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Abstract: In this work, two types of solid paraffins (i.e., linear and branched) were added to high-
density polyethylene (HDPE) to investigate their effects on the dynamic viscoelasticity and tensile
properties of HDPE. The linear and branched paraffins exhibited high and low crystallizability,
respectively. The spherulitic structure and crystalline lattice of HDPE are almost independent of the
addition of these solid paraffins. The linear paraffin in the HDPE blends exhibited a melting point at
70 ◦C in addition to the melting point of HDPE, whereas the branched paraffins showed no melting
point in the HDPE blend. Furthermore, the dynamic mechanical spectra of the HDPE/paraffin
blends exhibited a novel relaxation between −50 ◦C and 0 ◦C, which was absent in HDPE. Adding
linear paraffin toughened the stress–strain behavior of HDPE by forming crystallized domains in the
HDPE matrix. In contrast, branched paraffins with lower crystallizability compared to linear paraffin
softened the stress–strain behavior of HDPE by incorporating them into its amorphous layer. The
mechanical properties of polyethylene-based polymeric materials were found to be controlled by
selectively adding solid paraffins with different structural architectures and crystallinities.

Keywords: high-density polyethylene; solid paraffin; mechanical properties; dynamic mechanical spectra

1. Introduction

High-density polyethylene (HDPE) is a typical semicrystalline polymer and has been
widely used in various products, such as pipes, tanks, containers, sheets, and fibers, which
were produced by various molding processes. The improvement of mechanical properties
of HDPE-based materials makes it possible to expand their applicability. In a previous
work, we investigated the additive effects of liquid paraffin (LP) on the supermolecular
structure, such as spherulite and alternating lamellar structures, and dynamic mechanical
spectra of HDPE [1]. In the plastic industry, adding LP to HDPE has been known to enhance
the drawability of HDPE; thus, LP addition has been used as a technique for producing
gel-spun polyethylene (PE) fibers and/or ultradrawing PE gels [2–4]. We found that LP is
intensively concentrated in the amorphous phase of HDPE and expands its long period
due to the thickening of the amorphous layer.

Dynamic mechanical spectra provide us with the fundamental characteristics of vis-
coelastic materials such as polymeric materials. It is well known that various PE-based
materials have three relaxations in the temperature dependence of the dynamic mechanical
moduli, identified conventionally as α, β, and γ in order of decreasing temperature. The
α relaxation is observed in the range between room temperature and the melting temper-
ature, β relaxation is observed around −20 to −30 ◦C, γ relaxation is observed at about
−120 ◦C. The α relaxation is ascribed to the molecular motion in the crystalline phase and
the γ relaxation is associated with the local molecular motion. The β relaxation is absent
for HDPE with thin amorphous layers but is well identified for short-chain branched PE
and ultra-high molecular weight PE with thick amorphous layers [5–8]. The β relaxation
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is sensitive to the molecular motion within amorphous layers. The existence of β relax-
ation strongly affects the mechanical properties such as toughening, impact resistance,
and drawability.

A novel β processes in the range of −50 ◦C to −20 ◦C appear in the dynamic mechan-
ical spectra of HDPE swollen with LP [1]. The β relaxation was due to the loosening of
the tie chains that results from the thickening of the amorphous layer and mixing with
floating LP chains, which inhibited the formation of a longer trans sequence of the tie chains
between the lamellae [6]. Herein, we investigated the additive effects of solid paraffin, a
crystalline compound and completely different from LP, to explore further modification
methods for PE-based materials. Since LP exists as a liquid in HDPE while solid paraf-
fin exists as microcrystals or crystalline, the behavior of these paraffins is expected to be
quite different.

