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Abstract: The species of Candida present good capability to form fungal biofilms on polymeric
surfaces and are related to several human diseases since many of the employed medical devices
are designed using polymers, especially high-density polyethylene (HDPE). Herein, HDPE films
containing 0; 0.125; 0.250 or 0.500 wt% of 1-hexadecyl-3-methylimidazolium chloride (C16MImCl) or
its analog 1-hexadecyl-3-methylimidazolium methanesulfonate (C16MImMeS) were obtained by melt
blending and posteriorly mechanically pressurized into films. This approach resulted in more flexible
and less brittle films, which impeded the Candida albicans, C. parapsilosis, and C. tropicalis biofilm
formation on their surfaces. The employed imidazolium salt (IS) concentrations did not present
any significant cytotoxic effect, and the good cell adhesion/proliferation of human mesenchymal
stem cells on the HDPE-IS films indicated good biocompatibility. These outcomes combined with
the absence of microscopic lesions in pig skin after contact with HDPE-IS films demonstrated their
potential as biomaterials for the development of effective medical device tools that reduce the risk of
fungal infections.

Keywords: ionic liquid; human mesenchymal stem cells; biocompatibility; melt blending; histopatho-
logical evaluation

1. Introduction

Nowadays, polymer-based medical devices such as catheters [1–3], prostheses [1,2],
endotracheal tubes [1,2], implants [1,2], tissues for tissue engineering [1], drug delivery
systems [3] and heart valves [1], are commonly used in hospitals. Candida spp. (e.g., C.
tropicalis, C. albicans and C. parapsilosis) have a strong tendency to colonize these polymeric
surfaces, forming fungal biofilms [4,5]. By definition, biofilms are complex communities
of microorganisms, with a high degree of organization, characterized by cells that are
adhered to a surface or interface and embedded in an extracellular matrix of extrapolymeric
substances (polysaccharides, proteins, lipids and DNA) of microbial origin, producing a
spatially organized three-dimensional structure [6]. Chemical communication between
cells, called quorum sensing, allows microorganisms (bacteria and fungi) to coordinate
their activity and group together in communities that provide similar benefits as those of
multicellular organisms [1,7]. The process of biofilm formation occurs through adhesion
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to medical devices, which is arbitrated by the proteins of the cell wall. As biofilms are
highly adherent, the in vivo destruction of the biofilm requires the removal of the con-
taminated medical device, and this procedure could result in medical complications [6–8].
Altogether, the Candida sp. biofilms elevate the probability of nosocomial infections in
immunocompromised patients due to therapeutic failure and the elevated resistance to
important antifungal drugs [9], such as amphotericin B and azoles [1,10,11].

Within this context, the development of biomaterials with improved antibiofilm prop-
erties is highly desired. As such, the utilization of high-density polyethylene (HDPE) with
imidazolium salt (IS) additives is promising for the development of biomaterials for use in
medical devices. This polymer has excellent mechanical and biological properties, turning
this material extremely suitable for applications in medical devices [12], which has been ex-
plored in facial implants as a substitute for the human skeleton in bone regeneration [13,14],
tangible bone implants [12], tissue engineering (scaffolds) [15], reconstruction of nasal
cartilage [16] and catheters [17,18].

The application of drug additives in HDPE-based medical devices represents an
emerging technology. Interestingly, these devices do not have the primary purpose to act as
drug reservoirs but may contain the latter, leading to an adjunctive pharmacological action.
The incorporation of additives, e.g., antibiotics into temporary or permanent implants is
being used in an attempt to reduce infections and to improve the acceptance of organic
implanted material, minimizing the possibility of rejection [17,18].

Imidazolium salts (ISs) have an ion that is a cationic version of a neutral imidazole
heterocycle and are known for presenting various advanced properties [19–21]. When
ISs are in the liquid state at 100 ◦C, these are classified as ionic liquids. In general, ISs
are attractive substances for various chemical and pharmaceutical applications, princi-
pally due to their thermal and chemical stability, neglectable volatility, and modifiable
physical and chemical properties through structural modifications [22–25]. Various bio-
logical activities and applications of ISs have been identified, such as antibacterial [24–26],
antifungal [26–28], antitumor [24], antioxidant [24], antifibrous [24], bioengineering [24,26]
and anti-inflammatory [29].

