Next Issue
Volume 15, April-1
Previous Issue
Volume 15, March-1
 
 

Polymers, Volume 15, Issue 6 (March-2 2023) – 264 articles

Cover Story (view full-size image): Enzyme-loaded submicrometer-sized polyion complex vesicles with tunable semi-permeability show high potential for enzyme prodrug therapy (EPT) as a nanoreactor. This nanoreactor is suitable for the local activation of prodrugs; however, it suffers from a low loading efficiency, which hinders practical applications. In this study, we developed a stepwise crosslinking (SWCL) method to improve the enzyme loading amount. Enzyme-loaded PICsomes prepared using the SWCL method resulted in several times higher enzyme loading—an increase in double figures—than that obtained through conventional methods. It also showed excellent antitumor efficacy and reduced side effects in tumor-bearing mice, confirming the significance of PICsome-based EPT. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
16 pages, 4781 KiB  
Article
Synthesis, Characterization and Application of a New Functionalized Polymeric Sorbent Based on Alkenylphoshine Oxide
by Sławomir Frynas and Monika Wawrzkiewicz
Polymers 2023, 15(6), 1591; https://doi.org/10.3390/polym15061591 - 22 Mar 2023
Cited by 1 | Viewed by 1336
Abstract
A novel phosphorus-containing sorbent (CyP(Ph)4–DVB) was prepared by copolymerizing divinylbenzene (DVB) with bis α,β-unsaturated phosphorylated cyclohexene (CyP(Ph)4). ATR-FT-IR indicated that the phosphinoyl group was introduced into the sorbent structure. The thermal properties of the sorbent were investigated using a differential scanning calorimeter (DSC), [...] Read more.
A novel phosphorus-containing sorbent (CyP(Ph)4–DVB) was prepared by copolymerizing divinylbenzene (DVB) with bis α,β-unsaturated phosphorylated cyclohexene (CyP(Ph)4). ATR-FT-IR indicated that the phosphinoyl group was introduced into the sorbent structure. The thermal properties of the sorbent were investigated using a differential scanning calorimeter (DSC), which revealed that (CyP(Ph)4–DVB) is more stable than poly(DVB). The CyP(Ph)4–DVB was applied for cationic dye removal, such as C.I. Basic Yellow 2 (BY2) and C.I. Basic Blue 3 (BB3). Batch adsorption tests suggested that the Freundlich isotherm model seemed to be the better one for the description of equilibrium sorption data at equilibrium, rather than the Langmuir or Temkin models. The Freundlich constants concerning the adsorption capacity of CyP(Ph)4–DVB, kF, were calculated as 14.2 mg1−1/nL1/n/g for BY2 and 53.7 mg1−1/nL1/n/g for BB3. Full article
Show Figures

Graphical abstract

28 pages, 9980 KiB  
Review
Current State of the Art and Next Generation of Materials for a Customized IntraOcular Lens according to a Patient-Specific Eye Power
by Martina Vacalebre, Renato Frison, Carmelo Corsaro, Fortunato Neri, Antonio Santoro, Sabrina Conoci, Elena Anastasi, Maria Cristina Curatolo and Enza Fazio
Polymers 2023, 15(6), 1590; https://doi.org/10.3390/polym15061590 - 22 Mar 2023
Cited by 11 | Viewed by 4139
Abstract
Intraocular lenses (IOLs) are commonly implanted after surgical removal of a cataractous lens. A variety of IOL materials are currently available, including collamer, hydrophobic acrylic, hydrophilic acrylic, PHEMA copolymer, polymethylmethacrylate (PMMA), and silicone. High-quality polymers with distinct physical and optical properties for IOL [...] Read more.
Intraocular lenses (IOLs) are commonly implanted after surgical removal of a cataractous lens. A variety of IOL materials are currently available, including collamer, hydrophobic acrylic, hydrophilic acrylic, PHEMA copolymer, polymethylmethacrylate (PMMA), and silicone. High-quality polymers with distinct physical and optical properties for IOL manufacturing and in line with the highest quality standards on the market have evolved to encompass medical needs. Each of them and their packaging show unique advantages and disadvantages. Here, we highlight the evolution of polymeric materials and mainly the current state of the art of the unique properties of some polymeric systems used for IOL design, identifying current limitations for future improvements. We investigate the characteristics of the next generation of IOL materials, which must satisfy biocompatibility requirements and have tuneable refractive index to create patient-specific eye power, preventing formation of posterior capsular opacification. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

20 pages, 4758 KiB  
Article
Tailor-Made Bio-Based Non-Isocyanate Polyurethanes (NIPUs)
by Juan Catalá, Irene Guerra, Jesús Manuel García-Vargas, María Jesús Ramos, María Teresa García and Juan Francisco Rodríguez
Polymers 2023, 15(6), 1589; https://doi.org/10.3390/polym15061589 - 22 Mar 2023
Cited by 7 | Viewed by 3367
Abstract
Non-isocyanate polyurethanes (NIPUs) based on biobased polyamines and polycarbonates are a sustainable alternative to conventional polyurethanes (PU). This article discloses a novel method to control the crosslinking density of fully biobased isocyanate-free polyurethanes, synthesized from triglycerides carbonated previously in scCO2 and different [...] Read more.
Non-isocyanate polyurethanes (NIPUs) based on biobased polyamines and polycarbonates are a sustainable alternative to conventional polyurethanes (PU). This article discloses a novel method to control the crosslinking density of fully biobased isocyanate-free polyurethanes, synthesized from triglycerides carbonated previously in scCO2 and different diamines, such as ethylenediamine (EDA), hexamethylenediamine (HMDA) and PriamineTM-1075 (derived from a dimerized fatty acid). As capping substances, water or bioalcohols are used in such a way that the crosslinking density can be adjusted to suit the requirements of the intended application. An optimization of the NIPU synthesis procedure is firstly carried out, establishing the polymerization kinetics and proposing optimal conditions set for the synthesis of the NIPUs. Then, the influence of the partial blocking of the active polymerization sites of the carbonated soybean oil (CSBO), using monofunctional amines, on the physical properties of the NIPUS is explored. Finally, the synthesis of fully biobased NIPUs with a targeted crosslinking density is achieved using hybrid NIPUs, employing partially carbonated oil and H2O or ethanol as blockers to achieve the desired physical properties in a very precise manner. Full article
(This article belongs to the Special Issue Advances in Sustainable Polyurethanes)
Show Figures

Figure 1

12 pages, 4326 KiB  
Article
Preparation of Amphiphilic Chitosan-Loaded Bentonite Adsorbent and Its Performance in Removing Organic Matter from Coking Wastewater
by Zhou Zhu, Haiqun Kou, Yuchang Zhou, Xindian Lan, Meiying Yu and Haonan Chen
Polymers 2023, 15(6), 1588; https://doi.org/10.3390/polym15061588 - 22 Mar 2023
Viewed by 908
Abstract
An amphiphilic chitosan-loaded bentonite adsorbent (C18CTS−BT) was prepared for the efficient removal of organic matter from coking wastewater. The structure and surface morphology of adsorbents were characterized by FT−IR, XRD, and SEM. The removal of those organics by C18CTS−BT was investigated by comparing [...] Read more.
An amphiphilic chitosan-loaded bentonite adsorbent (C18CTS−BT) was prepared for the efficient removal of organic matter from coking wastewater. The structure and surface morphology of adsorbents were characterized by FT−IR, XRD, and SEM. The removal of those organics by C18CTS−BT was investigated by comparing the adsorption performances of C18CTS−BT with bentonite (BT) and chitosan-loaded bentonite (CTS−BT). The results showed that compared with BT and CTS−BT, C18CTS−BT showed the performance advantages of having a low dosage, wide pH range, and short adsorption equilibrium time. The optimized treatment process was as follows: the adsorbent dosage was 1.5 g·L−1, the adsorption time was 60 min, and the pH of the system was 7.0. The chemical oxygen demand (COD) of the coking wastewater treated with BT, CTS−BT, and C18CTS−BT decreased from 342 mg·L−1 in the raw water to 264 mg·L−1, 218 mg·L−1, and 146 mg·L−1, corresponding to COD removal rates of 22.81%, 36.26%, and 57.31%, respectively. The results of GC−MS analysis also confirmed that C18CTS−BT could remove most of the organic compounds in coking wastewater, especially long−chain alkanes and their derivatives. The hydrophobic modification of the adsorbent material can effectively improve the removal performance of organic compounds from coking wastewater. Full article
(This article belongs to the Special Issue Emerging Marine Biopolymer-Based Materials: Extraction to Application)
Show Figures

