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Abstract: The combination of polyethylene terephthalate (PET), one of the most used polymers in the
textile industry, with graphene, one of the most outstanding conductive materials in recent years,
represents a promising strategy for the preparation of conductive textiles. This study focuses on the
preparation of mechanically stable and conductive polymer textiles and describes the preparation of
PET/graphene fibers by the dry-jet wet-spinning method from nanocomposite solutions in trifluo-
roacetic acid. Nanoindentation results show that the addition of a small amount of graphene (2 wt.%)
to the glassy PET fibers produces a significant modulus and hardness enhancement (≈10%) that can
be partly attributed to the intrinsic mechanical properties of graphene but also to the promotion of
crystallinity. Higher graphene loadings up to 5 wt.% are found to produce additional mechanical
improvements up to ≈20% that can be merely attributed to the superior properties of the filler. More-
over, the nanocomposite fibers display an electrical conductivity percolation threshold over 2 wt.%
approaching ≈0.2 S/cm for the largest graphene loading. Finally, bending tests on the nanocomposite
fibers show that the good electrical conductivity can be preserved under cyclic mechanical loading.

Keywords: smart textiles; mechanical stability; electrical conductivity; deformation cycles

1. Introduction

Electronic textiles (e-textiles) and, in particular, smart textiles, which are e-textiles
capable of sensing stimuli from the environment and react accordingly, have gained great
interest in recent years [1–5]. Nowadays, smart textiles are commonly involved in ambitious
objectives related to the internet of things, robotics, healthcare, portable energy harvesters,
etc. [2,6–8].

The preparation of such textiles requires the efficient combination of the polymer
fibers with the electronic component, which has evolved from the bulky electronic devices
of the late 1980s, focused on meeting specific requirements mainly for military purposes, to
the smaller electronic components incorporated into fabrics and principally dedicated to
sensing environmental or body parameters for healthcare. However, the real integration
of electronic components into textiles requires the fabrication of devices directly on the
fibers using high-performance materials that allow seamless incorporation into fabrics.
Consequently, fiber-based devices are rapidly developing as an alternative and versatile
platform that can offer functionality in a variety of configurations due to their peculiar
geometry, aspect ratio, feature sizes, and mechanical properties [1,9]. In this respect, the
combination of poly(ethylene terephthalate), PET, a polymer that occupies a very relevant
place in the textile industry, with graphene is emerging as a promising tool for smart
conductive fibers.

Polymers 2023, 15, 1245. https://doi.org/10.3390/polym15051245 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym15051245
https://doi.org/10.3390/polym15051245
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-0592-1007
https://orcid.org/0000-0002-0212-0634
https://orcid.org/0000-0002-0377-4410
https://orcid.org/0000-0001-9588-7879
https://doi.org/10.3390/polym15051245
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym15051245?type=check_update&version=3


Polymers 2023, 15, 1245 2 of 18

The fast-growing interest in smart textiles has oriented investigations towards the
search for new electronic materials beyond metals, since the incorporation of the latter into
textiles involves complex, expensive, difficult-to-scale-up and environmentally unfriendly
processes. In addition, the presence of metals in the final material adds much weight
and toxicity and imparts limited mechanical compliance to stress. Conducting polymers
(CP) have been proposed as conductive elements in textiles due to their high solution
processability, light weight and mechanical properties, which are closer to textile polymers
than metals [10]. Very recently, ultrafine polyaniline fibers with good mechanical properties
and acceptable electrical conductivity have been developed [11]. However, CPs also
present limitations, such as lower charge transport, poor mechanical properties, instability
under ambient conditions and degradation with usage due to de-doping [12]. In this
sense, the fascinating electrical, mechanical and thermal properties of graphene, and its
advantages over traditional metal-based technology—reduced toxicity, higher flexibility,
less weight, lower processing temperature, etc.—have stimulated considerable activity in
the development of functional textiles that incorporate graphene [13–15].

