrared spectroscopy (FTIR, Nicolet5700, Thermo Fisher, MA,
USA) in the range of 400–4000 cm−1. AFM (atomic force microscopy, VEECO-Multimode,
NJ, USA) was used to measure the thickness as well as the size of the single-layer Ti3C2Tx
MXene polymers nanosheets in tap mode. XRD (X-ray diffraction, Bruker D8-Advance,
Saarbrucken, Germany) was used to estimate the crystallinity of the Ti3C2Tx MXene pow-
der. Field emission scanning electron microscopy (FE-SEM, ZEISS sigma 300, Oberkochen,
Germany) was used to characterize the morphology of MAX and Ti3C2Tx MXene. The ele-
mental analysis of Ti3C2Tx MXene was carried out with X-ray photoelectron spectroscopy
(XPS, Thermo Scientific K-Alpha, MA, USA). Al Kα ray (1486.6 eV) was the excitation
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source beam spot: 400 µm; the vacuum degree of the analysis chamber was better than
5.0E-7mBar; the working voltage was 12 kV; and the filament current was 6 mA.

2.4. Yield Calculation

In this experiment, the amount of Ti3C2Tx MXene suspension was obtained using
the weighing method, and the synthetic yield was further calculated. For this purpose,
a dry beaker was taken, and its mass was noted as M1 (mg). Then, 10 mL of suspension
was placed and dried for 24 h at 100 ◦C. The water was removed, and after cooling the
beaker, it was weighed. Afterwards, the mass was recorded as M2 (mg), while the yield
was calculated by using Equation (1),

Yield =
(M2 − M1)× V

10 × M3
× 100% (1)

where V (mL) is the volume of suspension obtained after ultrasonic centrifugal separation,
and M3 (mg) is the mass of the MAX parent.

2.5. Membrane Water Flux Test

In this experiment, the pure water flux (PWF) of the Ti3C2Tx MXene membrane was
performed. Initially, nanosheets with different qualities, which were prepared with the
cyclic ultrasonic-centrifugal separation method, were placed in 50 mL ultra-pure water
and mixed using a stirrer for better uniformity. Then, the membrane was prepared with a
vacuum-assisted extraction and filtration method. The supporting membrane was PVDF
(effective diameter was 47 mm). The suspension was placed in the solvent filter, and after
standing for ten minutes, a transmembrane pressure of 0.2 bar was applied. After the water
was completely lost, the membrane was removed and placed for 24 h in a 60 ◦C-maintained
drying oven.

Before the PWF test, the prepared membrane was moistened for 5 min and then
assembled in a solvent filter with a certain amount of water and a 0.9 bar transmembrane
pressure. The filtrate samples were collected after specifically selected intervals, and the
PWF for the prepared membrane was calculated according to Equation (2),

F =
M4

∆P × A × ∆t
(2)

where F (kg m−2 h−1 bar−1), M4 (kg), ∆P (bar), A (m2) and ∆t (h) represent the PWF, the
filtrate mass, the transmembrane pressure, the effective area of the separating membrane
and the membrane separation time, respectively.

3. Results and Discussion
3.1. Composition and Structure Characterization

The relatively mild etching conditions of HCl and LiF were used to etch the aluminum
atomic layer in the precursor Ti3AlC2 MAX phase because very stable M–a metallic bonds
connect the MAX phase, and it is very difficult to peel it off with only mechanical shearing.
After etching, a single layer of the Ti3C2Tx MXene polymers nanosheets can be synthesized
with an easy ultrasonic exfoliation method. As shown in Figure 2a, the obvious Tyndall
effect can be observed from the figure [46], so it can be determined that it is a colloidal solu-
tion. Therefore, the Ti3C2Tx MXene polymers nanosheets can be preliminarily determined
to be successfully prepared. To further investigate whether the single-layer Ti3C2Tx MXene
polymers nanosheets were successfully prepared, the parent MAX and the synthesized MX-
ene polymers nanosheets were characterized with XRD. The diffraction peaks at the plane
002 and plane 104 can be observed in the original MAX phase. The diffraction peaks at the
plane 104 represent the element aluminum (Figure 2b). After etching, the diffraction peak
of Ti3AlC2 MAX at the 104 plane at 39◦ does not exist in the spectrum of Ti3C2Tx MXene,
indicating that the Al atomic layer was removed by the wet etching. More importantly, the
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diffraction peak in the 002 plane shifted from 9.7◦ to a lower angle (5.9◦) because of the
layered structure of the exfoliated nanosheets stacked on each other [29].
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for Ti3AlC2 and Ti3C2Tx and the SEM images of (c) Ti3AlC2 and (d) Ti3C2Tx.