Figure 1

12 pages, 10301 KiB  
Article
The Effect of Heat Treatment on a 3D-Printed PLA Polymer’s Mechanical Properties
by Mariam Shbanah, Márton Jordanov, Zoltán Nyikes, László Tóth and Tünde Anna Kovács
Polymers 2023, 15(6), 1587; https://doi.org/10.3390/polym15061587 - 22 Mar 2023
Cited by 5 | Viewed by 2572
Abstract
Three-dimensional printing is a useful and common process in additive manufacturing nowadays. The advantage of additive polymer technology is its rapidity and design freedom. Polymer materials’ mechanical properties depend on the process parameters and the chemical composition of the polymer used. Mechanical properties [...] Read more.
Three-dimensional printing is a useful and common process in additive manufacturing nowadays. The advantage of additive polymer technology is its rapidity and design freedom. Polymer materials’ mechanical properties depend on the process parameters and the chemical composition of the polymer used. Mechanical properties are very important in product applicability. The mechanical properties of polymers can be enhanced by heat treatment. Additive-manufactured PLA’s mechanical properties and structure can be modified via heat treatment after the 3D printing process. The goal of this research was to test the effect of heat treatment on the mechanical and structural parameters of additive-manufactured PLA. This was achieved via the FDM processing of standard PLA tensile test specimens with longitudinal and vertical printing orientations. After printing, the test specimens were heat-treated at 55 °C, 65 °C and 80 °C for 5 h and after being held at 20 °C for 15 h. The printed and heat-treated specimens were tested using tensile tests and microscopy. Based on the test results, we can conclude that the optimal heat treatment process temperature was 65 °C for 5 h. Under the heat treatment, the test specimens did not show any deformation, the tensile strength increased by 35% and the porosity of the PLA structure decreased. Full article
Show Figures

Figure 1

12 pages, 11012 KiB  
Article
Silver Nanoparticles as Antifungal Agents in Acrylic Latexes: Influence of the Initiator Type on Nanoparticle Incorporation and Aureobasidium pullulans Resistance
by Gabrielle Boivin, Anna M. Ritcey and Véronic Landry
Polymers 2023, 15(6), 1586; https://doi.org/10.3390/polym15061586 - 22 Mar 2023
Cited by 1 | Viewed by 1403
Abstract
Discoloration of wood coatings due to fungal growth negatively affects the aesthetic properties of the coatings, and new ways to control fungal growth on coatings are needed. For this reason, silver nanoparticles (AgNPs) have been incorporated in acrylic latexes as antifungal agents. Using [...] Read more.
Discoloration of wood coatings due to fungal growth negatively affects the aesthetic properties of the coatings, and new ways to control fungal growth on coatings are needed. For this reason, silver nanoparticles (AgNPs) have been incorporated in acrylic latexes as antifungal agents. Using miniemulsion polymerization, latexes were prepared with two types of initiators (hydrophilic and hydrophobic) to assess the influence of the initiator type on AgNPs dispersion, both within the latex particles and the dry film. In addition, the impact of NP dispersion on resistance to black-stain fungi (Aureobasidium pullulans) was also evaluated. Inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis indicates that acrylic latexes prepared with azobisisobutyronitrile (AIBN) as the initiator contain more AgNPs than those prepared with potassium persulfate (KPS). Cryo-TEM and SEM analyses show that the distribution of the AgNPs within the polymer particles is influenced by the nature of the initiator. When AIBN, a hydrophobic initiator, is used, the AgNPs appear to be closer to the surface of the polymer particles and more evenly distributed. However, the antifungal efficiency of the AgNPs-embedded latexes against A. pullulans is found to be higher when KPS is used, despite this initiator leading to a smaller amount of incorporated AgNPs and a less uniform dispersion of the nanoparticles. Full article
(This article belongs to the Special Issue Advances in Polymer-Based Nanomaterials with Antibacterial Properties)
Show Figures

Figure 1

12 pages, 3245 KiB  
Article
A Flexible Bi-Stable Composite Antenna with Reconfigurable Performance and Light-Responsive Behavior
by Yaoli Huang, Cong Zheng, Jinhua Jiang, Huiqi Shao and Nanliang Chen
Polymers 2023, 15(6), 1585; https://doi.org/10.3390/polym15061585 - 22 Mar 2023
Cited by 1 | Viewed by 1223
Abstract
An integrated solution providing a bi-stable antenna with reconfigurable performance and light-responsive behavior is presented in this paper for the first time. The proposed antenna includes a radiation layer with conductivity, which is integrated onto the bi-stable substrate. First, the effect of the [...] Read more.
An integrated solution providing a bi-stable antenna with reconfigurable performance and light-responsive behavior is presented in this paper for the first time. The proposed antenna includes a radiation layer with conductivity, which is integrated onto the bi-stable substrate. First, the effect of the radiation layer material and substrate layer parameters on antenna performance was studied. The experiment showed that an antenna with CNTF has a wider impedance bandwidth than one with CSP, namely 10.37% versus 3.29%, respectively. The resonance frequency increases gradually with the increase in fiber laying density and fiber linear density. Second, the influence of state change of the substrate layer on the antenna radiation pattern was studied. The measured results showed that the maximum radiation angle and gain of states I and II are at 90°, 1.21 dB and 225°, 1.53 dB, respectively. The gain non-circularities of the antenna at states I and II are 4.48 dB and 8.35 dB, respectively, which shows that the antenna has good omnidirectional radiation performance in state I. The display of the array antenna, which shows that the array antenna has good omnidirectional radiation performance in state A, with gain non-circularities of 4.20 dB, proves the feasibility of this bi-stable substrate in reconfigurable antennas. Finally, the antenna deforms from state I to state II when the illumination stimulus reaches 22 s, showing good light-responsive behavior. Moreover, the bi-stable composite antenna has the characteristics of small size, light weight, high flexibility, and excellent integration. Full article
Show Figures