Graphene or its derivatives have been incorporated into textiles principally using
coating techniques from appropriate inks [16–20] or by transferring CVD-grown graphene
to the textile fiber surface [21–23]. While the latter methodology presents a broad limitation
from the scalability point of view, coating approaches present some aspects to be considered.
The first is related to the type of graphene or derivative employed. Due to its good solubility
and supramolecular interactions with common textile fibers that are somewhat polar (PET,
Nylon, cotton, etc.), graphene oxide (GO) has been preferred [20,24]. However, GO requires
an additional reduction step to recover its electrical conductivity, where harsh chemical or
thermal treatments can lead to the degradation, chemical modification and/or hydrolysis of
the textile, eventually worsening its original mechanical properties. The use of previously
reduced graphene oxide (rGO) dispersions has also been reported [17,18]. Nevertheless,
rGO dispersions are less concentrated, resulting in low electrical conductivity levels and
requiring several padding cycles that appear to be time-consuming and more expensive.
Recently, we described an alternative approach for the preparation of nanocomposite
coatings based on graphene and an elastomer, poly(styrene-b-ethylene-co-butylene-b-
styrene) (SEBS) [19]. This strategy presents the important advantage of using pristine
graphene (neither GO nor rGO). In addition, it produces mechanically stable and washable
coatings because the elastomer confers flexibility and hydrophobicity to the conductive
coating. Furthermore, nanocomposite inks prepared following this procedure can be used
for coating different natural and synthetic textiles.

Beyond the initial interest, the research [25–28] on nanocomposites of PET with
graphene and derivatives seems to have been reactivated in recent years [29–36]. Con-
sidering the importance of the filler/matrix interface in achieving nanocomposites with
improved or new properties, graphene oxide has been the preferred graphene derivative, as,
in principle, it is able to establish hydrogen bonding interactions with PET. Recent studies
investigated the effect of the GO aspect ratio and surface chemistry on the mechanical
properties of its nanocomposites with PET prepared by melt compounding [31,34,36]. They
demonstrated that surface functionalization with trimellitic anhydride generated stronger
filler/polymer interfaces with enhanced load transfer [36]. In addition, they concluded
that the microstructure of the polymer, which regulates the mechanical properties, strongly
depends on the filler aspect ratio [31,34]. However, the low electrical conductivity of GO
limits its use in materials for electronics or smart textiles. Nanocomposites of graphene
nanoplatelets (GNP) and PET with a low percolation threshold and electrical conductivity
of 10 S·m−1 have been prepared by melt mixing, where the dispersion of GNP in the
matrix is assisted by an ethylene methyl acrylate copolymer (EMA) [32]. Nevertheless, for
electronic or smart textiles, these graphene/PET nanocomposites need to be processed in
the form of fibers, and, to the best of our knowledge, examples are scarce [30,33,37].

According to preceding studies, the fiber morphology and mechanical and electrical
properties are directly related to the choice of fiber formation process (dry or wet-jet
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or combined), including the type of precipitation bath [38–40]. Here, we report on the
preparation and characterization of PET/graphene nanocomposite fibers by a dry-jet wet-
spinning method using precision fluid dispensing equipment. The main challenge is
to incorporate electrical conductivity into the fibers while preserving their mechanical
properties. Mechanical measurements were undertaken on an isolated fiber using the
most advanced nanoindentation techniques and the results are discussed as a function
of graphene content. Morphological and structural studies by electron microscopy and
X-ray diffraction, respectively, are correlated with mechanical performance and electrical
conductivity. Finally, with regard to the potential application of PET/graphene fibers
for e-textiles, the stability of electrical conductivity under cyclic bending has also been
explored.

2. Materials and Methods
2.1. Chemicals

PET (NovaPET CR pellets with intrinsic viscosity 0.8 dL·g−1) was kindly supplied by
AITIIP (Zaragoza). Trifluoroacetic acid, TFA (CAS No.: 76-05-1) and methanol (CAS No.:
67-56-1) were supplied by Sigma-Aldrich.

Graphene (G) with a thickness of <3 layers, an average particle size of ~40 µm, a BET
surface of 480 m2·g−1 and oxygen content (XPS) of ~2.5% was obtained from Avanzare Nan-
otechnology (La Rioja, Spain). The G was characterized by SEM and Raman spectroscopy
(Figure 1) and the electrical conductivity measured. The morphological characterization
showed the typical worm-like shape of expanded graphite and indicated the presence
of layered graphene structures [41]. The stacked graphene laminates appeared wrinkled,
which is typical of graphene sheets obtained by the oxidation of graphite followed by high
thermal reduction [42]. The most important features in the Raman spectra, obtained using a
laser excitation of 514.5 nm, were the G band appearing around 1583 cm−1, corresponding
to the first-order scattering of the E2g mode; the disorder-induced D band at 1347 cm−1;
the second-order 2D band at around 2706 cm−1; and the D + G band at 2929 cm−1. The
ID/IG intensity ratio clearly resembled that reported for reduced graphene oxide [42]. The
electrical conductivity, measured on a compressed powder pellet of G, was >100 S·cm−1.