Currently, there are few truly effective antifungal drugs against emerging yeasts. A
variety of N-alkyl-substituted ISs was screened in vitro to verify the antifungal activity
against C. glabrata, C. parapsilosis, C. tropicalis, and Trichosporon asahii. The best activity
against fungal growth was determined for the ISs 1-hexadecyl-3-methylimidazolium chlo-
ride (C16MImCl) and 1-hexadecyl-3-methylimidazolium methanesulfonate (C16MImMeS).
This, in combination with the absence of cytotoxicity and damage to human leukocytes,
turns these substances into promising drug leads [23]. Interestingly, the pre-treatment of
catheter surfaces with C16MImCl impeded the growth of C. tropicalis biofilms [30]. Com-
plementing this preventive action and in comparison to chlorhexidine, the gold standard
for asepsis in hospitals, much lower concentrations of C16MImCl and C16MImMeS were
necessary to effectively remove C. tropicalis biofilms on polystyrene microtiter surfaces [31].
In addition to these ISs, t-BuOH-functionalized ISs with varying N-alkyl chain lengths
were studied for their antimicrobial and antibiofilm properties. The one with the longest
N-alkyl chain, dodecyl, was the most effective to inhibit the biofilm growth of Staphylococcus
epidermidis and C. albicans [32].

Poly(L-lactide) films containing an IS additive (C16MImCl or C16MImMeS) have been
prepared by solvent casting which presented effective antibiofilm activities against C. albi-
cans, C. parapsilosis and C. tropicalis [33]. The above-mentioned materials are biocompatible,
do not cause skin irritation, and retain the original poly(L-lactide)’s mechanical and thermal
properties. The incorporation of IS additives in polymers is an encouraging route to obtain
biomaterials. Herein, HDPE-based biomaterials were obtained through melt-blending with
an IS (C16MImCl or C16MImMeS) (Figure 1). The resulting biomaterials were characterized,
including their antibiofilm properties against Candida spp.
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Figure 1. ISs C16MImCl and C16MImMeS applied in this study.

2. Materials and Methods

Materials. HDPE (HA 7260, Braskem S.A., Triunfo, RS, Brazil) and C16MImCl (CJC
China Jie Chemical, Shanghai, China) were donated and purchased, respectively.
C16MImMeS was prepared using the synthesis reported [20]. For the removal of residual
water, HDPE and the ISs were vacuum dried at 60 ◦C for 5 h.

Yeast Strains. The following phenotypically identified biofilm-forming yeast strains
were selected: C. albicans CA04; C. parapsilosis RL11, RL20 and C. tropicalis ATCC750,
ATCC950, 17A, 57A, 72A, 102A, 17P, 72P, 94P, RL15, RL16, RL17. These isolates belonged to
the mycology collection of the Laboratory of Applied Mycology at UFRGS [33].

Melt-Blended HDPE-IS and Film Formation. HDPE was melt-blended without or
with an IS (0, 0.125, 0.250, or 0.500 wt%), using a twin-screw extruder (HAAKE Rheomex
PTW 16 OS, Thermo Fisher Scientific, Waltham, MA, USA). The IS was added after 1 min
to the molten polymer, and the components were mixed for 6 min, maintaining the screw
speed and temperature of 60 rpm and 190 ◦C, respectively. Processed samples were left
cooling to 25 ◦C, air dried and milled. After vacuum drying at 60 ◦C for 5 h, the samples
were pressed into 0.5 mm thick films using a hydraulic press (Monarch 3710, Carver,
Wabash, IN, USA). Initially, the material was molten within 4 min at 190 ◦C, and then
pressed for 30 s at 4 lbf. The obtained films were abbreviated as HDPE.IS.content (e.g.,
HDPE.MeS.0125 for HDPE containing 0.125 wt% of C16MImMeS).

Scanning Electron Microscopy (SEM). A scanning electron microscope (EVO 50, Carl
Zeiss AG, Oberkochen, Germany) was used to study: (A) the morphology of the HDPE
and HDPE-IS film surfaces and (B) the biofilm inhibition on these films through reported
protocols [33].