Graphical abstract

11 pages, 2095 KiB  
Article
The Effect of Various Fillers on the Properties of Methyl Vinyl Silicone Rubber
by Yun Chen, Kun Wang, Chong Zhang, Wei Yang, Bo Qiao and Li Yin
Polymers 2023, 15(6), 1584; https://doi.org/10.3390/polym15061584 - 22 Mar 2023
Cited by 1 | Viewed by 1805
Abstract
Silicone rubber (SIR) has been widely used in electrical insulation fields, and the introduction of new materials is very important for the performance improvement of SIR composites. In this work, four different fillers, including aluminium hydroxide (ATH), yimonite (YMT), boron nitride (BN) and [...] Read more.
Silicone rubber (SIR) has been widely used in electrical insulation fields, and the introduction of new materials is very important for the performance improvement of SIR composites. In this work, four different fillers, including aluminium hydroxide (ATH), yimonite (YMT), boron nitride (BN) and mica-filled SIR composites were prepared, and the vulcanization behavior, mechanical properties, insulation performance and hydrophobicity of the SIR composites were investigated and compared. Both BN- and mica-filled SIR composites showed excellent insulation performance, while the ATH-filled SIR composite exhibited the best mechanical properties with an elongation at break of 230% and a tensile strength of 2.9 MPa. The SIR/BN composite showed a breakdown strength of 29.2 kV/mm with a 5% failure rate. The addition of YMT deteriorated the insulation performance of SIR but improved the elongation at break and hydrophobicity, with an elongation at break increasing from 115% to 410% and the static contact angle improving from 109.8° to 115.6°. Full article
(This article belongs to the Collection Polymers and Polymer Composites: Structure-Property Relationship)
Show Figures

Figure 1

17 pages, 4577 KiB  
Article
Preparation and Characterization of a Series of Self-Healable Bio-Based Poly(thiourethane) Vitrimer-like Materials
by Federico Guerrero, Xavier Ramis, Silvia De la Flor and Àngels Serra
Polymers 2023, 15(6), 1583; https://doi.org/10.3390/polym15061583 - 22 Mar 2023
Cited by 1 | Viewed by 1502
Abstract
A series of poly(thiourethanes) (PTUs) from biobased monomers have been synthesized. Limonene and squalene were transformed into polyfunctional thiols by thiol-ene reaction with thioacetic acid and further saponification. They were then reacted in different proportions with hexamethylene diisocyanate (HDI) in the presence of [...] Read more.
A series of poly(thiourethanes) (PTUs) from biobased monomers have been synthesized. Limonene and squalene were transformed into polyfunctional thiols by thiol-ene reaction with thioacetic acid and further saponification. They were then reacted in different proportions with hexamethylene diisocyanate (HDI) in the presence of a catalyst to prepare bio-based poly(thiourethane) vitrimer-like materials. The different functionalities of squalene and limonene thiols (six and two, respectively) allow for changing the characteristics of the final material by only varying their relative proportions in the reactive mixture. The proportions of thiol and isocyanate groups were stoichiometric in all the formulations tested. An acidic and a basic catalyst were tested in the preparation of the networked polymers. As the acidic catalyst, we selected dibutyltin dilaurate (DBTDL), and as the basic catalyst, a tetraphenylborate salt of 1,8-diazabicyclo(5.4.0)undec-7-ene (BGDBU), which has the advantage of only releasing the base at high temperatures. The materials obtained were characterized by thermogravimetry and thermomechanical analysis. The vitrimeric-like behavior was evaluated, and we could see that higher proportions of the limonene derivative in the formulations led to faster stress relaxation of the material. The use of the base catalyst led to a much shorter relaxation time. The materials obtained demonstrated good self-healing efficiency. Full article
(This article belongs to the Special Issue Functional Self-Healing Polymers)
Show Figures

Graphical abstract

23 pages, 5297 KiB  
Review
A Thermo-Catalytic Pyrolysis of Polystyrene Waste Review: A Systematic, Statistical, and Bibliometric Approach
by Arantxa M. Gonzalez-Aguilar, Vicente Pérez-García and José M. Riesco-Ávila
Polymers 2023, 15(6), 1582; https://doi.org/10.3390/polym15061582 - 22 Mar 2023
Cited by 5 | Viewed by 2867
Abstract
Global polystyrene (PS) production has been influenced by the lightness and heat resistance this material offers in different applications, such as construction and packaging. However, population growth and the lack of PS recycling lead to a large waste generation, affecting the environment. Pyrolysis [...] Read more.
Global polystyrene (PS) production has been influenced by the lightness and heat resistance this material offers in different applications, such as construction and packaging. However, population growth and the lack of PS recycling lead to a large waste generation, affecting the environment. Pyrolysis has been recognized as an effective recycling method, converting PS waste into valuable products in the chemical industry. The present work addresses a systematic, bibliometric, and statistical analysis of results carried out from 2015 to 2022, making an extensive critique of the most influential operation parameters in the thermo-catalytic pyrolysis of PS and its waste. The systematic study showed that the conversion of PS into a liquid with high aromatic content (84.75% of styrene) can be achieved by pyrolysis. Discussion of PS as fuel is described compared to commercial fuels. In addition, PS favors the production of liquid fuel when subjected to co-pyrolysis with biomass, improving its properties such as viscosity and energy content. A statistical analysis of the data compilation was also discussed, evaluating the influence of temperature, reactor design, and catalysts on product yield. Full article
(This article belongs to the Special Issue Advanced Recycling of Plastic Waste: An Approach for Circular Economy)
Show Figures

Figure 1

24 pages, 6728 KiB  
Article
Fungal Screening for Potential PET Depolymerization
by Lusiane Malafatti-Picca, Elaine Cristina Bucioli, Michel Ricardo de Barros Chaves, Aline Machado de Castro, Érika Valoni, Valéria Maia de Oliveira, Anita Jocelyne Marsaioli, José Silvio Govone, Dejanira de Franceschi de Angelis, Michel Brienzo and Derlene Attili-Angelis
Polymers 2023, 15(6), 1581; https://doi.org/10.3390/polym15061581 - 22 Mar 2023
Cited by 3 | Viewed by 2153
Abstract
Approximately 400 billion PET bottles are produced annually in the world, of which from 8 to 9 million tons are discarded in oceans. This requires developing strategies to urgently recycle them. PET recycling can be carried out using the microbial hydrolysis of polymers [...] Read more.
Approximately 400 billion PET bottles are produced annually in the world, of which from 8 to 9 million tons are discarded in oceans. This requires developing strategies to urgently recycle them. PET recycling can be carried out using the microbial hydrolysis of polymers when monomers and oligomers are released. Exploring the metabolic activity of fungi is an environmentally friendly way to treat harmful polymeric waste and obtain the production of monomers. The present study addressed: (i) the investigation of potential of strains with the potential for the depolymerization of PET bottles from different manufacturers (crystallinity of 35.5 and 10.4%); (ii) the search for a culture medium that favors the depolymerization process; and (iii) gaining more knowledge on fungal enzymes that can be applied to PET recycling. Four strains (from 100 fungal strains) were found as promising for conversion into terephthalic acid from PET nanoparticles (npPET): Curvularia trifolii CBMAI 2111, Trichoderma sp. CBMAI 2071, Trichoderma atroviride CBMAI 2073, and Cladosporium cladosporioides CBMAI 2075. The fermentation assays in the presence of PET led to the release of terephthalic acid in concentrations above 12 ppm. Biodegradation was also confirmed using mass variation analyses (reducing mass), scanning electron microscopy (SEM) that showed evidence of material roughness, FTIR analysis that showed band modification, enzymatic activities detected for lipase, and esterase and cutinase, confirmed by monomers/oligomers quantification using high performance liquid chromatography (HPLC-UV). Based on the microbial strains PET depolymerization, the results are promising for the exploration of the selected microbial strain. Full article
(This article belongs to the Special Issue Advances in Biodegradation of Plastics)
Show Figures