2.2. Preparation of Nanocomposite Fibers

For the preparation of the fiber’s precursor PET/graphene inks, the filler and the
polymer were separately dispersed and dissolved in TFA. A graphene dispersion with a
concentration of 3 mg·mL−1 was prepared using a Hielscher USP400s sonication probe
with a sonotrode tip diameter of 7 mm, at a working frequency of 24 kHz and amplitude of
40%, for 15 min. A polymer solution with a PET concentration of ~18 wt.% was prepared
by dissolving it in TFA under magnetic stirring. Subsequently, appropriate amounts of
each component were mixed under magnetic stirring and part of the solvent was allowed
to evaporate at 60–68 ◦C in order to increase the viscosity of the mixture. Nanocomposite
inks with 2, 3, 4 and 5 wt.% of graphene were studied.

Fiber spinning was conducted via the dry-jet wet-spinning approach using an
ULTIMUSTM precision fluid dispenser from NORDSOM EFD, coupled to a polypropylene
syringe with a stainless-steel needle tip. After testing needles of different diameters,
a 0.84 mm diameter was selected. The air gap between the needle and the methanol
coagulation bath was ~3 cm and a pressure of 25.0 psi was applied. The fibers were dried
under a vacuum at 60–65 ◦C for 96 h.
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for PET/G nanocomposite fibers.

2.3. Characterization

The dispersion of graphene in the fibers was examined by scanning electron mi-
croscopy (SEM) using a Hitachi SU8000 field emission microscope (Tokyo, Japan). The
nanocomposite fibers were cryofractured and images were collected at 0.8 kV, using a
secondary electron and backscattered electron detector combination.

Thermogravimetric analysis (TGA) was carried out using a TA Instruments Q50 ther-
mobalance (Waters Cromatografía, S.A., Cerdanyola del Vallès, Spain) between 50 and
800 ◦C at a heating rate of 10 ◦C·min−1, under an inert atmosphere (nitrogen, 60 cm3·min−1).
Samples were analyzed using the TA Instruments Universal Analysis 2000 software (version
4.5A, Build 4.5.0.5).

Differential scanning calorimetry was performed in a DSC25 with a RSC90 refrigerated
cooling system (TA Instruments). Samples of approximately 5 mg were placed in hermeti-
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cally sealed aluminum pans. Scans were carried out from 0 to 300 ◦C at 10 ◦C·min−1 under
a nitrogen atmosphere (flow of 50 mL·min−1).

Two-dimensional wide-angle X-ray diffraction (WAXS) images were obtained with
the fiber axis perpendicular to the incident beam, using a Bruker AXN diffractometer
operating at 50 kV and 1 mA, with wavelength λ = 0.1542 nm. The beam size was around
100 µm × 100 µm. A photon detector was used with a resolution of 1024 × 768 pixels
and 135 µm/pixel. The sample-to-detector distance was 40 mm. Background-subtracted
diffraction patterns were analyzed using the FIT2D software [43]. Azimuthal scans over the
main crystalline reflections showed no intensity maxima and this suggested no preferred
crystal orientation. All diffraction images were integrated along the azimuthal angle to
obtain intensity curves as a function of diffraction angle. As an example, Figure 2 shows the
intensity profile for the PET/graphene 5 wt.% fiber. The Peakfit program (Systat Software,
San Jose, CA, USA) was used to fit the intensity curves to several crystalline peaks and an
amorphous halo, as shown in Figure 2. The degree of crystallinity, Xc, was calculated from
the ratio of the area under the crystalline peak to that of the total diffraction curve.
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Figure 2. Intensity profile as a function of diffraction angle for a PET/graphene 5 wt.% fiber with
575 µm radius. The curve is separated into an amorphous halo and several crystalline peaks.