The SEM images revealed that the MXene was peeled off into sheets after etching
(Figure 2c,d). After the aluminum atoms in the bulk parent Ti3AlC2 MAX were etched
and ultrasonically exfoliated, Ti3C2Tx MXene showed a single-layer lamellar structure. In
this case, the individual lamellae were separated from each other and uniformly dispersed
on the silicon wafer, and the nanosheets possessed micro sizes. The synthesized MXene
polymers nanosheets possessed a thickness of 1 to 2 nm, indicating that the nanosheets
were a monolayer. This is also obvious from the atomic force microscopy (AFM) (Figure 3).
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The XPS helped determine the chemical composition of the Ti3C2Tx MXene nanosheets
prepared with different methods. Ti3C2Tx MXene’s XPS measurement spectrum and the
corresponding high-resolution spectrum are presented in Figure 4a–d. It was found that
the Ti3C2Tx MXene nanosheets prepared with different methods mainly contained C (C1s),
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F (F1s), Ti (Ti2p) and O (O1s) elements, which also indicates that Ti3C2Tx MXene was
successfully etched from Ti3AlC2 powder. The nanosheets prepared with both methods
exhibited almost similar elemental composition, indicating that the ultrasonic method had
no effect on the etching of the original MAX phase and improved the stripping efficiency. It
is also worth noting that C-Ti (281.7 eV), C-C (282.6 eV), C-O (284.2 eV) and C=O (286.0 eV),
and O-Ti (529.6 eV), O-Ti/OH (530.5 eV), O-C/OH (531.5 eV) and H2O (532.7 eV) can be
observed in the XPS analysis of C1s and O1s (Figure 4c,d) [47,48]. These results indicate
the existence of different oxygen-containing functional (OCF) groups in Ti3C2Tx MXene.
The FTIR results shown in Figure 4e indicate the functional groups of Ti3C2Tx MXene are
presented. It can be observed that the peaks at 556.9 cm−1, 1639.8 cm−1 and 3444.5 cm−1 are
the result of the stretching vibration of the Ti-O bond, C-O bond and -OH functional groups,
respectively [49]. These results indicate that the prepared Ti3C2Tx MXene nanosheets
contain enough oxygen-containing functional groups, which is consistent with the results
of the XPS spectra. The Ti3C2Tx MXene nanosheets contain enough OCF groups to be
advantageous in membrane separation applications.
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3.2. Effect of the Ultrasonic Method on the Size and Yield of the Nanosheets

The time of sonication influenced the size of the nanosheets. In the current research
work, the effect of continuous ultrasonic time on the size of the nanosheets was determined.
As shown in Figure 3, the nanosheets prepared after continuous ultrasound for 60 min
possessed a few hundred nanometers. The one prepared using an ultrasonic treatment of
10 min exhibited the micro sizes. This may be because the mechanical stability of single-
layer nanosheets is insufficient for long-term ultrasonic treatment. The collision leads to the
fracture of the nanosheets that have a high aspect ratio, thus forming smaller nanosheets.
This revealed that the size of the prepared MXene polymers nanosheets could be controlled
by the ultrasonic time.

We compared the morphologies of the nanosheets prepared with the CU-CS method
with different cycles (Figure 5). The AFM images indicated that the micrometer-sized
Ti3C2Tx MXene nanosheets were synthesized with six cycles of ultrasonic-centrifugal
separation, and all Ti3C2Tx MXene nanosheets possessed a thickness of 1 to 2 nm. It is
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obvious that a single layer of the Ti3C2Tx MXene nanosheets with a high aspect ratio
was prepared each time. The reason behind this could be the long time and high energy
required to separate the bulk multilayer Ti3C2Tx MXene during the exfoliation process.
After the CU-CS, the exfoliated monolayer Ti3C2Tx MXene nanosheets were separated
from the multilayer Ti3C2Tx MXene nanosheets. This prevented the influence of long-term
ultrasound on the size of the nanosheets.
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In addition, we analyzed the yield of Ti3C2Tx MXene nanosheets synthesized with
different ultrasonic methods. The ultrasonic treatment for 10 min resulted in a yield
of 33.40%. In comparison, continuous ultrasonic treatment for 60 min yielded 40.39%
(Figure 6). Whereas the CU-CS method helped attain a yield of 71.37% for Ti3C2Tx MXene
nanosheets, which was 2.14 times and 1.77 times higher than that prepared with contin-
uous ultrasonication for a time of 10 min and 60 min, respectively. The high yield of
the nanosheets prepared with the CU-CS method is the participation of the remaining
precipitates that are continuously stripped to maximize the yield. In addition, under the
same ultrasound time, the yields of cyclic and continuous ultrasound are not consistent,
which may be because part of the energy of continuous ultrasound is consumed in the
fragmentation of the nanosheets; thus, the multilayer MXene cannot be fully exfoliated. All
of these results indicate that the CU-CS method can enhance the yield of large-sized MXene
polymers nanosheets. This method could also be beneficial in terms of cost. The CU-CS
method only needs to separate the MXene polymers nanosheets exfoliated with ultrasound
with centrifugation in time. The operation processes do not require additional equipment
in actual production, thus greatly reducing production costs and making commercial
production of layered MXene separation membranes possible.
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3.3. Application of Ti3C2Tx MXene Nanosheets