Solid paraffin is prepared by separating and refining the distillation fraction of crude
oil, and it is a mixture of hydrocarbons with various isomeric structures [9–11]. When crude
oil is separated and fractionated by weight through a vacuum distillation column, the main
component separated and refined from relatively light oils with relatively lower boiling
temperatures is normal paraffin wax (nPW). In addition, the main component refined from
relatively heavy oils with relatively higher boiling temperatures is identified as a branched
isotype hydrocarbon (iPW) and is called microwax (or microcrystalline wax). In this study,
we compare the additive effects of these solid paraffin’s isomeric structures.

nPW is a powdery crystalline substance with a molecular weight of several hundreds
and a carbon number distribution index of several tens. It exhibits high crystallizability
and is called macrowax (or macrocrystalline wax). The average molecular weight of
conventional macrowax is known to be around 300–500. Compared to nPW, iPW typically
forms finer needle- or plate-like microcrystals and has a similar carbon number distribution.
The crystallinity of iPW is lower than that of nPW owing to the presence of branches and
many noncrystallizable components [12,13]. Notably, these two types of solid paraffin
exhibit different physical properties: paraffin wax, i.e., macrowax, is translucent and brittle,
and microwax is opaque and ductile [14]. Microwax usually has relatively higher molecular
weight, smaller crystals such as microcrystals, and greater affinities to oil as compared to
conventional paraffin waxes [9]. The average molecular weight of conventional microwax
is known to be around 600 to 800 [10].

Solid paraffins have been used as a processing aid, particularly for PE plastics, and
as a lubricant to prevent abrasion between polymer materials and molding machines [15].
Therefore, the additive effects of these solid paraffin compounds must be studied because,
in practice, almost all products contain a small amount of solid paraffin. However, the
effects of solid paraffin addition on the structural morphology and mechanical properties of
the resulting PE solids after molding have not been sufficiently understood. This is because
of a lack of systematic research on the additive effects of solid paraffins on the morphology
and mechanical characteristics of HDPE in solids.

The additive effects of paraffin waxes with various melting temperatures and molec-
ular weights on the mechanical and thermal properties of HDPE materials have been
extensively investigated [16–20]. For example, Sotomayer et al. [16] investigated the stress–
strain behavior of the blends of HDPE and solid paraffins with a carbon distribution of
C18 to C50. They showed a lower drawability along with the solid paraffin content as
compared to that of pure HDPE. Furthermore, the HDPE with 30 vol.% of solid paraffin showed
the transition from ductile to brittle, and its yield point disappeared. However, there have been
no studies focusing on the effects of the differences in structural architecture of paraffin waxes
on the mechanical properties of PE. There have been several reports that the crystallizability
depends on the species of solid paraffins: macrowax and microwax [21–23]. Herein, we sep-
arately investigated the effects of a normal paraffin wax (nPW) and a branched isotype
paraffin wax (iPW) addition on the dynamic mechanical spectra and tensile properties of
HDPE. The purpose of this work is to explore the possibility of using solid paraffins to
modify the mechanical characteristics of HDPE.
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2. Experiments
2.1. Sample Preparation

HDPE with a weight-average molecular weight of Mw = 1.86 × 105 and a molecular
weight distribution index of Mw/Mn = 6.0 was used as the base material. Two types of
solid paraffins with similar molecular weights were used as modifiers. One was a linear
normal-type saturated hydrocarbon-rich solid paraffin (nPW) with 20–50 carbons. The
other was an isotype saturated hydrocarbon-rich microwax (iPW) with 15–70 carbons. Both
are commercially available (Nippon Seiro Co., Ltd., Tokyo, Japan).

The samples blended with HDPE were mixed with 5, 10, and 20 wt.% paraffin at
180 ◦C and 50 rpm in a twin screw-type mixer. Then, the pristine HDPE, HDPE/nPW, and
HDPE/iPW samples were melt-pressed at 190 ◦C and 20 MPa for 5 min. The compression-
molded sheets with a thickness of 200 ± 5 µm were prepared by quenching at 0 ◦C (in an
ice water bath) for 5 min after being melted in the hot press. These sample sheets were
used for the following measurements.