In order to determine the effect of the graphene loading on the electrical conductivity,
the fibers were pressed into thin films and DC conductivity measurements were carried
out using a four-probe setup comprising a dc low-current source (LCS-02) and a digital
microvoltmeter (DMV-001) from Scientific Equipment & Services Pvt, Ltd. (Roorkee, India).
For the study of electrical conductivity under cyclic bending, the electrical resistance of
each type of fiber was measured in a two-contact configuration with silver paint tracks and
using a low-current digital voltammeter. The fibers were subjected to a 90-degree bending
regime for 3 s, and then the perturbation was released to allow the fibers to recover their
original extended shape, and the electrical resistance was recorded.

Nanoindentation tests were carried out by the application of a small load (≈15 mN)
on the fibers’ cross-sections. Fibers were mounted vertically using a plastic clip and
subsequently embedded in epoxy resin. The cross-sections of the fibers were exposed
using a microtome and the surfaces were polished using progressively finer sandpaper and
finally finished with a microcloth lubricated with alumina paste. The resulting cylindrical
blocks were placed on the platform of a G200 nanoindenter (KLA Tencor, Milpitas, CA,
USA). A low-load head (DCM) including a Berkovich indenter was used. Experiments were
carried out under dynamic testing. The load P was incremented exponentially with time to
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achieve a constant strain rate (P’/P = 0.05 s−1), and, at the same time, a small oscillation
force was applied. A continuous measurement of the stiffness as a function of indent
depth h was determined from the phase lag between the oscillation force and the harmonic
displacement produced [44]. Finally, the storage modulus E’ and hardness H could be
calculated following the procedure of Oliver and Pharr and assuming elastic–viscoelastic
correspondence [44,45].

Dynamic Mechanical Analysis (DMA) was performed in a Perkin Elmer DMA7 using
fiber extension fixtures at room temperature (T = 20 ◦C) in the controlled tensile stress
mode. Measurements were made in the linear viscoelastic region (LVR) by dynamic force
sweeps between 100 and 3000 mN at a fixed frequency of 1 Hz. The generated dynamic
strain ε as a consequence of the imposed dynamic stress σ* varied up to a maximum value
of 0.35 % (ε = 0.0035), well within the LVR. The values of the complex tensile modulus E*
at 1 Hz were obtained from the slope of the plot of the imposed applied tensile dynamic
stress versus the produced tensile dynamic strain.

3. Results

As the real integration of electronic components into textiles requires the incorporation
of nanoscale conductive fillers directly in the fibers, the optimization of the spinning con-
ditions (spinning solution solvent, coagulation bath and temperature, spinning approach,
etc.) is fundamental to obtain fibers with balanced mechanical and electrical properties.
We initially approached wet spinning from TFA solutions and coagulation in methanol
and water baths, but either no fiber formation or fibers with poor mechanical stability
were produced. TFA has been suggested as a solvent that meets the solubility–spinnability
requirements for the production of PET fibers [46,47], and methanol is a good solvent for
polymer precipitation. On the other hand, it has been demonstrated that, using the dry-jet
wet spinning of graphene and its derivatives, the introduction of an air gap between the
tip and the coagulation bath resulted in fibers with superior mechanical properties [38,48].
Therefore, we explored the dry-jet wet spinning of PET/graphene solutions using a preci-
sion fluid dispenser and producing the fibers manually (see Figure 3a). Figure 3b shows
examples of the samples obtained with this approach.
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The morphology of all PET/graphene fibers was evaluated by SEM (Figures 4 and 5).
Images comparing the surfaces of nanocomposite fibers with that of a pristine PET fiber
are shown in Figure 4. In all cases, the fibers presented a uniform size as the diameter did
not change along the fiber axis. In addition, it was found that the initially smooth side-
walls of the PET fiber changed to a rougher surface for the nanocomposites, the roughness
increasing with the graphene content.