Figure 1

12 pages, 1947 KiB  
Article
Nanotopography of Polystyrene/Poly(methyl methacrylate) for the Promotion of Patient Specific Von Willebrand Factor Entrapment and Platelet Adhesion in a Whole Blood Microfluidic Assay
by Joanna Ward, Eimear Dunne, Ingmar Schoen, Adrian R. Boyd, Dermot Kenny and Brian J. Meenan
Polymers 2023, 15(6), 1580; https://doi.org/10.3390/polym15061580 - 22 Mar 2023
Viewed by 1313
Abstract
Platelet function testing is essential for the diagnosis of patients with bleeding disorders. Specifically, there is a need for a whole blood assay that is capable of analysing platelet behaviour in contact with a patient-specific autologous von Willebrand factor (vWF), under physiologically relevant [...] Read more.
Platelet function testing is essential for the diagnosis of patients with bleeding disorders. Specifically, there is a need for a whole blood assay that is capable of analysing platelet behaviour in contact with a patient-specific autologous von Willebrand factor (vWF), under physiologically relevant conditions. The creation of surface topography capable of entrapping and uncoiling vWF for the support of subsequent platelet adhesion within the same blood sample offers a potential basis for such an assay. In this study, spin coating of polystyrene/poly (methyl methacrylate) (PS/PMMA) demixed solutions onto glass substrates in air has been used to attain surfaces with well-defined topographical features. The effect of augmenting the PS/PMMA solution with uniform 50 µm PS microspheres that can moderate the demixing process on the resultant surface features has also been investigated. The topographical features created here by spin coating under ambient air pressure conditions, rather than in nitrogen, which previous work reports, produces substrate surfaces with the ability to entrap vWF from flowing blood and facilitate platelet adhesion. The direct optical visualisation of fluorescently-labelled platelets indicates that topography resulting from inclusion of PS microspheres in the PS/PMMA spin coating solution increases the total number of platelets that adhere to the substrate surface over the period of the microfluidic assay. However, a detailed analysis of the adhesion rate, mean translocating velocity, mean translocation distance, and fraction of the stably adhered platelets measured during blood flow under arterial equivalent mechanical shear conditions indicates no significant difference for topographies created with or without inclusion of the PS microspheres. Full article
(This article belongs to the Special Issue Application of Polymers in Bioengineering)
Show Figures

Graphical abstract

11 pages, 2628 KiB  
Article
The Role of the Interface of PLA with Thermoplastic Starch in the Nonisothermal Crystallization Behavior of PLA in PLA/Thermoplastic Starch/SiO2 Composites
by Deling Li, Congcong Luo, Jun Zhou, Liming Dong, Ying Chen, Guangtian Liu and Shuyun Qiao
Polymers 2023, 15(6), 1579; https://doi.org/10.3390/polym15061579 - 22 Mar 2023
Cited by 2 | Viewed by 1425
Abstract
Corn starch was plasticized by glycerol suspension in a twin-screw extruder, in which the glycerol suspension was the pre-dispersion mixture of glycerol with nano-SiO2. Polylactide (PLA)/thermoplastic starch/SiO2 composites were obtained through melt-blending of PLA with thermoplastic starch/SiO2 in a [...] Read more.
Corn starch was plasticized by glycerol suspension in a twin-screw extruder, in which the glycerol suspension was the pre-dispersion mixture of glycerol with nano-SiO2. Polylactide (PLA)/thermoplastic starch/SiO2 composites were obtained through melt-blending of PLA with thermoplastic starch/SiO2 in a twin-screw extruder. The nonisothermal crystallization behavior of PLA in the composites was investigated by differential scanning calorimetry. An interface of PLA with thermoplastic starch was proven to exist in the composites, and its interfacial bonding characteristics were analyzed. The interfacial binding energy stemming from PLA with thermoplastic starch exerts a significant influence on the segmental mobility of PLA at the interface. The segmental mobility of PLA is gradually improved by increasing interfacial binding energy, and consequently, the relative crystallinity on the interface exhibits progressive promotion. The Jeziorny model could well describe the primary crystallization of PLA in the composites. The extracted Avrami exponents based on the Jeziorny model indicate that the primary crystallization of PLA follows heterogeneous nucleation and three-dimensional growth. This study has revealed the intrinsic effect of the interfacial segmental mobility on the nonisothermal crystallization behavior of PLA in composites, which is of technological significance for its blow molding. Full article
Show Figures

Figure 1

22 pages, 11115 KiB  
Article
Optimised Sunflower Oil Content for Encapsulation by Vibrating Technology as a Rejuvenating Solution for Asphalt Self-Healing
by Jose L. Concha, Rodrigo Delgadillo, Luis E. Arteaga-Pérez, Cristina Segura and Jose Norambuena-Contreras
Polymers 2023, 15(6), 1578; https://doi.org/10.3390/polym15061578 - 22 Mar 2023
Cited by 4 | Viewed by 1527
Abstract
This study aimed to determine an optimal dosage of sunflower oil (i.e., Virgin Cooking Oil, VCO) as a rejuvenator for asphalt self-healing purposes, evaluating its effect on the chemical (carbonyl, and sulfoxide functional groups), physical (penetration, softening point, and viscosity), and rheological (dynamic [...] Read more.
This study aimed to determine an optimal dosage of sunflower oil (i.e., Virgin Cooking Oil, VCO) as a rejuvenator for asphalt self-healing purposes, evaluating its effect on the chemical (carbonyl, and sulfoxide functional groups), physical (penetration, softening point, and viscosity), and rheological (dynamic shear modulus, and phase angle) properties of long-term aged (LTA) bitumen. Five concentrations of sunflower oil (VCO) were used: 1%, 2%, 3%, 4%, and 5% vol. of LTA bitumen. VCO was encapsulated in alginate biopolymer under vibrating jet technology using three biopolymer:oil (B:O) mass ratios: 1:1, 1:5, and 1:9. The physical, thermal, and mechanical properties of the capsules were studied, as well as their effect on the physical properties of dense asphalt mixtures. The main results showed that an optimal VCO content of 4% vol. restored the chemical, physical, and rheological properties of LTA bitumen to a short-term ageing (STA) level. VCO capsules with B:O ratios of 1:5 presented good thermal and mechanical stability, with high encapsulation efficiency. Depending on the B:O ratio, the VCO capsule dosage to rejuvenate LTA bitumen and asphalt mixtures varied between 5.03–15.3% wt. and 0.24–0.74% wt., respectively. Finally, the capsule morphology significantly influenced the bulk density of the asphalt mixtures. Full article
(This article belongs to the Special Issue Polymeric Self-Healing Materials II)
Show Figures

Graphical abstract

13 pages, 2423 KiB  
Article
Synthesis of Sulfonated Polyphenylene Block Copolymers via In Situ Generation of Ni(0)
by Vikrant Yadav, Farid Wijaya, Hyejin Lee, Byungchan Bae and Dongwon Shin
Polymers 2023, 15(6), 1577; https://doi.org/10.3390/polym15061577 - 22 Mar 2023
Viewed by 1367
Abstract
Proton exchange membranes (PEMs) fabricated from sulfonated polyphenylenes (sPP) exhibit superior proton conductivity and electrochemical performance. However, the Ni(0) catalyst required for Colon’s cross-coupling reaction for the synthesis of sPP block copolymers is expensive. Therefore, in this study, we generated Ni(0) in situ [...] Read more.
Proton exchange membranes (PEMs) fabricated from sulfonated polyphenylenes (sPP) exhibit superior proton conductivity and electrochemical performance. However, the Ni(0) catalyst required for Colon’s cross-coupling reaction for the synthesis of sPP block copolymers is expensive. Therefore, in this study, we generated Ni(0) in situ from an inexpensive Ni(II) salt in the presence of the reducing metal Zn and NaI. The sPP block copolymers were synthesized from neopentyl-protected 3,5- and 2,5-dichlorobenzenesulfonates and oligo(arylene ether ketone) using the catalyst NiBr2(PPh3)2. The block copolymers synthesized using our strategy and the Ni(0) catalyst exhibited comparable polydispersity index values and high molecular weights. Thin, transparent, and bendable PEMs fabricated using selected high-molecular-weight sPP block copolymers synthesized via our strategy exhibited similar proton conductivities to those of the block copolymers synthesized using the Ni(0) catalyst. We believe that our strategy will promote the synthesis of similar multifunctional block copolymers. Full article
(This article belongs to the Topic Membranes for Electrochemical Energy Conversion)
Show Figures