Atomic Force Microscopy (AFM). The surfaces of the HDPE and HDPE-IS films were
studied with the aid of a scanning probe microscope (5500, Agilent Technologies, Chandler,
AZ, USA), using a reported procedure [33].

X-ray Diffraction (XRD). The crystallinity of the HDPE and HDPE-IS films was ana-
lyzed with a powder diffractometer (D500, Siemens, Munich, Germany) through a reported
procedure [33].

Differential Scanning Calorimetry (DSC). A differential scanning calorimeter (Q20
V24.10 Build 122, TA Instruments, New Castle, DE, USA) was used to study the phase
transitions of the HDPE and HDPE-IS films, using a reported protocol [33].
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Thermogravimetric Analysis (TGA). The thermal degradation of the HDPE and
HDPE-IS films was analyzed in a thermogravimetric analyzer (QA-50, TA Instruments,
New Castle, DE, USA), using a reported protocol [33].

Dynamic Mechanical Analysis (DMA). The dynamic mechanical properties of the
HDPE and HDPE-IS films were studied using a reported procedure [33], and a dynamic
mechanical analyzer (Q800, TA Instruments, New Castle, DE, USA).

Water Contact Angle Measurements. The water contact angles were measured with
the aid of a goniometer/drop shape analyzer (DSA100, Krüss, Hamburg, Germany), using
a reported procedure [33].

Antibiofilm Assay. Petri dishes with Sabouraud agar containing chloramphenicol
(HiMedia Laboratories LLC, Kelton, PA, USA) were employed to grow fresh yeast colonies
(36 ◦C, 24 h). An inoculum (106 CFU/mL) of the yeast colonies in tryptone soya broth (6 mL;
HiMedia Laboratories LLC, Kelton, PA, USA) was prepared and incubated (36 ◦C, 24 h).
HDPE films (1 × 1 cm) were sterilized (UV), inserted in a composition of peptone water
(9‘mL; HiMedia Laboratories LLC, Kelton, PA, USA) and tryptone soya broth inoculum
(1 mL), and incubated for 96 h. The weakly adherent cells were removed using peptone wa-
ter, and the films were inserted in flasks with peptone water (50 mL). After treatment under
ultrasound (40 KHz, 10 min; Ultrasonic washer, USC-700, Unique Indústria e Comércio
de Produtos Eletrônicos Ltda, Jardim Belo Horizonte, SP, Brazil), the solutions with the
detached cells were diluted (10−1, 10−2, 10−3). These dilutions (20 µL) were plated in Petri
dishes on Sabouraud agar containing chloramphenicol, and incubated (36 ◦C, 24 h). Finally,
the number of CFU/cm−2 was determined and given logarithmically (log M, where M is
the average value). Pure HDPE (film) was employed as a positive control [34].

Minor Antibiofilm Concentration (MAC) Assay. The protocols CLSI M27-A2 and
CLSI M38-A were employed with minor modifications. Initially, the fresh yeast colonies
were grown in Petri dishes on Sabouraud agar containing chloramphenicol (36 ◦C, 24 h;
HiMedia Laboratories LLC, Kelton, PA, USA). After preparation of a 106 CFU/mL yeast
inoculum (100% transmittance for 0.9% saline and 90% transmittance for the 106 CFU/mL
yeast inoculum) in sterile saline (0.9%), aliquots (20 µL) were pipetted into 96-well mi-
croplates and complemented with Roswell Park Memorial Institute culture medium (180 µL;
Gibco RPMI 1640, Thermo Fisher Scientific, Waltham, MA, USA). The HDPE films were
cut in circles (5 mm diameter), sterilized (UV, 30 min), placed into the 96-well microplates,
incubated (36 ◦C, 24 h), and then washed with sterile saline (0.9%, 1 mL; Sigma-Aldrich,
Saint Louis, MO, USA). These films were placed into sterile 96-well microplates and 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (160 µL; Sigma-Aldrich, Saint
Louis, MO, USA) was added to assess cell viability as a function of redox potential (3 h). The
removal of the solution containing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide was followed by treatment (15 min) with isopropanol (160 µL; Sigma-Aldrich,
Saint Louis, MO, USA). A microplate reader (EZ Read 400, Biochrom, Cambridge, United
Kingdom) was used to determine the absorption intensities (570 and 690 nm) using 100 µL
of each sample in isopropanol. The pure HDPE film in the mixture of yeast inoculum
(20 µL) and RPMI (180 µL) was the positive control. For the negative control, RPMI (200 µL)
was used [34]. The percentage of biofilm inhibition was determined through the formula:
100 − [(average assay absorbance)/(average absorbance of the positive control)] × 100.