2.2. Measurements

Differential scanning calorimetry (DSC) measurements were conducted using a Di-
amond Differential Scanning Calorimeter (Diamond DSC, PerkinElmer, Waltham, MA,
USA). The samples of about 3 mg weight sealed in aluminum pans were heated from
−50 ◦C to 210 ◦C at a 20 ◦C/min heating rate under a nitrogen atmosphere. The crys-
tallinity of the pristine HDPE sample was estimated from the DSC endothermic peak area.
Table 1 summarizes the melting points of all samples.

Table 1. Characteristics of HDPE, HDPE/nPW, and HDPE/iPW.

Sample Code Lp/nm R/µm Tm/◦C

HDPE 26 2.0 132

HDPE/nPW (95 w/5 w) 26 1.9 132
HDPE/nPW (90 w/10 w) 26 1.8 130
HDPE/nPW (80 w/20 w) 27 2.7 128

HDPE/iPW (95 w/5 w) 26 1.8 133
HDPE/iPW (90 w/10 w) 26 1.9 132
HDPE/iPW (80 w/20 w) 27 1.9 130

Lp: Long period; R: Spherulite radius; Tm: Melting point.

The microstructure of the samples was investigated by small angle X-ray scattering
(SAXS) and wide-angle X-ray diffraction (WAXD). SAXS measurements were performed at
room temperature using a diffractometer (Nano-Viewer, Rigaku, Tokyo, Japan), with Cu
Kα X-ray (λ = 0.154 nm) at 40 mV/30 mA. The long period was estimated from the SAXS
peak position after Lorentz correction according to Bragg’s law. Table 1 lists the long period
values of all samples. WAXD measurements were conducted at room temperature using a
Rigaku Nanoviewer—a nanoscale X-ray structure evaluation system for the solid paraffin
blended with HDPE—with Cu Kα X-ray (λ = 0.154 nm) at 40 mV/30 mA under room
temperature. In addition, WAXD measurements of the pristine nPW and iPW waxes were
conducted using a Rigaku Mini Flex II, with Cu Kα X-ray (λ = 0.154 nm) at 30 kV/15 mA
from 0◦ to 60◦ at a 2◦/min scanning speed.

The spherulite morphology was investigated with small-angle light scattering (SALS)
using the sample films prepared with about 50 µm thickness. SALS measurements were
conducted at room temperature using a diode laser (λ = 532 nm) with 4.5 mW (CPS532, Thor-
labs, NJ, USA) for initial HDPE, HDPE/nPW (80 w/20 w), and HDPE/iPW (80 w/20 w),
and a He–Ne laser (λ = 633 nm) for HDPE/nPW (90 w/10 w), HDPE/nPW (95 w/5 w),
HDPE/nPW (90 w/10 w), and HDPE/nPW (95 w/5 w). Light scattering pictures were
taken using a CCD camera (DCC1545, Thorlabs, Newton, NJ, USA) under the perpendicu-
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lar polarization (Hv) condition. The averaged spherulite radius was estimated from the
maximum scattering angle using Stein’s equation [24]:

4πn(R/λ) sin(θmax/2) = 4.09 (1)

Here, R is the average radius of spherulite, θmax is the scattering angle, (n = 1.54) is the
refractive index of PE. Table 1 presents the spherulite radii of all samples.

The dynamic mechanical measurements were conducted on 5-mm-wide and 30-mm-
long strips of 200-µm-thick sample sheets. The gauge length between clamps was 20 mm,
the frequency was 10 Hz, and the equipment used was DVE-V4 (UBM Co., Ltd., Kyoto,
Japan). The temperature dependences of the storage modulus E′, loss modulus E′′ and
loss tangent tan δ were measured in the range from −150 ◦C to 150 ◦C at a heating rate of
2 ◦C/min under a nitrogen atmosphere.