Graphical abstract

11 pages, 2535 KiB  
Article
Mechanism of the Impact-Sensitivity Reduction of Energetic CL-20/TNT Cocrystals: A Nonequilibrium Molecular Dynamics Study
by Fuping Wang, Guangyan Du, Chenggen Zhang and Qian-You Wang
Polymers 2023, 15(6), 1576; https://doi.org/10.3390/polym15061576 - 22 Mar 2023
Cited by 1 | Viewed by 1196
Abstract
High-energy low-sensitivity explosives are research objectives in the field of energetic materials, and the formation of cocrystals is an important method to improve the safety of explosives. However, the sensitivity reduction mechanism of cocrystal explosives is still unclear. In this study, CL-20/TNT, CL-20 [...] Read more.
High-energy low-sensitivity explosives are research objectives in the field of energetic materials, and the formation of cocrystals is an important method to improve the safety of explosives. However, the sensitivity reduction mechanism of cocrystal explosives is still unclear. In this study, CL-20/TNT, CL-20 and TNT crystals were taken as research objects. On the basis of the ReaxFF-lg reactive force field, the propagation process of the wave front in the crystals at different impact velocities was simulated. The molecular dynamics data were used to analyze the molecular structure changes and initial chemical reactions, and to explore the sensitivity reduction mechanism of the CL-20/TNT cocrystal. The results showed that the chemical reaction of the CL-20/TNT cocrystal, compared with the CL-20 single crystal, is different under different impact velocities. At an impact velocity of 2 km/s, polymerization and separation of the component molecules weakened the decomposition of CL-20. At an impact velocity of 3 km/s, the decay rates of CL-20 and TNT in the cocrystal decreased, and the intermediate products were enhanced, such as nitrogen oxides. At an impact velocity of 4 km/s, the cocrystal had little effect on the decay rates of the molecules and formation of CO2, but it enhanced formation of N2 and H2O. This may explain the reason for the impact-sensitivity reduction of the CL-20/TNT cocrystal. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

21 pages, 6804 KiB  
Article
Damage Monitoring of Composite Adhesive Joint Integrity Using Conductivity and Fiber Bragg Grating
by Chow-Shing Shin and Liang-Wei Chen
Polymers 2023, 15(6), 1575; https://doi.org/10.3390/polym15061575 - 22 Mar 2023
Viewed by 1618
Abstract
Adhesive joints possess a number of advantages over traditional joining methods and are widely used in composite structures. Conventional non-destructive examination techniques do not readily reveal joint degradation before the formation of explicit defects. Embedded fiber Bragg grating (FBG) sensors and the resistance [...] Read more.
Adhesive joints possess a number of advantages over traditional joining methods and are widely used in composite structures. Conventional non-destructive examination techniques do not readily reveal joint degradation before the formation of explicit defects. Embedded fiber Bragg grating (FBG) sensors and the resistance of carbon nanotube (CNT)-doped conductive joints have been proposed to monitor the structural integrity of adhesive joints. Both techniques will be employed and compared in the current work to monitor damage development in adhesive joints under tensile and cyclic fatigue loading. Most of the previous works took measurements under an applied load, which by itself will affect the monitoring signals without the presence of any damage. Moreover, most FBG works primarily relied on the peak shifting phenomenon for sensing. Degradation of adhesive and inter-facial defects will lead to non-uniform strain that may chirp the FBG spectrum, causing complications in the peak shifting measurement. In view of the above shortfalls, measurements are made at some low and fixed loads to preclude any unwanted effect due to the applied load. The whole FBG spectrum, instead of a single peak, will be used, and a quantitative parameter to describe spectrum changes is proposed for monitoring purposes. The extent of damage is revealed by a fluorescent penetrant and correlated with the monitoring signals. With these refined techniques, we hope to shed some light on the relative merits and limitations of the two techniques. Full article
(This article belongs to the Special Issue Structural Integrity Assessment on Polymers and Composites)
Show Figures

Figure 1

21 pages, 5308 KiB  
Article
Natural Deep Eutectic Solvent Extraction of Bioactive Pigments from Spirulina platensis and Electrospinning Ability Assessment
by Rodrigo Martins, Cláudia Mouro, Rita Pontes, João Nunes and Isabel Gouveia
Polymers 2023, 15(6), 1574; https://doi.org/10.3390/polym15061574 - 22 Mar 2023
Cited by 5 | Viewed by 2187
Abstract
The first ever nanofibers produced by the electrospinning of polyvinyl alcohol (PVA) and Spirulina platensis extracts are presented in this article. Spirulina platensis extracts were obtained by ultrasound-assisted extraction (UAE) using two different solvents: a glucose/glycerol-based natural deep eutectic solvent (NADES) and water. [...] Read more.
The first ever nanofibers produced by the electrospinning of polyvinyl alcohol (PVA) and Spirulina platensis extracts are presented in this article. Spirulina platensis extracts were obtained by ultrasound-assisted extraction (UAE) using two different solvents: a glucose/glycerol-based natural deep eutectic solvent (NADES) and water. Through spectrophotometry analysis, it was possible to determine the pigment yield of the extractions for both extracts: phycocyanin = 3.79 ± 0.05 mg/g of dry biomass (DB); chlorophylls = 0.24 ± 0.05 mg/g DB; carotenoids = 0.13 ± 0.03 mg/g DB for the NADES/Spirulina extracts, and phycocyanin = 0.001 ± 0.0005 mg/g DB; chlorophylls = 0.10 ± 0.05 mg/g DB; carotenoids = 0.20 ± 0.05 mg/g DB for water/Spirulina extracts. Emulsions were formed by mixing the microalgae extracts in PVA (9%, w/v) at different concentrations: 5, 20, 40, and 50% (v/v). Electrospinning was carried out at the following conditions: 13 cm of distance to collector; 80 kV of applied voltage; and 85 rpm of electrode rotation. After the nanofibers were collected, they were checked under a scanning electron microscope (SEM). ImageJ was also used to determine fiber diameter and frequency. SEM results showed the formation of nanofibers for 5 and 20% (v/v) of NADES/Spirulina extract content in the electrospinning emulsions, presenting diameters of 423.52 ± 142.61 nm and 680.54 ± 271.92 nm, respectively. FTIR confirmed the presence of the NADES extracts in the nanofibers produced. Overall, the nanofibers produced showed promising antioxidant activities, with the NADES/Spirulina- and PVA-based nanofibers displaying the highest antioxidant activity (47%). The highest antimicrobial activity (89.26%) was also obtained by the NADES/Spirulina and PVA nanofibers (20%, v/v). Principal Component Analysis (PCA) revealed positive correlations between both the antioxidant and antimicrobial activities of the electrospun nanofibers, and extract content in the emulsions. Moreover, PCA also indicated positive correlations between the viscosity and conductivity of the emulsions and the diameter of the nanofibers produced. Full article
Show Figures