The Ti3C2Tx MXene nanosheets are widely used in electromagnetic shielding, energy
storage, catalysis, and antibacterial and membrane separation fields since the inception
of Ti3C2Tx MXene. These nanosheets have attracted much attention for membrane sepa-
ration applications, especially because they contain reasonable OCF groups that provide
hydrophilicity to Ti3C2Tx MXene nanosheets. The PWF of the Ti3C2Tx MXene mem-
brane prepared with vacuum-assisted filtration was also tested (Figure 7). Experiments
revealed that, when the content of Ti3C2Tx MXene is 2 mg, the membrane had a PWF of
36.5 kg m−2 h−1 bar−1. With an increase in the amount of Ti3C2Tx MXene, the PWF of the
membrane decreased. This is because the massive stacking of Ti3C2Tx MXene increases the
water transmission channel, thus enhancing the mass transfer resistance of the membrane.
In this case, the PWF of the membrane was found to be 4.9 kg m−2 h−1 bar−1 for 10 mg
of Ti3C2Tx MXene. Application-wise, the size of the nanosheet may also influence its
performance. One example of these membranes is pressure-driven electric power gener-
ation [50] They first prepared two kinds of Ti3C2Tx MXene nanosheets with transverse
sizes of 0.7–1.1 µm and 2–3 µm, respectively, and then filtered the different sizes of Ti3C2Tx
MXene onto nylon-supported membranes with a simple vacuum-assisted filtration method.
It was observed that the membranes with small-size nanosheets responded better to current
than those with large-size nanosheets under the same amount of Ti3C2Tx MXene depo-
sition. The reason could be the occurrence of a longer path of ions and water molecules
through the large nanosheets. In the field of osmotic evaporation desalination, [51] also
prepared Ti3C2Tx MXene membranes using a simple vacuum-assisted filtration method.
They used a commercial polyacrylonitrile (PAN) ultrafiltration membrane having a pore
size of a few nanometers as a support and then filtered Ti3C2Tx MXene nanosheets with
transverse sizes of 0.5 µm and 1–2 µm on the support to form a film. They found that,
when the content of Ti3C2Tx MXene was the same, the water flux of the small-size Ti3C2Tx
MXene nanofilms (~0.5 µm) was slightly higher than that of the large-size Ti3C2Tx MXene
nanofilms (~1–2 µm). After SEM and AFM characterization, the large Ti3C2Tx MXene
nanosheets showed a more compact stacking structure. This could also be a reason for
the reduction in water flux in the membranes prepared with large-size Ti3C2Tx MXene
nanosheets. However, it has to be mentioned that the comparison of these results is in the
same Ti3C2Tx MXene content, and the large-size nanosheets are easier to form a compact
stack. Under the condition of the same retention rate, the Ti3C2Tx MXene load can be
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reduced to prepare ultra-thin Ti3C2Tx MXene membranes with faster permeability, and the
large-size nanosheets are easier to form regular transmission channels. This also indicates
the possibility of precise transport of molecules or ions.
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4. Conclusions

Combining the top-down chemical etching and the CU-CS methods, an efficient way
for synthesizing the large-sized Ti3C2Tx MXene nanosheets was successfully developed.
The CU-CS method provides a large space for improving the yield of Ti3C2Tx MXene
nanosheets and increases the yield of single-layer Ti3C2Tx MXene nanosheets to a certain
extent. CU-CS experiments showed that the yield of Ti3C2Tx MXene nanosheets synthesized
with the CU-CS method reached 71.37%, which is 2.14 times and 1.77 times higher than that
prepared with ultrasonic treatment for 10 min and 60 min, respectively. More importantly,
the size of the single-layer Ti3C2Tx MXene nanosheets synthesized with the CU-CS method
was not significantly reduced, and the single-layer Ti3C2Tx MXene nanosheets possessed
micron size. In addition, the pure water flux experiments of the membranes showed that the
membranes prepared with the CU-CS method had excellent permeability. When the content
of Ti3C2Tx MXene was 2 mg, the PWF of the membranes was 36.5 kg m−2 h−1 bar−1. Even
when the content of Ti3C2Tx MXene was 10 mg, the PWF of the membrane still maintained
a certain amount. Compared with the asymmetric irregular pore size in other polymer
separation membranes, the micron-sized Ti3C2Tx MXene polymers nanosheets have great
potential in preparing separation membranes with regular transmission channels and
provide the premise of yield and quality for the application in the field of membrane
separation. Overall, this research provides a new way to develop efficient preparation
of single-layer Ti3C2Tx MXene nanosheets, which are expected to be used in large-scale
industrial production.
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