Tensile tests were performed at room temperature using a tensile machine (Model
4466 INSTRON, Norwood, MA, USA) at a 10 mm/min elongation speed. Dumbbell-shaped
specimens with a 10-mm gauge length cut from the 200-µm-thick sample sheets were used
for the measurements. The tensile stress was determined from dividing the tensile load by
the initial cross section and the tensile strain was calculated from the ratio of the increment
of the length between clamps to the initial gauge length.

2.3. Characterization of the Starting Materials

Figure 1 shows the wide-angle X-ray diffraction (WAXD) profiles for HDPE, nPW, and
iPW. The main crystal structure of HDPE and both solid paraffins was orthorhombic. The
nPW exhibited considerably high crystallinity with almost no amorphous halo, whereas
the iPW exhibited a broad amorphous halo, indicating low crystallizability [14,25].
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Figure 1. Wide-angle X-ray diffraction (WAXD) profiles of (a) HDPE, (b) nPW, and (c) iPW samples.

Figure 2 illustrates the DSC curves of HDPE and solid paraffins. The melting points of
HDPE, nPW, and iPW were 132 ◦C, 71 ◦C, and 43 ◦C, respectively. A slight shoulder was
detected in the lower temperatures in nPW and iPW melting peaks, suggesting a solid–solid
phase modification from orthorhombic to hexagonal crystals [26,27]. The crystallinity of
the pristine HDPE sample estimated from the heat of fusion was 60%.
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Figure 2. Differential scanning calorimetry (DSC) curves of (a) HDPE, (b) nPW, and (c) iPW samples.

3. Results and Discussion

As well known, almost crystalline polymers prepared from the melts show spherulite
structure which consists of crystalline lamellae composed of folded chain crystallites. The
amorphous regions reside in the interlamellar regions and a number of tie chains linking
between adjacent crystalline lamellae exists within the amorphous layers. Moreover, the
spherulite is filled with the stacked lamellae in such a way that a constant degree of
crystallinity is maintained. Figure 3 shows the pictures of the SALS patterns of the HDPE,
HDPE/nPW (80 w/20 w), and HDPE/iPW (80 w/20 w) sheets. The similar scattering
patterns were also observed for other blends. The four-leaf clover pattern reflects a typical
spherulite structure. Based on the scattering patterns, the spherulite radius values were
estimated to be about 2.0 µm, except for HDPE/nPW (80 w/20 w), which had a radius
of 2.7 µm. The addition of solid paraffins limitedly affected the crystallization process of
HDPE. However, a large amount of nPW enhanced the spherulite size, suggesting that
nPW can act as secondary nuclei for spherulite growth. As another factor, Chen et al. [28]
pointed out that the presence of 30% solid paraffin led to a PE crystal imperfection on the
spherulite structure in HDPE due to the crystallinity and polarized optical microscopy.
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Figure 4 summarizes the WAXD data for the HDPE blends. Orthorhombic crystals
were observed in all samples. Moreover, adding both paraffins only slightly affected the
diffraction patterns of the HDPE. Figure 5 shows the DSC curves for the HDPE as well
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as HDPE/nPW and HDPE/iPW blends. iPW addition did not affect the DSC curve of
HDPE. However, in addition to the peak corresponding to the melting point of HDPE,
nPW addition exhibited a slight peak at around 70 ◦C, corresponding to the melting point
of nPW (Figure 5, inset). These results suggest that iPW showing lower crystallizability
was not crystallized in the HDPE matrix. Conversely, nPW showing considerably higher
crystallizability was partially crystallized in the HDPE matrix. The nPW nuclei or crys-
tallites that evolved during blending may have caused HDPE spherulite growth through
heterogeneous nucleation. The melting point of HDPE for both blends decreased slightly
with increasing PW content (Table 1). The decrease in the melting point possibly resulted
from a diluent effect according to Raoult’s law [29]. Consequently, it was suggested that the
iPW molecules are completely dissolved in the amorphous phase of HDPE, whereas nPW
molecules are also incorporated in the amorphous phases, but a part of nPW molecules
forms crystalline domains.
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The dynamic mechanical properties of semi-crystalline polymers are dominated by
microscopic structural state such as crystalline form, crystallinity, crystalline lamellar
thickness, amorphous layer thickness, and lamellar stacking [30–32]. Figure 6 depicts
the dynamic mechanical spectra of HDPE, HDPE/nPW (80 w/20 w), and HDPE/iPW
(80 w/20 w). Dynamic mechanical spectra of other blends are shown in the Supporting
Information as shown in Figure S1. The pristine HDPE showed two dispersions. The
first dispersion at higher temperatures was attributed to the onset of the motion and
migration of crystalline chains (α dispersion) within crystal lattices, appearing at about
50 ◦C toward the melting point. α relaxation is attributed to an interlamellar slip motion
and to the chain motion along the c axis of crystal lattice. The second dispersion at lower
temperatures shown in the pristine HDPE is γ dispersion, appearing at around −120 ◦C.
The ascription of γ dispersion caused by local molecular motion was controversial [33–39]
for the following reasons: microscopic motion involving disordered chains, crystal defects
on the crystal surface, and a molecular glass transition resulting from the localized motion of
amorphous chains [40].
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Notably, β relaxation is not observed for typical HDPE materials. Linear low-density
PE with short-chain branches, low density PE with long-chain branches, and ultrahigh
molecular weight PE exhibited β relaxation in the range from −50 ◦C to 0 ◦C, because
of an expansion of amorphous layer thickness [6]. These results led us to conclude that
this dispersion was due to the inability of the tie chains linking the adjacent crystalline
lamellae to take all the trans conformations, resulting in tie chain loosening [6]. Thus, the
conformational molecular motion of the loose tie chains can be considered to be activated
in temperature range from −50 ◦C to 0 ◦C. For HDPE, the amorphous layer thickness was
very thin, leading the tie chains to an almost taut or all-trans conformation. Consequently,
the taut tie chains linking between adjacent crystalline lamellae have no ability to activate
the conformational motion prior to the onset of the crystalline chain motion (α dispersion).
According to our previous study [1], we found that incorporating LP into the amorphous
phase of HDPE produces a β relaxation peak and is capable of activating the molecular
motion within the amorphous phases of HDPE.