Figure 1

27 pages, 9816 KiB  
Review
Electrical Heaters for Anti/De-Icing of Polymer Structures
by Aleksei V. Shiverskii, Mohammad Owais, Biltu Mahato and Sergey G. Abaimov
Polymers 2023, 15(6), 1573; https://doi.org/10.3390/polym15061573 - 22 Mar 2023
Cited by 3 | Viewed by 3139
Abstract
The problem of icing for surfaces of engineering structures requires attention more and more every year. Active industrialization in permafrost zones is currently underway; marine transport in Arctic areas targets new goals; the requirements for aerodynamically critical surfaces of wind generators and aerospace [...] Read more.
The problem of icing for surfaces of engineering structures requires attention more and more every year. Active industrialization in permafrost zones is currently underway; marine transport in Arctic areas targets new goals; the requirements for aerodynamically critical surfaces of wind generators and aerospace products, serving at low temperatures, are increasing; and fiber-reinforced polymer composites find wide applicability in these structural applications demanding the problem of anti/de-icing to be addressed. The traditional manufacturing approaches are superimposed with the new technologies, such as 3D printers and robotics for laying heat wires or cheap and high-performance Thermal Sprayed methods for metallic cover manufacturing. Another next step in developing heaters for polymer structures is nano and micro additives to create electrically conductive heating networks within. In our study, we review and comparatively analyze the modern technologies of structure heating, based on resistive heating composites. Full article
(This article belongs to the Special Issue Polymer Based Electronic Devices and Sensors II)
Show Figures

Figure 1

19 pages, 10781 KiB  
Article
A Numerical Thermo-Chemo-Flow Analysis of Thermoset Resin Impregnation in LCM Processes
by Hatim Alotaibi, Chamil Abeykoon, Constantinos Soutis and Masoud Jabbari
Polymers 2023, 15(6), 1572; https://doi.org/10.3390/polym15061572 - 22 Mar 2023
Viewed by 1620
Abstract
This paper presents a numerical framework for modelling and simulating convection–diffusion–reaction flows in liquid composite moulding (LCM). The model is developed in ANSYS Fluent with customised user-defined-functions (UDFs), user-defined-scalar (UDS), and user-defined memory (UDM) codes to incorporate the cure kinetics and rheological characteristics [...] Read more.
This paper presents a numerical framework for modelling and simulating convection–diffusion–reaction flows in liquid composite moulding (LCM). The model is developed in ANSYS Fluent with customised user-defined-functions (UDFs), user-defined-scalar (UDS), and user-defined memory (UDM) codes to incorporate the cure kinetics and rheological characteristics of thermoset resin impregnation. The simulations were performed adopting volume-of-fluid (VOF)—a multiphase flow solution—based on finite volume method (FVM). The developed numerical approach solves Darcy’s law, heat transfer, and chemical reactions in LCM process simultaneously. Thereby, the solution scheme shows its ability to provide information on flow-front, viscosity development, degree of cure, and rate of reaction at once unlike existing literature that commonly focuses on impregnation stage and cure stage in isolation. Furthermore, it allows online monitoring, controlled boundary conditions, and injection techniques (for design of manufacturing) during the mould filling and curing stages. To examine the validity of the model, a comparative analysis was carried out for a simple geometry, in that the numerical results indicate good agreement—3.4% difference in the degree of cure compared with previous research findings. Full article
Show Figures

Figure 1

14 pages, 4870 KiB  
Article
Effect of Nanometric Particles of Bentonite on the Mechanical Properties of a Thermoset Polymeric Matrix Reinforced with Hemp Fibers
by Meylí Valin Fernández, María José Ahumada González, Rolando Briones Oyanadel, José Luis Valin Rivera, Angel Rodríguez Soto, Alvaro González Ortega, Cristobal Galleguillos Ketterer, Alexander Alfonso Alvarez, Francisco Rolando Valenzuela Diaz and Gilberto García del Pino
Polymers 2023, 15(6), 1571; https://doi.org/10.3390/polym15061571 - 22 Mar 2023
Cited by 3 | Viewed by 1378
Abstract
The influence of the addition of bentonite nanoparticles on the tensile and flexural strength of a thermosetting polymer matrix composite material reinforced with hemp fibers was de-terminated. All composites were manufactured with 5% of bentonite in the polymer mass–weight ratios and 10 to [...] Read more.
The influence of the addition of bentonite nanoparticles on the tensile and flexural strength of a thermosetting polymer matrix composite material reinforced with hemp fibers was de-terminated. All composites were manufactured with 5% of bentonite in the polymer mass–weight ratios and 10 to 45 wt% of fibers with a step of 5%. For mechanical characterization, tensile and flexural tests were performed: scanning electron microscopy and energy-dispersive X-ray spectroscopy analyses were carried out. The tensile strength of the samples containing bentonite compared to the polymer samples with the fiber addition was affected for all fiber addition percentages, except for 35% while the flexural resistance improved with the addition of bentonite in the percentages of 20, 30, 35, and 45% of fiber addition. With the addition of bentonite, the maximum values of tensile and flexural strength were both obtained for the 35% addition of fibers, with values of 34.28 MPa and 98.04 MPa, respectively. The presence of bentonite favored the rigidity of the material to traction and bending, which was reflected through an increase in the elastic modulus compared to the composite that only had fiber. The maximum values obtained were 9065 MPa in tension and 8453 MPa in flexion for the 40% and 35% of addition of fiber, respectively. Microscopy showed a good distribution of fibers in the matrix, the absence of internal porosities, and a good interaction between matrix and reinforcement. Full article
(This article belongs to the Special Issue Mechanical Response of Fibre-Reinforced Polymers II)
Show Figures

Figure 1

12 pages, 1755 KiB  
Article
Influence of Chitosan and Grape Seed Extract on Thermal and Mechanical Properties of PLA Blends
by Victoria Goetjes, Claudia L. von Boyneburgk, Hans-Peter Heim and Marilia M. Horn
Polymers 2023, 15(6), 1570; https://doi.org/10.3390/polym15061570 - 22 Mar 2023
Viewed by 1332
Abstract
Blends based on polylactic acid (PLA), chitosan, and grape seed extract (GE) were prepared by extrusion and injection molding. The effect of chitosan (5% and 15% on PLA basis) and natural extract (1% on PLA basis) incorporated into the PLA host matrix was [...] Read more.
Blends based on polylactic acid (PLA), chitosan, and grape seed extract (GE) were prepared by extrusion and injection molding. The effect of chitosan (5% and 15% on PLA basis) and natural extract (1% on PLA basis) incorporated into the PLA host matrix was explored regarding the thermal and mechanical properties. GE showed antioxidant activity, as determined by the DPPH assay method. Chitosan and GE affect the degree of crystallinity up to 30% as the polysaccharide acts as a nucleating agent, while the extract reduces the mobility of PLA chains. The decomposition temperature was mainly affected by adding chitosan, with a reduction of up to 25 °C. The color of the blends was specially modified after the incorporation of both components, obtaining high values of b* and L* after the addition of chitosan, while GE switched to high values of a*. The elongation at break (EB) exhibited that the polysaccharide is mainly responsible for its reduction of around 50%. Slight differences were accessed in tensile strength and Young’s modulus, which were not statistically significant. Blends showed increased irregularities in their surface appearance, as observed by SEM analysis, corresponding to the partial miscibility of both polymers. Full article
(This article belongs to the Special Issue Environmentally Friendly Bio-Based Polymeric Materials)
Show Figures