Fibers were studied in depth by analyzing the cross-sections on cryofractured samples.
From Figure 5, it can be seen that the presence of graphene induces a slight change in
fiber shape. Moreover, all nanocomposite fibers present a well-packed morphology where
graphene is homogeneously distributed throughout the area of the fiber, with no aggregates,
suggesting good dispersion. For the sample with the lowest graphene loading, the cross-
section suggests that graphene may be preferentially located in the fiber center. As a
consequence of the spinning process and the selected coagulation bath, during the initial
stages of the spinning process, graphene may tend to occupy the inner parts of the fiber.
As the graphene concentration increases, the filler distribution could expand in the radial
direction towards the outer surface. Regarding fiber performance, it is expected that
both the homogeneous distribution of graphene and better morphological packing arising
from the dry-jet wet-spinning process used will influence the electrical and mechanical
properties [49], as discussed below. In addition, some voids with an irregular distribution
were observed in all samples, which could have an influence on the mechanical properties.

The thermal stability of PET/graphene nanocomposites under nitrogen and air atmo-
spheres was investigated and results are shown in Figure 6. All TGA curves display a flat
profile at temperatures below 350 ◦C, indicating total elimination of the TFA solvent during
the drying process. The TGA curves of pure PET and the nanocomposites with different
graphene content under nitrogen gas conditions suggest that the filler has a marginal effect
on the thermal stability of the polymer. A single-stage mass loss process was observed
between 350 and 510 ◦C, associated with the decomposition of the polymer. This result is
somewhat expected as relatively high graphene loadings were used in this work. Thus,
the initial thermal stabilization at low graphene loadings, where graphene acts as a barrier
that can hinder the diffusion of the degradation products, slowing down the decompo-
sition process, is counterbalanced at higher loadings by the accumulation of graphene,
reducing the influence of the filler on the thermal stability [50,51]. This effect is confirmed
by experiments in an air atmosphere (Figure 6b,d). In this case, the thermal degradation
of PET and its composites occurs in two steps; the former is associated with the main
polymer chain breakdown and formation of char, and the second is a retarded degradation
process due to the formation of more fragmented oxidative products [52]. Regarding the
nanocomposites, the sample with lowest graphene loading (2 wt.%) shows slight thermal
stabilization of the first process as the onset temperature and the temperature of the maxi-
mum degradation rate are displaced to higher values, while the second process is quite
similar to those observed in PET. However, in samples with higher graphene content, the
first process resembles that of PET and the second process is accelerated and occurs at
lower temperatures. The thermal stability of PET nanocomposites with carbon nanofillers
in an air atmosphere displays dissimilar results as this process is shifted to both lower and
higher temperatures [27,53–55]. Particularly interesting are the cases of nanocomposites
prepared by the melt compounding of PET and exfoliated graphite (EG), where shifts to
higher temperatures of 42 and 32 ◦C for the first and second process, respectively, are
reported for samples with high graphene loadings of up to 7 wt.% [27]. Although solution
mixing as reported in our study is expected to render better filler/polymer interfaces, melt
compounding can induce some preferential filler orientation in the matrix that can help in
improving some properties [56]. In this case, such a substantial enhancement in the thermal
stability under air can be attributed to a barrier effect to the volatile decomposed products
of graphene sheets that are well dispersed and oriented in the PET matrix.
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marginal effect on the thermal stability of the polymer. A single-stage mass loss process 

was observed between 350 and 510 °C, associated with the decomposition of the polymer. 

500µm 100µm 10µm

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5. SEM images at different magnifications of the cross-sections of cryofractured samples of
PET (a–c) and PET/graphene with loadings of 2 wt.% (d–f), 4 wt.% (g–i) and 5 wt.% (j–l). Scale bar
in (a–c) applies to the images in the same column.
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Most interesting is the influence of graphene on the PET fiber nanostructure. The
WAXS patterns of pristine PET fibers exhibit a clear broad halo characteristic of an amor-
phous material (see Figure 7). In contrast, the diffraction images of all fibers exhibit
crystalline maxima (Figure 7), and analysis of the crystallinity levels for fibers with the
same diameter size yields Xc = 23–29%. Table 1 shows that the crystallinity levels do not
follow a clear trend with the quantity of graphene.
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Table 1. Degree of crystallinity of all PET/graphene and pristine PET fibers with ≈550 µm diameter
size, as determined from WAXS analysis.

Fiber Type Xc

PET 0

PET/Graphene 2 wt.% 0.29

PET/Graphene 4 wt.% 0.23

PET/Graphene 5 wt.% 0.28

The fibers were also analyzed by DSC and the curves of the first heating scan are shown
in Figure 8a. On heating, after the glass transition at around 70 ◦C, all fibers presented
a cold crystallization process at around 122 ◦C. However, the crystallization enthalpy of
this process was much smaller in the fibers with graphene as compared with pure PET
fibers, corroborating the presence of initial crystallinity due to the nucleating effect of
graphene, as observed in the X-ray results described above. This nucleating effect was
clearly detected in the subsequent cooling scans from the melt after eliminating the thermal
history of the fibers (Figure 8b). The crystallization temperatures of the nanocomposites
were ~20 ◦C higher than that for the neat polymer. A similar increase was observed
for nanocomposites of PET with different grades of graphene oxide, prepared by melt
mixing [33,34] or electrospinning [30].
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Figure 8. DSC heating scan for PET fibers (a) and subsequent cooling scan (b).

The structural differences described above upon the addition of graphene can be
correlated to variations in the mechanical behavior. Nanoindentation testing was carried
out on the cross-sections of all PET/graphene and pristine PET fibers, and Figure 9 shows
the evolution of E´ and H as a function of indenter displacement into the surface. Error
bars arise from the statistical analysis of indentations produced at different locations to
cover the whole fiber cross-sectional area. The high noise at shallow depths h < 500 nm can
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be associated with the tip–sample interaction and the surface roughness of each particular
fiber [50]. These effects gradually lose relevance as the indenter progresses towards the
bulk, and, in all cases, the E´ and H values eventually remain constant with an indent
depth beyond h ≈ 1 µm. Moreover, also beyond this point, the standard deviation in
the data is quite similar in all samples. Hence, it seems that the addition of graphene
does not introduce mechanical heterogeneities at the micrometer scale, and E´ and H
for h > 1 µm represent average values for each material. It is worth recalling that the
deformation volume typically extends up to ≈10 times the indent depth for the plastic field
and ≈20 times for elastic deformation.

Figure 10 shows the plot of the E´ and H values taken at h = 2 µm as a function of
graphene content for all materials investigated. In the first place, the E´ and H values for
the pristine PET fiber are in agreement with earlier values in other PET systems [57,58].
Moreover, it is seen that the addition of graphene enhances the modulus and hardness
values of the PET fiber. For the largest quantities of graphene, E´ and H improvements
of 28% and 42%, respectively, are found. The initial E´ and H improvement with the
incorporation of the smallest quantity of graphene (2 wt.%) can be associated with both the
development of matrix crystallinity (from Xc = 0 to Xc = 28%, see Table 1) and the intrinsic
superior mechanical properties of graphene. The addition of larger graphene quantities is
found to produce further mechanical enhancements, and this can be solely attributed to the
filler, taking into account that the matrix crystallinity remains almost constant (see Table 1).
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The dynamic tensile measurements were found to be in agreement with the indentation
results at low graphene loadings. The longitudinal strength of nanocomposite fibers with
2 wt.% of graphene was found to be around 33% higher than that of the non-reinforced
PET (E* = 4.0 ± 0.3 GPa), which is probably due to the development of crystallinity and the
superior properties of the graphene filler. The longitudinal strength of the 4 wt.% graphene
fiber (E* = 5.0 ± 0.3 GPa) only increased by around ≈25% compared to non-reinforced
PET and is slightly lower than that for the sample with a loading of 2 wt.%. This may be
attributed to heterogeneities along the sample and a decrease in interfacial filler/polymer
interactions due to the formation of graphene aggregates. In this respect, it is also worth
commenting that the modulus values could not be determined for PET/graphene fibers
with the highest graphene content (5 wt.%), as a consequence of fiber breaking events
during sample fixation. Such observations suggest that high graphene loading promotes
fiber fragility, and this could also be correlated with the enhanced surface roughness
observed by electron microscopy with increasing graphene content (see Figure 4). In
addition, the generation of voids in the fiber structure should not be overlooked as it may
also influence the mechanical performance of the fibers. Despite this, the results clearly
demonstrated that graphene addition improved the fiber strength.

One of the main goals of this work was to prepare textile fibers that presented elec-
trical conductivity, while preserving the good mechanical properties of PET, dedicated to
flexible and wearable electronics (e-textiles) such as sensors, wearable heating devices and
healthcare monitoring devices, among others. Table 2 lists the conductivity values for fibers
containing different graphene loadings. It can be seen that good conductivity values, in the
range of 0.02 S/cm to 0.18 S/cm, are obtained with loadings over 3 wt.%. As the sample
with 2 wt.% shows no measurable conductivity in the range of detection of the equipment,
it can be assumed that the percolation threshold lies between 2 and 3 wt.%. As expected,
for samples with loadings higher than 3 wt.%, the conductivity increases with the graphene
loading. The conductivity values achieved in this study fall within the range required for
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the aforementioned applications [59] and are higher than the best results reported so far for
conducting fibers with similar compositions. In order to appraise the values obtained in this
work, Table 3 establishes a comparison with the data in the literature for conducting fibers
of several families of nanocomposites [11,26–28,31,60–73]. As can be seen from Table 3,
better conductivity is only achieved for fibers containing 30 wt.% of polyaniline (PANI)
as the conducting element (entry 6 in Table 3). The mechanical properties of PANI are
somewhat poor, and, for this reason, fibers of its nanocomposites with polyacrylonitrile
(PAN) or polyethylene oxide (PEO) have been investigated. For these nanocomposites,
conductivity values similar to those presented in this study were reported (see entries 3 and
9 in Table 3), although with a much higher loading of PANI. Focusing on the specific case of
the nanocomposites addressed in this study, the conductivity values are much higher than
those reported thus far for PET/G fibers (entry 19 in Table 3). Further, they are higher than
the values for hot-pressed PET/G nanocomposite films (entries 13–17 in Table 3), except
for the case reported in reference [28] (entry 18 in Table 3).

Table 2. Conductivity values for fibers containing different graphene loadings.

Fiber Type Conductivity (S/cm)

PET/Graphene 2 wt.% -

PET/Graphene 3 wt.% 0.020 ± 0.003

PET/Graphene 4 wt.% 0.103 ± 0.032

PET/Graphene 5 wt.% 0.181 ± 0.010

Table 3. Comparison of the electrical conductivity of different conductive fibers.

Entry Fiber Type
Conducting

Component Loading
(wt.%)

Nanocomposite Form Electrical Conductivity
(S/cm) Reference

1 PANI 100 Fibers by wet spinning ~5 × 10−4 [11]

2 PANI 100 Fibers by electrospinning 0.03 [60]

3 PEO/PANI/ 98.5–99.9 Fibers by electrospinning ~10−4–10−3 [61]

4 PEO/PANI 93 Fibers by electrospinning 0.144 [62]

5 PEO/PANI 10–40 Fibers by electrospinning ~10−6–10−3 [63]

6 PEO/PANI Fibers by electrospinning <3.1 × 10−11 [64]

7 Silk fibroin/PANI 2.5–30 Fibers by electrospinning Up to 0.5 [65]

8 PVAc/PANI 50–66 Fibers by electrospinning 2.5 × 10−5–3.6 × 10−5 [66]

9 PAN/PANI 1–3 Fibers by electrospinning ~7 × 10−3–2.8 10−2 [67]

10 PAN/PANI 10–30 Fibers by electrospinning ~10−5–0.1 [68]

11 PAN/PANI 16 In situ aniline polymerization
on PAN fibers 1.8 × 10−4 [69]

12 PAN/PANI 25–43 Fibers by electrospinning <7 × 10−9 [70]

13 PET/PANI 1–9 PANI coating on PET mats ~1.7 × 10−3–10−2 [71]

14 PET/G 0.1–7
Hot-pressed films from

melt-compounded
nanocomposites

Up to 10−6 [27]

15 PET/G 0.1–0.4
Hot-pressed films from

injection-molded
nanocomposites

Up to 10−4 [26]
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Table 3. Cont.

Entry Fiber Type
Conducting

Component Loading
(wt.%)

Nanocomposite Form Electrical Conductivity
(S/cm) Reference

16 PET/G 0.5–2
Hot-pressed films from

melt-compounded
nanocomposites

~10−12–10−8 [31]

17 PET/G 1–12
Hot-pressed films from

melt-compounded
nanocomposites

~10−13–10−7 [36]

18 PET/G 3 Hot-pressed films from
ball-milling nanocomposites ~10−2 [73]

19 PET/G 0.5–3
Hot-pressed films from

melt-compounded
nanocomposites

~10−11–1 [28]

20 PET/G 0.5–4
Fibers by melt spinning from
nanocomposites prepared by

in situ polymerization
1.75 × 10−9–1.5 × 10−8 [73]

21 PET/G 2–5 Fibers by dry-wet jet spinning Up to 0.18 This work

Regarding e-textile applications, it is very important that the conducting fibers pre-
serve the conductivity under mechanical deformation, recovering their initial values after
the perturbation is released. Thus, the variation in the resistance of the nanocomposite
fibers under repetitive bending/release cycles was investigated. Figure 11 shows the varia-
tion in the resistance of the fibers containing 4 wt.% (open squares) and 5 wt.% (full circles)
of graphene subjected to fifty bending cycles. It can be seen that despite an initial increase
in the electrical resistance, the values stabilize, showing only small variations from cycle 5
to 50. The significant increase in electrical resistance during the first bending cycle could be
due to some rearrangement of the filler within the polymer matrix.

Polymers 2023, 15, x FOR PEER REVIEW 15 of 19 
 

 

17 PET/G 1–12 Hot-pressed films from 

melt-compounded nano-

composites 

10−13–10−7 [36] 

18 PET/G 3 Hot-pressed films from 

ball-milling nanocomposites 

10−2 [73] 

19 PET/G 0.5–3 Hot-pressed films from 

melt-compounded nano-

composites 

10−11–1 [28] 

20 PET/G 0.5–4 Fibers by melt spinning from 

nanocomposites prepared by 

in situ polymerization 

1.75 × 10−9–1.5 × 

10−8 

[73] 

21 PET/G 2–5 Fibers by dry-wet jet spin-

ning 

Up to 0.18 This work 

Regarding e-textile applications, it is very important that the conducting fibers pre-

serve the conductivity under mechanical deformation, recovering their initial values after 

the perturbation is released. Thus, the variation in the resistance of the nanocomposite 

fibers under repetitive bending/release cycles was investigated. Figure 11 shows the 

variation in the resistance of the fibers containing 4 wt.% (open squares) and 5 wt.% (full 

circles) of graphene subjected to fifty bending cycles. It can be seen that despite an initial 

increase in the electrical resistance, the values stabilize, showing only small variations 

from cycle 5 to 50. The significant increase in electrical resistance during the first bending 

cycle could be due to some rearrangement of the filler within the polymer matrix. 

 

Figure 11. Variation in the resistance of PET/G fibers with different graphene loadings with the 

number of bending cycles (open squares and full circles correspond to loadings of 4 wt.% and 5 

wt.%, respectively). 

4. Conclusions 

The optimized dry-jet wet-spinning preparation of PET/graphene nanocomposite 

fibers with balanced mechanical and electrical properties using precision fluid dispens-

ing equipment is presented. TFA and methanol were selected as the solvent and precip-

itation bath, respectively. 

Fibers with good thermal stability and a homogeneous dispersion of graphene were 

developed. Graphene was found to induce crystallinity in the fibers, as observed by 

X-ray diffraction and DSC. Such structural changes, together with the intrinsic superior 

properties of graphene, produce a modulus and hardness improvement that reaches 28% 

Figure 11. Variation in the resistance of PET/G fibers with different graphene loadings with the
number of bending cycles (open squares and full circles correspond to loadings of 4 wt.% and 5 wt.%,
respectively).



Polymers 2023, 15, 1245 15 of 18

4. Conclusions

The optimized dry-jet wet-spinning preparation of PET/graphene nanocomposite
fibers with balanced mechanical and electrical properties using precision fluid dispensing
equipment is presented. TFA and methanol were selected as the solvent and precipitation
bath, respectively.

Fibers with good thermal stability and a homogeneous dispersion of graphene were
developed. Graphene was found to induce crystallinity in the fibers, as observed by X-ray
diffraction and DSC. Such structural changes, together with the intrinsic superior properties
of graphene, produce a modulus and hardness improvement that reaches 28% and 42% for
the largest quantity of graphene (5 wt.%). Finally, the nanocomposite fibers exhibit good
electrical conductivity stability under cyclic bending. Hence, the PET/graphene fibers
appear to be promising candidates for applications in e-textiles.
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