Biological Analysis on HDPE Films. (A) In vitro cell culture: human Mesenchymal
Stem Cells (hMSC, Lonza, Italy) at the fifth passage were employed to perform biological
studies, using a reported procedure for the in vitro cell culture [33]. (B) Cell attachment—
morphological analysis: A confocal microscope (TCS SP8, Leica Microsystems, Buccinasco,
Milan, Italy) was employed to analyze cell-film interactions and spreading, using a fluo-
rescent dye. In particular, HDPE films were cultured with 2 × 104 cells (48 h; 37 ◦C); later,
the non-attached cells were eliminated by careful washing with phosphate buffer solution
(PBS; pH = 7.4, 0.01 M, Sigma-Aldrich, Milan, Italy), while the attached cells were treated
with cell tracker green 5-chloromethylfluorescein diacetate (Life Technologies, Milan, Italy)
in phenol red-free medium (37 ◦C; 30 min). The last step before the observation by CLSM
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consisted of washing with PBS and incubation in complete medium (1 h). (C) Biocom-
patibility test—attachment and proliferation: The biocompatibility test was performed
on sterilized HDPE films (ethanol (4 h) and UV light (2 h)) equilibrated in Eagle’s alpha
minimum essential medium (sterile-filtered, Sigma-Aldrich, Milan, Italy) overnight. Later,
HDPE films with and without IS were seeded in triplicate with 1 × 104 hMSCs and cultured
(21 days). The effect of HDPE films on cell attachment and proliferation was quantitatively
estimated by the Alamar blue assay (Life Technologies, Italy) at different time points. The
results were reported as % of Alamar blue reduction (% AB reduction).

Statistical Analysis. One-way Analysis of Variance was employed with the multiple
Dunnett comparison test, considering a significant difference for P < 0.05. The statistical
analysis data were represented as mean ± standard deviation for n = 4 (antibiofilm, and
MAC) or n = 3 (biocompatibility assay).

Histopathological Evaluation in Pig Skin with HDPE Films. The pig skin prepara-
tion, penetration and histopathological evaluation were performed following the reported
procedures [33]. Ethic approval number: 04/2016 of the Animal Use Ethics Committee of
the Federal Catarinense Institute - Campus Concórdia, Concórdia, SC, Brazil.

3. Results

HDPE-based biomaterials with IS additives were prepared by melt blending, followed
by pressing into films. This resulted in the preparation of HDPE films with 0; 0.125; 0.250
and 0.500 wt% of either C16MImCl or C16MImMeS. In comparison to the rigid film of
HDPE, increasing the content of IS made the films more flexible and less brittle.

SEM investigations were performed to study the morphology of the HDPE-based
films’ surfaces. The micrographs of HDPE, HDPE.Cl.0500 and HDPE.MeS.0500 (Figure 2)
indicate that the IS incorporation did not have an expressive influence on the surface
morphology of these biomaterials. This behavior is different compared to our previous
work, in which the addition of C16MImCl and C16MImMeS in the PLLA matrix interfered
with the morphology leading to the formation of superficial spheres and increasing the
roughness of the final material [33]. This could be related to the difference in the procedures
that were applied to obtain the films; solvent casting (PLLA) vs. pressure molding (HDPE),
as well as the chemical interactions between the polymer and IS [35]. As such, the eventual
effects of the ISs on the surface morphology of HDPE could have been eliminated during
the transformation into films under heat and pressure, assuming the flat surface of the
hydraulic press plates. This was further supported by the AFM images (Figure 3), where
HDPE (roughness = 13.0 nm), HDPE.Cl.0500 (roughness = 17.2 nm) and HDPE.MeS.0500
(roughness = 15.6 nm) presented smooth surfaces. The somewhat higher roughness of
HDPE.Cl.0500 was most likely related to its higher crystallinity, which will be presented in
Table 1. This was less pronounced for HDPE.MeS.0500.
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Table 1. Thermal Properties of HDPE Films.

Sample Tm
1

[◦C]
Tc

2

[◦C]
∆Hm

3

[J/g]
∆Hc

4

[J/g]
Xc

5

[%]
T5%

6

[◦C]
T10%

7

[◦C]
T50%

8

[◦C]
Residue 9

[%]

HDPE 132.3 116.8 209.8 221.4 71.6 429.6 443.5 483.3 0.1
HDPE.Cl.0125

HDPE.MeS.0125
131.6 117.5 212.9 216.0 72.7 416.7 441.6 482.5 0.2
132.0 117.2 212.8 207.9 72.7 431.0 445.1 483.0 0

HDPE.Cl.0250
HDPE.MeS.0250

131.7 117.6 205.7 223.9 70.4 400.8 429.3 473.1 0.7
131.6 117.4 207.2 211.1 70.9 415.4 434.6 474.1 0

HDPE.Cl.0500
HDPE.MeS.0500

131.5 117.8 220.3 231.6 75.6 414.8 441.9 480.4 0.4
131.8 117.3 206.1 210.1 70.7 412.2 432.6 481.4 0.7

1 Melting point obtained using DSC. 2 Crystallization temperature obtained using DSC. 3 Melting enthalpy
obtained using DSC. 4 Crystallization enthalpy obtained using DSC. 5 Crystallinity obtained using DSC, and
Equation (1), where ∆H0

m = 293 J/g for 100% crystalline HDPE [36], and Fp = polymer fraction. 6 Temperature at
decomposition of 5 wt% obtained using TGA. 7 Temperature at decomposition of 10 wt% obtained using TGA.
8 Temperature at decomposition of 50 wt% obtained using TGA. 9 Residual weight at 550 ◦C obtained using TGA.

Although the surface structure was not affected much by the presence of IS, the
crystallinity of the HDPE-based biomaterials was studied by XRD (Figure 4). Independent
of the IS (C16MImCl or C16MImMeS) or the IS content (0.125, 0.250 or 0.500 wt%), the type
of HDPE crystallinity was not affected by obtaining crystalline HDPE.IS materials. All
materials presented the typical HDPE peaks at 21.5◦ and 23.9◦, which correspond to the
(110) and (200) planes, respectively [36].
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Figure 4. XRD diffractograms (a.u. = arbitrary units) within the 2θ range of (A) 15–25◦, HDPE (black
line), HDPE.Cl.0125 (red line), HDPE.Cl.0250 (blue line), and HDPE.Cl.0500 (green line) and (B)
HDPE (black line), HDPE.MeS.0125 (red line), HDPE.MeS.0250 (blue line), and HDPE.MeS.0500
(green line).

The thermal properties of the HDPE-based biomaterials were studied by DSC and
TGA, and the results are given in Table 1. In general, the incorporation of IS in the contents
of 0.125, 0.250 and 0.500 wt% led to subtle modifications in the thermal properties of the
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HDPE.IS biomaterials. The melting and crystallization temperatures (HDPE: 132.3 ◦C and
116.8 ◦C, respectively) varied within 1 ◦C. Compared to neat HDPE, HDPE.Cl.0500 showed
increases of 5%, 4.4% and 5.6% in the melting enthalpy, the crystallization enthalpy and
the crystallinity, respectively. The results also indicate that the ISs can be used as additives
in the content range of 0.125–0.500 wt%, without modifying the thermal properties to a
large extent. The same properties were studied with PLLA.IS biomaterials which showed
an increase in thermal stability of 21 ◦C, whereas in this study the incorporation of IS
into HDPE basically did not affect the thermal stability [33]. This effect may be related to
the different intermolecular interactions between the ISs and the polymers. In PLLA.IS
relatively strong non-covalent hydrogen bond interactions can take place whereas in
HDPE.IS this is dependent on the weaker intermolecular van der Waals forces.

In Table 2 the storage and loss moduli and the stiffness results that were derived
by DMA are summarized. Most of the HDPE.IS biomaterials showed similar storage
moduli as HDPE, except for HDPE.Cl.0500, which showed lower values. For the loss
moduli, the IS-containing HDPE films showed, in general, lower values although this
did not follow a clear trend with increasing IS content, and HDPE.Cl.0500 presented a
decrease of 24% in the value of HDPE. The lower storage and loss moduli and stiffness for
HDPE.Cl.0500 could be related to its higher crystallinity as determined by DSC (Table 1).
This could also explain the higher film roughness of HDPE.Cl.0500 (Figure 3). Interestingly,
the biomaterials HDPE.Cl.0250, HDPE.MeS.0125 and HDPE.MeS.0500 demonstrated a
better stiffness performance than the neat HDPE; the last one showed an increase of 35%
in stiffness at 40 ◦C. No clear trend with the increase in IS load was observed indicating
the non-linearity of the results. Generally, the dynamic-mechanical properties balance
depended on the IS and its content, which was optimal for HDPE.MeS.0500. These results
are in agreement with those obtained for PLLA.IS, which also generally demonstrated
better values when C16MImMeS was employed [33].

Xc (%) =
∆Hm

∆H◦m × Fp
× 100% (1)

Table 2. Dynamic Mechanical Properties of HDPE Films.

Sample G’-40 1

[GPa]
G’40 2

[GPa]
G”-40 3

[GPa]
G”40 4

[GPa]
S-40 5

[kN/m]
S40 6

[kN/m]
S90 7

[kN/m]

HDPE 3.33 1.48 0.07 0.17 315.45 140.50 26.71
HDPE.Cl.0125

HDPE.MeS.0125
3.14 1.44 0.05 0.16 271.63 124.96 22.05
3.17 1.40 0.06 0.16 349.31 154.66 28.11

HDPE.Cl.0250
HDPE.MeS.0250

3.28 1.52 0.07 0.16 346.19 160.34 29.83
3.09 1.38 0.05 0.15 288.79 129.50 23.64

HDPE.Cl.0500 2.44 1.12 0.04 0.12 230.62 106.03 19.45
HDPE.MeS.0500 3.18 1.45 0.05 0.16 416.42 190.24 32.03

1 StorXage modulus at −40 ◦C. 2 Storage modulus at 40 ◦C. 3 Loss modulus at −40 ◦C. 4 Loss modulus at 40 ◦C.
5 Stiffness at −40 ◦C. 6 Stiffness at 40 ◦C. 7 Stiffness at 90 ◦C.

To better understand the influence of IS dispersed in the HDPE-IS films regarding
wettability properties, the water contact angle technique was applied (Figure 5). Although
HDPE.Cl.0250 showed a higher water contact angle than HDPE, the other films with
C16MImCl contents of 0.125 and 0.500 wt% only showed minor variations regarding the
IS-free film. The increased hydrophobicity of HDPE.Cl.0250 suggests that C16MImCl was
present at the surface and that its aliphatic part was preferentially oriented towards the
water drop. In contrast, the HDPE films with C16MImMeS showed enhanced hydrophilicity
according to the elevation of the IS load. The same effect was observed when 0.5 wt%
of C16MImMeS was applied in PLLA [33]. This suggests again that the IS was present
at the film surface and that the polar part (imidazolium cation ring and IS anion) was
preferentially oriented towards the water drop.
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Figure 5. Water contact angles for HDPE films related to the IS content: HDPE (blue H), HDPE.Cl
(black n), and HDPE.MeS (red l).

Initially, the in vitro biofilm assay antibiofilm was performed to verify whether HDPE
biomaterials with ISs exhibited an antibiofilm effect compared to HDPE (Figures S1–S3). In
this test it was verified that in comparison with HDPE (without the ISs), all tested biomate-
rials (HDPE.Cl.0125, HDPE.Cl.0250, HDPE.Cl.0500, HDPE.MeS.0125, HDPE.MeS.0250 and
HDPE.MeS.0500) showed antibiofilm activity against clinical isolates of C. tropicalis 72A, C.
parapsilosis RL11 and RL20 and C. albicans CA04. Furthermore, HDPE films with C16MImCl
(excluding HDPE.Cl.0250) also showed antibiofilm activity against C. tropicalis RL17.

Subsequently, the in vitro minor antibiofilm assay was performed to verify the percentage
of prevention of biofilm formation on films of HDPE containing C16MImCl (HDPE.Cl.0125,
HDPE.Cl.0250 and HDPE.Cl.0500) or C16MImMeS (HDPE.MeS.0125, HDPE.MeS.0250 and
HDPE.MeS.0500), and the results are represented in Figures 6 and 7, respectively. Those
films were differentiated from the neat HDPE against 12 isolates of C. tropicalis that are
well known to form biofilms [33,37]. The results of the statistical analysis are shown in
Figures S4–S9. In general, the obtained results suggest that the presence of IS reduced
the growth of biofilms compared to HDPE. The biofilm inhibition varied between 0–75%
and 0–64% on the HDPE films containing C16MImCl and C16MImMeS, respectively. The
inhibition percentage was dependent on the tested C. tropicalis isolate, which was possibly
due to genetic mutations that made some isolates more resistant to the HDPE-IS biomate-
rials [38]. The best percentages of impediment of biofilm formation were obtained using
HDPE.Cl.0125 and HDPE.Cl.0250 with 75% for C. tropicalis 17P. When HDPE.Cl.0500 was
employed, a 65% impediment was obtained for C. tropicalis 17P and 47% for C. tropicalis 17A
(Figure 6). The best percentages of impediment of biofilm formation using HDPE.MeS.0125
were 54% for C. tropicalis ATCC 750 and 41% for C. tropicalis 17P. HDPE.MeS.0250 demon-
strated a 40% impediment for C. tropicalis 94P and 37% for C. tropicalis ATCC 950. In the
case of HDPE.MeS.0500, a 64% impediment was obtained for C. tropicalis 17P and 46% for
C. tropicalis 72P (Figure 7).
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These results can be ascribed to the intrinsic antibiofilm property of IS, which was
previously reported for C16MImCl in the pre-treatment of catheter surfaces [30], C16MImCl
and C16MImMeS incorporated in PLA-based biomaterials [33], and imidazolium polymeric
materials [27]. Now, this property was effectively transposed after their incorporation in
HDPE. As HDPE alone is not an effective antibiofilm material, the ISs must be present on
the biomaterial’s surface for this antibiofilm property to take place. As such, the prevention
of biofilm formation was the result of a surface phenomenon due to the presence of IS at
the HDPE surface. Even if IS would leach into the biological medium, its antibiofilm action
will only take place when it is present on the surface of the biomaterial.
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The results obtained with HDPE films with different contents of C16MImCl and
C16MImMeS tested with C. tropicalis isolates showed that there is no direct relationship
between the IS content used as an additive in HDPE and the percentage of prevention
of formation of the biofilm (Figures 6 and 7). Considering the effectiveness of the HDPE
biomaterials in relation to the IS content compared to C. tropicalis isolates, it was possible
to verify that at contents of 0.125 and 0.250 wt%, C16MImCl was more effective in pre-
venting biofilm formation when compared to C16MImMeS. At the content of 0.500 wt%,
C16MImMeS was more effective. In the case of PLA.IS, increasing the contents of the IS
C16MImCl and C16MImMeS increased the percentage of impediment of biofilm forma-
tion [33]. The absence of this trend in the case of HDPE.IS suggests that other biomaterial
properties impacted their determined antibiofilm potential including hydrophilicity and
roughness [39,40].

Figure 8 shows SEM micrographs of HDPE samples. After 72 h of incubation with the
clinical isolate C. tropicalis 72A (biofilm builder), the micrographs of HDPE (Figure 8A–D)
show the formation of the biofilm with extracellular material and the cells at different
stages of growth adhered to the HDPE film surface. In the cases of the films HDPE.Cl.0500
and HDPE.MeS.0500 (Figure 8E–H), the biofilm formation was prevented as no fungal
and biofilm growth of C. tropicalis 72A was observed on the surfaces of these biomaterials.
The results obtained indicate that, in the same way as PLLA.IS, both ISs were effective as
anti-biofilm additives for HDPE.IS [33].
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Figure 8. SEM micrographs of (A) HDPE (scale bar = 100 µm), (B) HDPE (scale bar = 100 µm),
(C) HDPE (scale bar = 10 µm), (D) HDPE (scale bar = 2 µm), (E) HDPE.Cl.0500 (scale bar =
100 µm), (F) HDPE.Cl.0500 (scale bar = 2 µm), (G) HDPE.MeS.0500 (scale bar = 100 µm) and (H)
HDPE.MeS.0500 (scale bar = 2 µm), after undergoing biofilm growth conditions.

The biocompatibility of a material is the principal parameter that governs the deci-
sion about the possibility to apply it in implants for human bodies. Such a biomaterial,
when used in tissue engineering, should be non-toxic and biocompatible, without causing
an intolerable degree of damage to that body [41]. In general, the in vitro cell-material
interaction study is frequently used as an initial preliminary analysis of cell biocompat-
ibility [42]. Herein, human mesenchymal stem cells (hMSC), generally used to evaluate
the regeneration of mineralized extracellular matrix (ECM) in bone defects [43–46], were
used for the in vitro testing of the biocompatibility of the HDPE-based materials with
IS [43]. In particular, the effect of HDPE.IS biomaterials on the hMSC’s behavior was
evaluated by cell adhesion, which is the first step involved in the biocompatibility process
(Figures 9 and 10A,B). Indeed, this cell attachment is the main stage to assess the influence
of material surfaces on the hMSC behavior in the first hours of culture time. Both qualitative
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and quantitative analyses were performed with the aim to obtain information about the
cell adhesion process. The morphological analysis (Figure 9) demonstrated a change in
morphology with increasing IS contents. hMSC seeded on HDPE (without IS) showed a
thin and elongated structure typical of fibroblast cells. Differently, the HDPE.IS biomaterials
show a correlation between the presence of IS and the hMSC morphology. HDPE-based
biomaterials with the ISs C16MImCl and C16MImMeS induced the stem cells to assume a
polygonal structure, typical of osteoblast cells. This behavior was more pronounced for the
biomaterials with higher IS contents (Figure 9C,D,F,G), which is highly favorable for bone
repair processes. HDPE, HDPE.Cl and HDPE.MeS showed excellent values in the quanti-
tative cell adhesion analysis which demonstrated good surface properties, promoting the
extension of filopodia from the body cell and ensuring a stable cell attachment in the first
48 h of incubation (Figure 10A). For the C16MImCl-based biomaterials, the cell adhesion
increased with an increasing IS content, showing a higher cell adhesion percentage for
HDPE.Cl.0500 in comparison to HDPE. All HDPE.MeS samples showed values comparable
to those obtained with HDPE. The confocal micrographs demonstrate that HDPE.Cl.0500
and HDPE.MeS.0500 improved the spreading of hMSC at the cell-material interface. In-
deed, the cells are polygonal in shape, which is different from the elongated morphology
observed for the substrates with lower IS amounts. These results were also obtained with
PLLA.IS substrates in previous work as reported [33].
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Figure 9. Confocal micrographs of hMSC grown on (A) HDPE, (B) HDPE.Cl.0125, (C) HDPE.Cl.0250,
(D) HDPE.Cl.0500, (E) HDPE.MeS.0125, (F) HDPE.MeS.0250, and (G) HDPE.MeS.0500 (scale
bar = 100 µm).

After the initial cell adhesion (Figure 10A), which is important for the next biocompat-
ibility step, the cell proliferation after longer exposure times was studied (4, 7, 10, 14 and
21 days). This enables evaluating its continued cell development after initial adaptation
to the biomaterial. In general, the HDPE materials, without and with IS, showed lower
proliferation percentages than the control after 7 days (Figure 10B). Nevertheless, this
was compensated for in all materials after 21 days; the cells became acquainted over time
with their new environment. HDPE, HDPE.Cl.0250, HDPE.Cl.0500 and HDPE.MeS.0250
exceeded the proliferation percentages of the control after 10 days. The best proliferation
results were achieved with the biomaterials containing 0.250 wt% of IS.

Finally, the results of the histopathological evaluation of skin of pig ear incubated with
the HDPE films containing the ISs (Figure S10) showed no microscopic lesions.
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and 21 days of culture time.

4. Conclusions

In conclusion, the melt-blending of HDPE with the IS additives C16MImCl and
C16MImMeS, and subsequent pressure molding, provided promising biomaterial films.
Altogether, the ability of HDPE.IS to act effectively against the biofilm formation of Candida
species, being biocompatible with hMSC, affording good cell adhesion and proliferation
and being highly favorable for bone repair processes may open alternatives for the devel-
opment of innovative medical devices.
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