Figure 1

28 pages, 10324 KiB  
Article
Constraint Release Rouse Mechanisms in Bidisperse Linear Polymers: Investigation of the Release Time of a Short-Long Entanglement
by Céline Hannecart, Christian Clasen and Evelyne van Ruymbeke
Polymers 2023, 15(6), 1569; https://doi.org/10.3390/polym15061569 - 21 Mar 2023
Viewed by 1161
Abstract
Despite a wide set of experimental data and a large number of studies, the quantitative description of the relaxation mechanisms involved in the disorientation process of bidisperse blends is still under discussion. In particular, while it has been shown that the relaxation of [...] Read more.
Despite a wide set of experimental data and a large number of studies, the quantitative description of the relaxation mechanisms involved in the disorientation process of bidisperse blends is still under discussion. In particular, while it has been shown that the relaxation of self-unentangled long chains diluted in a short chain matrix is well approximated by a Constraint Release Rouse (CRR) mechanism, there is no consensus on the value of the average release time of their entanglements, τobs, which fixes the timescale of the CRR relaxation. Therefore, the first objective of the present work is to discuss the different approaches proposed to determine this time and compare them to a large set of experimental viscoelastic data, either newly measured (poly(methyl-)methacrylate and 1,4-polybutadiene blends) or coming from the literature (polystyrene and polyisoprene blends). Based on this large set of data, it is found that with respect to the molar mass of the short chain matrix, τobs follows a power law with an exponent close to 2.5, rather than 3 as previously proposed. While this slight change in the power law exponent does not strongly affect the values of the constraint release times, the results obtained suggest the universality of the CRR process. Finally, we propose a new description of τobs, which is implemented in a tube-based model. The accurate description of the experimental data obtained provides a good starting point to extend this approach to self-entangled binary blends. Full article
(This article belongs to the Special Issue Coarse-Grained Models for Polymers)
Show Figures

Figure 1

19 pages, 5082 KiB  
Article
Influence of Injection Molding Parameters on the Peel Strength between Plasma-Treated Fluoropolymer Films and Polycarbonate
by Martin Hubmann, Jonas Groten, Martin Pletz, Thomas Grießer, Kateřina Plevová, Wolfgang Nemitz and Barbara Stadlober
Polymers 2023, 15(6), 1568; https://doi.org/10.3390/polym15061568 - 21 Mar 2023
Cited by 1 | Viewed by 1608
Abstract
Light guiding is used to direct light from an emitting source to a different location. It is frequently realized through a clad–core structure with a difference in the refractive index of the materials. This paper explores the possibility of combining a fluoropolymer (THV) [...] Read more.
Light guiding is used to direct light from an emitting source to a different location. It is frequently realized through a clad–core structure with a difference in the refractive index of the materials. This paper explores the possibility of combining a fluoropolymer (THV) film of low refractive index, serving as a cladding layer, with a polycarbonate (PC) core, via injection molding. Pristine THV lacks adherence to the PC. However, when treated with O2 plasma prior to overmolding, bonding can be established that was quantified in peel tests. The effect of this surface treatment was further investigated by adjusting the plasma treatment duration and time to overmolding. Furthermore, parameter studies comprising the four molding parameters, namely packing pressure, injection speed, melt temperature, and mold temperature, were performed. Numerical injection molding simulations assessed the prevailing temperatures at the PC–THV boundary. Consequently, the temperature–time integral could be calculated and linked with the measured peel strengths by fitting a proportionality constant. While the plasma treatment duration showed minor influence, the activation diminished with time, halving the measured peel loads within 24 h. The adhesion was experimentally found to increase with a lower packing pressure, faster injection speed, and higher melt and mold temperature. Those same molding relations influencing the peel loads were also found with the temperature–time integral when scaled by the proportionality constant in the simulations (R2=85%). Apparently, adhesion is added by molding settings which promote higher interface temperatures that prevail for longer. Hereby, the faster injection speed increases the melt temperature through shear heating. A higher packing pressure, in contrast, presumably increases the heat transfer at the PC–THV interface, accelerating the cooling. The measured peel loads were 0.3–1.6 N/mm for plasma-treated samples and nearly zero for pristine THV. Full article
(This article belongs to the Special Issue Plastics II)
Show Figures

Graphical abstract

21 pages, 2025 KiB  
Review
A Short Review on Nanostructured Carbon Containing Biopolymer Derived Composites for Tissue Engineering Applications
by Mattia Bartoli, Erik Piatti and Alberto Tagliaferro
Polymers 2023, 15(6), 1567; https://doi.org/10.3390/polym15061567 - 21 Mar 2023
Cited by 1 | Viewed by 1197
Abstract
The development of new scaffolds and materials for tissue engineering is a wide and open realm of material science. Among solutions, the use of biopolymers represents a particularly interesting area of study due to their great chemical complexity that enables creation of specific [...] Read more.
The development of new scaffolds and materials for tissue engineering is a wide and open realm of material science. Among solutions, the use of biopolymers represents a particularly interesting area of study due to their great chemical complexity that enables creation of specific molecular architectures. However, biopolymers do not exhibit the properties required for direct application in tissue repair—such as mechanical and electrical properties—but they do show very attractive chemical functionalities which are difficult to produce through in vitro synthesis. The combination of biopolymers with nanostructured carbon fillers could represent a robust solution to enhance composite properties, producing composites with new and unique features, particularly relating to electronic conduction. In this paper, we provide a review of the field of carbonaceous nanostructure-containing biopolymer composites, limiting our investigation to tissue-engineering applications, and providing a complete overview of the recent and most outstanding achievements. Full article
Show Figures

Figure 1

29 pages, 2365 KiB  
Review
Biodegradable Polymer Electrospinning for Tendon Repairment
by Yiming Zhang, Yueguang Xue, Yan Ren, Xin Li and Ying Liu
Polymers 2023, 15(6), 1566; https://doi.org/10.3390/polym15061566 - 21 Mar 2023
Cited by 3 | Viewed by 2082
Abstract
With the degradation after aging and the destruction of high-intensity exercise, the frequency of tendon injury is also increasing, which will lead to serious pain and disability. Due to the structural specificity of the tendon tissue, the traditional treatment of tendon injury repair [...] Read more.
With the degradation after aging and the destruction of high-intensity exercise, the frequency of tendon injury is also increasing, which will lead to serious pain and disability. Due to the structural specificity of the tendon tissue, the traditional treatment of tendon injury repair has certain limitations. Biodegradable polymer electrospinning technology with good biocompatibility and degradability can effectively repair tendons, and its mechanical properties can be achieved by adjusting the fiber diameter and fiber spacing. Here, this review first briefly introduces the structure and function of the tendon and the repair process after injury. Then, different kinds of biodegradable natural polymers for tendon repair are summarized. Then, the advantages and disadvantages of three-dimensional (3D) electrospun products in tendon repair and regeneration are summarized, as well as the optimization of electrospun fiber scaffolds with different bioactive materials and the latest application in tendon regeneration engineering. Bioactive molecules can optimize the structure of these products and improve their repair performance. Importantly, we discuss the application of the 3D electrospinning scaffold’s superior structure in different stages of tendon repair. Meanwhile, the combination of other advanced technologies has greater potential in tendon repair. Finally, the relevant patents of biodegradable electrospun scaffolds for repairing damaged tendons, as well as their clinical applications, problems in current development, and future directions are summarized. In general, the use of biodegradable electrospun fibers for tendon repair is a promising and exciting research field, but further research is needed to fully understand its potential and optimize its application in tissue engineering. Full article
(This article belongs to the Special Issue Biodegradable Polymers for Drug Releasing)
Show Figures