A clear β relaxation peak was observed in the HDPE/iPW blends, similar to the
additive effects of LP. The β relaxation peak reduced with decreasing solid paraffin contents
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(see Figure S1). Thus, this phenomenon results from mixing with solid paraffin compounds
acting as floating and dangling chains within the amorphous phases of the HDPE matrix.
For the HDPE/nPW blends, the β relaxation peak of E′′ was broader than that of the iPW
blends. Note that the concomitant decrease in E′ and E′′ was around the melting point
(70 ◦C) of nPW in the α dispersion region, which was also observed in the DSC (see
Figure 5a). This implies that the melting of the crystallized nPW domains is reflected in the
dynamic mechanical spectra. Consequently, the storage modulus E′ of HDPE/nPW was
higher than those of HDPE and HDPE/iPW below the melting point of nPW (70 ◦C) since
the crystallized nPW domains exist in the HDPE matrix (see Figure 6).

Figures 7 and 8 illustrate the stress–strain curves at room temperature for all samples.
Both curves exhibited stress–strain behavior for typical crystalline polymer solids. A clear
yield peak appeared as a maximum in the stress–strain curve beyond the initial elastic
region and is the onset point of temporary plastic deformation. Subsequently, the samples
underwent a large-scale steady plastic flow due to necking, followed by hardening caused
by increased stress [5,8]. The yield process is associated with the onset of irreversible
deformation including the crystalline lamellar fragmentation and the morphological trans-
formation of the spherulitic into the fibril structures. The yield stress corresponds to
the failure strength and the area under a stress–strain plot up to the yield point is the
failure toughness.
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Interestingly, the samples exhibited softening with iPW addition because of the over-
all stress reduction keeping the elongation at break. This is likely because almost iPW
molecules were incorporated into the amorphous phase of HDPE. Thus, the solid paraffin
molecules within the amorphous phases activate the molecular motion of amorphous
chains of HDPE, leading to softening the HDPE matrix. The softening effects are shown
in Figure S2. Thus, the stress values of HDPE/iPW blends divided by the HDPE weight
fraction are almost in accordance with the curve of pristine HDPE, indicating that adding
iPW effectively softens the tensile properties.

In contrast, nPW addition enhanced yield behavior, inducing increased yield and
necking stresses, as well as expanded the elongation at break. The yield behavior is caused
by a release of the elastic energy stored in the crystalline lamellae due to the fragmentation
of stacked crystalline lamellae under tensile deformation [41,42]. The enhancement of
the yield stress will be due to that the stacked crystalline lamellae were reinforced by
highly crystalline nPW components. These results indicate that the dual contributions of
crystallized nPW domains and dissolved nPW in the amorphous phases enhance yield
behavior as well as drawability.

4. Conclusions

In this work, we compared the additive effects of normal and iso-rich solid paraffin
waxes on the structural morphology, dynamic mechanical characteristics, and uniaxial
tensile properties of a HDPE. The addition of the two kinds of paraffin waxes limitedly
affected the supermolecular structure, such as spherulites and alternating lamellar structure.
When the amount of nPW was 20 wt.%, which is relatively higher amount, the spherulite
size is enlarged. This suggests that nPW has a possibility to act as secondary nuclei for
growing of spherulite of HDPE.

The addition of iso-rich, low-crystalline solid paraffin (iPW) exhibited a β relaxation
in the range from −50 ◦C to 0 ◦C in the dynamic mechanical spectra, which is not observed
in pristine HDPE. The appearance of a β relaxation peak suggests that solid paraffin
compounds mixed with the amorphous chains of HDPE act as floating and dangling chains
within the amorphous layers. Consequently, the overall stress level of the stress–strain
curves degreased with the addition of iPW compounds. Moreover, the appearance of the
relaxation in the −50 ◦C to 0 ◦C range can be expressed to improve the impact strength
or the mechanical response under higher strain rates of HDPE materials. This leads to
the overall softening of HDPE materials in the tensile properties. Thus, iPW compounds
seem to act as a “softener” for HDPE. On the other hand, the addition of normal-type rich
solid paraffins (nPWs) promoted not only the activation of amorphous chains in HDPE, but
also the formation of crystallized components in the HDPE matrix, leading to the storage
modulus E’ of HDPE/nPW being higher than those of HDPE below the melting point of
nPW (70 ◦C). As a consequence, the yield stress was increased, and the break point was
expanded to higher strains by adding nPW. The dual contributions of the crystallized nPW
components and the non-crystalline nPW components dissolved in the amorphous phases
enhance yield behavior as well as drawability. Thus, nPW compounds seem to act as a
“toughener” for HDPE.

Paraffin waxes, which are a mixture of these paraffins, have been widely used as
lubricants to prevent the abrasion of the machine surface during molding. Considering
that adding lubricants is indispensable for molding various polyolefin-based materials,
lubricant selection on the basis of the structural type of the paraffin plays an important
role in material production and application. In addition, investigating the additive effects
of various paraffin compounds with identified structural architectures is imperative in
designing PE-based materials with high mechanical performance. The modification effects
of HDPE were found to depend largely on the structural architecture of the solid paraffin.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym15051320/s1, Figure S1: Dynamic viscoelastic spectra of (a)
HDPE/nPW (95 w/5 w) (blue) and HDPE/iPW (95 w/5 w) (red) and (b) HDPE/nPW (90 w/10 w)
(blue) and HDPE/iPW (90 w/10 w) (red). Figure S2: Stress-strain curves of initial HDPE and
HDPE/iPW. The stress values are divided by the weight fraction of HDPE.
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