Figure 1

16 pages, 6434 KiB  
Article
Polymer Composites Based on Polycarbonate/Acrylonitrile-Butadiene-Styrene Used in Rapid Prototyping Technology
by Katarzyna Bulanda, Mariusz Oleksy and Rafał Oliwa
Polymers 2023, 15(6), 1565; https://doi.org/10.3390/polym15061565 - 21 Mar 2023
Cited by 3 | Viewed by 1714
Abstract
As part of this work, polymer composites based on polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) were obtained and used in 3D printing technology, particularly Melted Extrusion Modeling (MEM) technology. The influence of selected fillers on the properties of the obtained composites was investigated. For this purpose, modified [...] Read more.
As part of this work, polymer composites based on polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) were obtained and used in 3D printing technology, particularly Melted Extrusion Modeling (MEM) technology. The influence of selected fillers on the properties of the obtained composites was investigated. For this purpose, modified fillers such as silica modified with alumina, bentonite modified with a quaternary ammonium salt, and hybrid lignin/silicon dioxide filler were introduced into the PC/ABS matrix. In the first part of this work, polymer blends and their composites containing 1.5–3 wt. of the filler were used to obtain the filament using the proprietary technological line. Moldings for testing the performance properties were obtained using additive manufacturing techniques and injection molding. In the subsequent part of this work, rheological properties (mass flow rate (MFR) and viscosity curves) and mechanical properties (Rockwell hardness and static tensile strength with Young’s modulus) were examined. The structures of the obtained composites were also determined by scanning electron microscopy (SEM/EDS). The obtained results confirmed the results obtained from a wide-angle X-ray scattering analysis (WAXS). In turn, the physicochemical properties were characterized on the basis of the results of tests using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Based on the obtained results, it was found that the introduced modified additives had a significant impact on the processing and functional properties of the tested composites. Full article
Show Figures

Graphical abstract

14 pages, 4067 KiB  
Article
Heteroatom-Enhanced Porous Carbon Materials Based on Polybenzoxazine for Supercapacitor Electrodes and CO2 Capture
by Thirukumaran Periyasamy, Shakila Parveen Asrafali and Seong-Cheol Kim
Polymers 2023, 15(6), 1564; https://doi.org/10.3390/polym15061564 - 21 Mar 2023
Cited by 3 | Viewed by 1213
Abstract
Through a solution method utilizing benzoxazine chemistry, heteroatoms containing porous carbons (HCPCs) were synthesized from melamine, eugenol and formaldehyde, followed by carbonization in a nitrogen atmosphere and chemical activation with KOH at three different activation temperatures, 700, 800 and 900 °C. The introduction [...] Read more.
Through a solution method utilizing benzoxazine chemistry, heteroatoms containing porous carbons (HCPCs) were synthesized from melamine, eugenol and formaldehyde, followed by carbonization in a nitrogen atmosphere and chemical activation with KOH at three different activation temperatures, 700, 800 and 900 °C. The introduction of melamine and eugenol to the monomer produced structurally bonded nitrogen and oxygen in porous carbons. Changing the calcination temperature can alter the doping level of heteroatoms and the particle size. These carbon materials exhibit large pore size distributions, tunable pore structure, high nitrogen and oxygen contents and high surface areas, which make them suitable for use as electrode materials in supercapacitors. As a result of activating at 800 °C, the sample HCPC-800 exhibits a high specific surface area of 984 m2/g, high oxygen and nitrogen content (3.64–6.26 wt.% and 10.61–13.65 wt.%), hierarchical pore structure, high degree of graphitization and good electrical conductivity. An outstanding rate capability is also demonstrated, as well as incredible longevity, retaining the capacitance up to 83% even after 5000 cycles in a solution containing 1 M H2SO4. Moreover, the activated porous carbon containing nitrogen exhibits a CO2 adsorption capacity of 3.6 and 3.5 mmol/g at 25 °C and 0 °C, respectively, which corresponds to equilibrium pressures of 1 bar. Full article
(This article belongs to the Special Issue Applications of Polymers in Energy and Environmental Sciences II)
Show Figures

Graphical abstract

28 pages, 11506 KiB  
Article
Polyamide 11 Composites Reinforced with Diatomite Biofiller—Mechanical, Rheological and Crystallization Properties
by Marta Dobrosielska, Renata Dobrucka, Dariusz Brząkalski, Paulina Kozera, Agnieszka Martyła, Ewa Gabriel, Krzysztof J. Kurzydłowski and Robert E. Przekop
Polymers 2023, 15(6), 1563; https://doi.org/10.3390/polym15061563 - 21 Mar 2023
Cited by 1 | Viewed by 1371
Abstract
Amorphic diatomaceous earth is derived from natural sources, and polyamide 11 (PA11) is produced from materials of natural origin. Both of these materials show a low harmfulness to the environment and a reduced carbon footprint. This is why the combination of these two [...] Read more.
Amorphic diatomaceous earth is derived from natural sources, and polyamide 11 (PA11) is produced from materials of natural origin. Both of these materials show a low harmfulness to the environment and a reduced carbon footprint. This is why the combination of these two constituents is beneficial not only to improve the physicochemical and mechanical properties of polyamide 11 but also to produce a biocomposite. For the purpose of this paper, the test biocomposite was produced by combining polyamide 11, as well as basic and pre-fractionated diatomaceous earth, which had been subjected to silanization. The produced composites were used to carry out rheological (melt flow rate-MFR), mechanical (tensile strength, bending strength, impact strength), crystallographic (X-ray Diffraction-XRD), thermal and thermo-mechanical (differential scanning calorimetry–DSC, dynamic mechanical thermal analysis–DMTA) analyses, as well as a study of hydrophobic–hydrophilic properties of the material surface (wetting angle) and imaging of the surface of the composites and the fractured specimens. The tests showed that the additive 3-aminopropyltriethoxysilane (APTES) acted as an agent that improved the elasticity of composites and the melt flow rate. In addition, the produced composites showed a hydrophilic surface profile compared to pure polylactide and polyamide 11. Full article
(This article belongs to the Special Issue Mechanical and Dynamic Characterization of Polymeric Composites II)
Show Figures

Figure 1

32 pages, 5853 KiB  
Review
Phase Change Composite Microcapsules with Low-Dimensional Thermally Conductive Nanofillers: Preparation, Performance, and Applications
by Danni Yang, Sifan Tu, Jiandong Chen, Haichen Zhang, Wanjuan Chen, Dechao Hu and Jing Lin
Polymers 2023, 15(6), 1562; https://doi.org/10.3390/polym15061562 - 21 Mar 2023
Cited by 1 | Viewed by 1480
Abstract
Phase change materials (PCMs) have been extensively utilized in latent thermal energy storage (TES) and thermal management systems to bridge the gap between thermal energy supply and demand in time and space, which have received unprecedented attention in the past few years. To [...] Read more.
Phase change materials (PCMs) have been extensively utilized in latent thermal energy storage (TES) and thermal management systems to bridge the gap between thermal energy supply and demand in time and space, which have received unprecedented attention in the past few years. To effectively address the undesirable inherent defects of pristine PCMs such as leakage, low thermal conductivity, supercooling, and corrosion, enormous efforts have been dedicated to developing various advanced microencapsulated PCMs (MEPCMs). In particular, the low-dimensional thermally conductive nanofillers with tailorable properties promise numerous opportunities for the preparation of high-performance MEPCMs. In this review, recent advances in this field are systematically summarized to deliver the readers a comprehensive understanding of the significant influence of low-dimensional nanofillers on the properties of various MEPCMs and thus provide meaningful enlightenment for the rational design and multifunction of advanced MEPCMs. The composition and preparation strategies of MEPCMs as well as their thermal management applications are also discussed. Finally, the future perspectives and challenges of low-dimensional thermally conductive nanofillers for constructing high performance MEPCMs are outlined. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop