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Abstract: Superhydrophilic coatings based on a hydrophilic silica nanoparticle suspension and Poly
(acrylic acid) (PAA) were prepared by dip coating. Scanning Electron Microscopy (SEM) and Atomic
Force Microscopy (AFM) were used to examine the morphology of the coating. The effect of surface
morphology on the dynamic wetting behavior of the superhydrophilic coatings was studied by
changing the silica suspension concentration from 0.5% wt. to 3.2% wt. while keeping the silica
concentration in the dry coating constant. The droplet base diameter and dynamic contact angle with
respect to time were measured using a high-speed camera. A power law was found to describe the
relationship between the droplet diameter and time. A significantly low experimental power law
index was obtained for all the coatings. Both roughness and volume loss during spreading were
suggested to be responsible for the low index values. The water adsorption of the coatings was found
to be the reason for the volume loss during spreading. The coatings exhibited good adherence to the
substrates and retention of hydrophilic properties under mild abrasion.

Keywords: surface wetting; superhydrophilicity; nanocomposite coating; dynamic spreading

1. Introduction

The wetting behavior of a solid surface can be determined by the water contact angle.
There are two important extreme wetting conditions that have been studied by researchers
for many decades: superhydrophobicity [1–3] and superhydrophilicity [4–6]. Surfaces
that are completely wetted by water, are extremely water-loving, or have a static water
contact angle of less than 10◦ are considered superhydrophilic surfaces and have been
well-studied [7,8]. These surfaces are preferred for a number of practical applications, such
as antifogging [9,10], antifouling [8,11], and self-cleaning [12,13].

While superhydrophilic surfaces are defined by a static contact angle of less than
10◦, the contact of a liquid drop with any surface results in a change in the contact line of
the liquid drop until the liquid–solid–vapor system reaches an equilibrium state of less
than 10 degrees. Dynamic wetting, the spreading behavior of a liquid on a solid surface,
occurs in numerous everyday situations and is important for many practical applications,
such as paints, antifogging, ink-jet printing, textile dyeing, metal or glass anticorrosive
coatings, lubrication, gluing, plant treatment, and cosmetology [14–17]. The dynamics of a
liquid drop prior to reaching the equilibrium state are heavily affected by surface chemistry,
surface topography, and liquid properties [18].

Many theories have been proposed for wetting dynamics, based either on hydrody-
namics or on a molecular theory of the contact line [19]. In hydrodynamic theories, the
relevant parameter is the capillary number (Ca), which is generally regarded as the dimen-
sionless contact line speed. Ca can be defined as the ratio of viscous forces to surface tension
forces, as given in Equation (1), where U is velocity, µ is viscosity, and γ is the surface free
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energy of the solid–liquid [20]. Most of the analytical descriptions in the literature were
reported by assuming that Ca ≤ 0.1, as it yields the simple power law relationship [21].

Ca =
µ U
γ

(1)

An increase in the capillary number results in a dynamic contact angle increase:
θd = (Ca )1/3 [22,23].

The early- and late-stage spreading behavior of a liquid drop on a highly wettable,
smooth, solid surface has been studied for decades, and various power laws, such as a
spreading radius that changes with time, have been proposed to predict the spreading
characteristics [24]. Tanner (1979) first defined the spreading of a small liquid drop on a
smooth and completely solid wetting surface. Tanner’s law (the hydrodynamic theory)
constructs a power law of the spreading radius, Rd ∼ t1/10 and θd ∼ t−3/10, whereas
the molecular theories lead to Rd ∼ t1/7 and θd ∼ t−3/7, where R is the dynamic drop
radius, θd is the dynamic contact angle, and t is the time [25–28]. These theories apply to
flat surfaces and high-viscosity liquids.

r(t) ∼ R
(

γt
µR

)1/10
(2)

Surface roughness plays a significant role in dynamic behavior. The dynamic spreading
of different liquids has been studied for highly ordered structures prepared using various
techniques, including lithography and deep reactive ion etching [18,24]. A high-viscosity
silicon oil is widely used to study dynamic spreading, as it completely wets the surface.
Some studies have shown experimental data that are in good agreement with Tanner’s
law [29,30].

However, Sawicki [31] studied the spreading rates of PDMS liquid droplets with
different viscosities and showed that the Rd ∼ t1/10 relationship was not followed for
lower-viscosity liquids. McHale et al. [32] studied the dynamics of spreading of silicon oil
on lithographically produced surfaces with aspect ratios larger than four and found that the
spreading dynamics of their surfaces followed power law behavior but showed a change
from Tanner’s law in the dynamic contact angle to θd ∼ t−3/4 from θd ∼ t−3/10 due to the
surface roughness. Courbin et al. [18] studied the dynamics of silicon oil on a chemically
homogeneous surface made from a square pattern of PDMS micropillars prepared using
soft-lithography methods. They demonstrated that the spreading radius had a power law
dependence on time, Rd ∼ t1/2, and a change in the initial drop shape affected the exponent
of the power law. Ruijter et al. [19] studied the spreading of a droplet of di-n-butylphthalate
(DBP) on a poly(ethyleneterephthalate) (PET) substrate. They showed that a Rd ∼ t1/7

and Rd ∼ t1/10 relationship was followed for (0.008–4.5 s) and (4.5–15,000 s) time frames,
respectively. The resulting different power laws were attributed to the different wetting
models when the system was near or far from its equilibrium state.

While there have been studies on ordered, patterned surfaces, there are very few stud-
ies focused on low-viscosity liquids or the spreading dynamics of randomly rough surfaces.
Xu et al. studied the spreading of silicon oil on stainless steel surfaces with different degrees
of roughness (Ra ∼ 0–25 µm ) and formed via spark erosion [33]. Their study showed
that the contact line mobility of a drop was lower on a rougher surface. Herminghaus [34]
developed an analytical expression to predict the spreading and adsorption of liquid on
randomly rough substrates.

For low-viscosity liquids, such as water, the spreading process on a rough surface
exhibits a Rd ∼ t1/2 spreading dependence, as predicted by the Washburn Equation,
developed for cylindrical capillaries during the first 30 ms period [35,36]. Kim et al. [24]
studied the dynamics of both water and silicon oil liquid drops on regular micropatterns.
They found that the radius of the drop followed Rd ∼ t1/4, which is different from
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Washburn’s law, and the spreading rate increased with the initial drop volume and surface
tension and decreased with increasing viscosity.

The dynamic wetting behavior of randomly rough surfaces is important for super-
hydrophilic coatings, which are attractive for practical applications because of their facile
manufacturing. Thus far, studies focused on the dynamics of wetting for randomly rough
surfaces have presented either modeling without any experimental verification or experi-
mental results without modeling. These studies have only shown a relationship between
the droplet base radius vs. time or contact angle vs. time. However, the mechanism
controlling the dynamics of wetting on randomly structured superhydrophilic coatings has
not been fully explored.

In this paper, the dynamic wetting properties of randomly structured polyacrylic
acid/nanosilica superhydrophilic rough (micro- and nano-level) coatings, were studied
both experimentally and through modeling to explain the effects of the coating composition
and roughness on the dynamic wetting behavior of the superhydrophilic coatings.

2. Experimental Section
2.1. Materials and Chemicals

Poly (acrylic acid) (PAA) (Mw = 450,000) and colloidal nanosilica particles LUDOX
TM-40 (40% wt. SiO2 suspension in water, with an average particle size of 22 nm, pH of
9.0, and surface area of 110–150 m2g−1) were purchased from Sigma-Aldrich [10,37]. Plain
glass microscope slides (75 × 25 mm) were used as a substrate (Fisher Scientific Company,
Cat. No. 12-550-A3). Deionized water (electrical conductivity of 0.05 µS/cm) was used for
preparing the water-based solutions and for all rinsing activities [38,39].

2.2. Preparation of Coatings

The superhydrophilic coatings were prepared following our previously described
method [40]. First, PAA aqueous solution was prepared by dissolving the PAA powder
in deionized water (1% wt.) and stirring (350 rpm) at 85 ◦C for 12 h. Then, PAA aqueous
solution was slowly added into a predetermined amount of hydroxylated SiO2 colloidal
suspension (LUDOX TM-40) while stirring at 350 rpm for 45 min to prepare PAA/SiO2
dispersions. The composite PAA/SiO2 coatings were prepared by dipping the bare glass
samples into the different PAA/SiO2 suspensions with their different solid (PAA/SiO2)
contents. Uncoated glass slides were cleaned with isopropyl alcohol and deionized water
and then dried with nitrogen prior to the coating process. The coated glass slides were dried
at room temperature for 5 min before heating. The coated samples were heated to 120 ◦C in
an oven for 3 h and then cooled to room temperature for 12 h. A schematic representation
of the superhydrophilic coating fabrication process is demonstrated in Figure 1.
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The water droplet (with a volume of about 2 µL) spreading dynamics on the synthe-
sized superhydrophilic coatings with different roughnesses were investigated by changing
the silica concentration in suspension from 0.5% wt. to 3.2% wt. while keeping the particle
to binder (PB) ratio, the ratio of the silica to PAA, the same at 19:1. The binder refers to
the polymer, which in this case is PAA. In this study, we aimed to investigate the effect of
viscosity on the dynamic wetting properties. To do so, we took the SS0.5 as a starting point
and then increased the concentration. All prepared formulations are given in Table 1.

Table 1. Superhydrophilic coating formulations.

Sample Set % wt. of Silica
in Dry Coating

% vol. of Silica
in Dry Coating

Particle to
Binder (PB)

Ratio

% wt. of Silica
in Suspension

SS 0.5 95 91 19:1 0.5

SS 1.6 95 91 19:1 1.6

SS 3.2 95 91 19:1 3.2

2.3. Characterization

The water contact angle measurements were carried out using a high-speed imaging
technique with the sessile drop method (Drop Shape Analyzer—DSA100-KRÜSS GmbH,
Hamburg, Germany). Water droplets of 2 µL in volume were dropped onto the coating
surfaces to be tested under the conditions of an ambient temperature and atmosphere. The
equilibrium water contact angles (EWCA) were defined as the contact angles when the
water droplet ceased to advance. Both the EWCA and dynamic wetting properties of the
synthesized coatings were assessed by monitoring the water contact angle and droplet base
diameter (illustrated in Figure S1) from the initial milliseconds to several intervals (at least
three times) for each sample. The value of the static water contact angle was determined
with an accuracy of ±1◦.

Images of the coated samples were taken using a field-emission scanning electron
microscope (JSM 7401F, JEOL Inc., Peabody, MA, USA) at an electron energy of 2 to 5 kV.
The samples were coated with a nanometer sputtered thin gold film to avoid surface
charging.

Surface topography measurements were performed using an atomic force microscope
(AFM) (PSIA 100) with a scan rate of 0.5 Hz. Roughness measurements were carried out by
scanning a 20 × 20 µm

2
area with a non-contact AFM tip. Image processing and analysis

were performed using XEP software and Image J software.
Attenuated total reflection (ATR) spectra of the coated samples were obtained using a

Fourier-transform infrared (FTIR) spectrometer (Nicolet FTIR6700, Thermo Fisher Scientific
Inc., Waltham, MA, USA). The spectrometer had a single-reflection diamond ATR accessory
with a DTGS detector and KBr beam splitter operating at room temperature. Spectra were
obtained over 4000–500 cm−1, with an average of 64 scans and a spectral resolution of
4 cm−1.

Transmission measurements were conducted with an ultraviolet–visible spectropho-
tometer (UV-Vis, Hitachi U-2910 spectrophotometer). Percent transmission was recorded
in the range from 400 nm to 700 nm.

The mechanical durability of the coatings was examined with the Taber abrasion test
following the G195-13a ASTM standard. Cylindrically shaped CS-10 abrasion wheels that
produced a medium abrading action using a 250 g load were used for the abrasion test.
Changes in the equilibrium water contact angles were measured after the abrasion cycles.

A tape test was performed using ASTM D3359-17, where a lattice pattern is formed
with a cutting tool on the coated substrate. Pressure-sensitive tape was applied to the lattice
pattern and removed carefully. The adhesion was evaluated qualitatively on a scale from 0
to 5.
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3. Results and Discussion

The water droplet (with a volume of about 2 µL) spreading dynamics on the superhy-
drophilic coatings were investigated by changing the solids’ (binder and silica) concentra-
tion in suspension from 0.5% wt. to 3.2% wt. while keeping the silica to binder ratio the
same (19:1) in the dry coating (silica concentration constant (91% wt.)). As the concentration
of silica increased in the suspension, the viscosity increased, affecting the final coating
characteristics (thickness, roughness, etc.), which, in turn, affected the spreading dynamics.

The coatings in this study were all superhydrophilic, showing an equilibrium contact
angle of <10 degrees. The prepared coatings showed good long-term stability in their
wettability (superhydrophilic), with no change in the equilibrium water contact angle after
being kept at room temperature for at least 2 months. The coatings showed an initial
dynamic change in contact angle, reaching equilibrium within 5 s. The dynamic contact
angle was monitored for all coatings, and the images are illustrated in Figure 2. It was
noted that the contact angle gradually decreased in the first few seconds. The equilibrium
WCA measurements (Figure 2, images at 5s) showed that for all coatings (95% silica in the
dry coating), superhydrophilic behavior was observed, even at a very low (0.5 %) wt. of
silica in the suspension.
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The droplet spreading behavior on the fabricated coatings was monitored with a
high-speed camera. The droplet base diameter (D) was measured at different time intervals
(t) by analyzing the captured high-speed camera images. The relationship between D
and t is demonstrated in Figure 3 in a log–log plot. As shown in Figure 3, a straight line
is obtained using a logarithmic presentation. The spreading droplet diameter (D) has
a power law relationship with the spreading time (t), which conforms to the published
literature [18]. However, the slope of the double logarithmic relationship is around 0.05,
which is significantly lower than those reported for other coatings [24,41]. The power
law indices for the various coatings are listed in Table 2. The indices were similar for
each coating, with values of approximately 0.05. A similar power law index (0.0569) was
obtained for a PAA coating from the graph presented in Figure S2.



Polymers 2023, 15, 1242 6 of 14Polymers 2023, 15, 1242 6 of 14 
 

 

 
Figure 3. Plot of Log(D) vs. Log(t) for coatings with different % wt. of silica in suspension. 

Table 2. Power law indices for coatings with different % wt. of silica in suspension. 

Sample Set % wt. of Silica in Suspension Power Law Index 
SS 0.5 0.5 0.051 
SS 1.6 1.6 0.050 
SS 3.2 3.2 0.045 

Low power law indices were also reported in the literature [35]. The reduced wetting 
rates were attributed to porosity and surface roughness, which slow the wetting process 
by partially pinning the three-point contact line (TPCL) [42]. 

To further characterize the reasons for low power law indices, the synthesized coat-
ings were analyzed for their roughness and the drop volume change during spreading. 

For the roughness, the coating topography was analyzed by AFM, as demonstrated 
by the 2D and 3D AFM images in Figure 4. As claimed by Garnier et al. [43], surface as-
perities greater than 0.16 µm are thought to significantly reduce the wetting rate. The syn-
thesized coatings in this study possess surface asperities and agglomerates, which are ran-
domly structured. The AFM images were analyzed by Image J software to obtain the asper-
ities’ size in the coating. The sizes of the resulting asperities in the coatings are listed in Table 
3. As is evident in the table, as the wt.% of nanosilica in the suspension was increased from 
0.5 to 3.2, the viscosity of the coating increased, and the asperities’ dimensions increased 
from a nanometer to a micrometer level. 
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Table 2. Power law indices for coatings with different % wt. of silica in suspension.

Sample Set % wt. of Silica in
Suspension Power Law Index

SS 0.5 0.5 0.051

SS 1.6 1.6 0.050

SS 3.2 3.2 0.045

Low power law indices were also reported in the literature [35]. The reduced wetting
rates were attributed to porosity and surface roughness, which slow the wetting process by
partially pinning the three-point contact line (TPCL) [42].

To further characterize the reasons for low power law indices, the synthesized coatings
were analyzed for their roughness and the drop volume change during spreading.

For the roughness, the coating topography was analyzed by AFM, as demonstrated by
the 2D and 3D AFM images in Figure 4. As claimed by Garnier et al. [43], surface asperities
greater than 0.16 µm are thought to significantly reduce the wetting rate. The synthesized
coatings in this study possess surface asperities and agglomerates, which are randomly
structured. The AFM images were analyzed by Image J software to obtain the asperities’
size in the coating. The sizes of the resulting asperities in the coatings are listed in Table 3.
As is evident in the table, as the wt.% of nanosilica in the suspension was increased from
0.5 to 3.2, the viscosity of the coating increased, and the asperities’ dimensions increased
from a nanometer to a micrometer level.
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(a) 0.5, (b) 1.6, and (c) 3.2.

Table 3. Coating asperity sizes (Image J Software).

% wt. of Silica in Suspension 0.5 1.6 3.2

Asperity size (µm) 0.60 ± 0.18 1.16 ± 0.17 1.69 ± 0.86

Parameters of the roughness statistics of the coatings were obtained through AFM
analysis and are listed in Table 4. The data show that increasing the % wt. of silica in
suspension increased the roughness factor value (the ratio of the actual surface area to
the projected surface area), which was related to an increase in asperity size. Table 4 also
demonstrates that both the R(RMS) and Ra values increased with the increase in the wt. %
of silica in the suspension.

Table 4. Roughness statistics for the studied compositions.

% wt. of Silica in
Suspension Roughness Factor (r) Rrms (nm) Ra (nm)

0.5 1.03 48 ± 5 58 ± 3

1.6 1.21 223 ± 2 169 ± 2

3.2 1.24 244 ± 5 189± 4

Although the change in surface roughness should have changed the spreading behav-
ior [18], no significant change was found in the experimentally derived power law index
values. While most literature shows that roughness affects drop spreading, the obtained
roughness statistics indicate that surface roughness did not play a significant role in the
rate of droplet spreading in this system.

Traditional theory enables the determination of the rate of change in the base diameter
of a spreading droplet when the volume of liquid is constant [15,32,33,44]. The effect of
volume change on the spreading behavior plays a significant role in the spreading behavior
of a droplet. Mc Hale et al. [32] reported that when the volume loss exceeds 1% of the initial
drop volume, the power law indices are reduced. Therefore, the decrease in droplet volume
in this study was anticipated to contribute to the low power law indices and reduction in
the droplet spreading speed.
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Thus, the volume of the droplet during spreading was monitored using a high-speed
camera. The droplet volume was calculated using Equations (3) and (4), where Φ(θd) is a
geometrical term that relates the base radius of the drop, Rd, to its volume [27].

(Rd)
3 =

(
3 Vol

π

)
Φ(θd) (3)

Φ(θd) =
sin3θd

2 − 3cosθd + cos3θd
(4)

The relationship between the calculated droplet volume and the spreading time is
demonstrated in Figure 5. The data in Figure 5 indicate that the droplet volume decreases
with the spreading time. A volume loss of more than 25% during spreading is exhibited for
each coating. Thus, it is hypothesized that the volume loss during drop spreading on these
superhydrophilic coatings significantly affects the spreading behavior and the observed
low power law index.
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It is postulated that droplet volume decrease during spreading may be the result
of adsorption, as the coating formulation consists of hydrophilic polyacrylic acid and
hydrophilic nanosilica, which can interact with the water drop and adsorb water. To further
understand the volume decrease, the volume change of a pure polyacrylic acid coating (on
a glass substrate) was evaluated. As illustrated in Figure S3, a volume decrease of more
than 15% was observed for the neat PAA coating. This volume decrease is attributed to the
adsorption of water by PAA due to chemical and thermodynamic interactions.

Since the water volume decrease on the PAA coating (around 15%) was smaller than
the volume decrease on the coatings containing nanosilica (>25%), it can be concluded
that surface roughness should be considered an additional plausible reason for the volume
decrease. To further investigate the volume decrease during spreading, the morphology of
the coatings was analyzed.

The microstructure of the coatings in Figure 6 shows that the coated surfaces are dense,
crack-free, and uniform. The coated surfaces containing silica nanoparticles exhibited a
good nanoparticle packing and distribution. As Figure 6 illustrates, the increase in the
wt.% of silica in the suspension increased the agglomerate size in the final coating. The
SEM images for the various coatings display rougher coatings with the wt.% increase in
the nanosilica in the suspension.
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Figure 6. SEM low-magnification (1000× on top) and higher-magnification (5000× on bottom) images
of the superhydrophilic coatings with % wt. of silica in suspension of (a) 0.5, (b) 1.6, and (c) 3.2.

It should be emphasized that the nanosilica concentration in the starting suspension
and its resultant viscosity play significant roles in the resulting roughness (agglomerate size)
of the final coating. As the silica nanoparticle content in the initial suspension increases, it
significantly increases the suspension viscosity [45,46], with the obvious consequence of
larger agglomerates in the final dry coating.

High-magnification images of the SS 0.5 coating are presented in Figure 7. Individual
silica nanoparticles of around 22 nm can clearly be seen. The good dispersion of the
nanoparticles is evident, with improved optical and mechanical properties. Figure 7 shows
that both the individual silica nanoparticles and the agglomerates that are composed of the
silica nanoparticles are well-packed and distributed in the dry coating.
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Figure 7. SEM high-magnification (100k on left and 350k on right) top-view images of SS 0.5.

Cross-section SEM images of the coatings are illustrated in Figure 8, showing that
the coatings had different thicknesses, which ranged from the nano- to micro-level. As
expected, the coating thickness increased with increased viscosity.
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and (c) 3.2.

The FTIR analysis of the samples is shown in Figure S4. The resultant spectra indicate
that a broad band appears on the spectrum of the coating at around 3365 cm−1, which is
related to OH stretching and hydrogen bonding. The spectrum also shows SiO2-related
peaks at 1025 cm−1 (Si–O–Si stretching), 760 cm−1 (Si–O bending), and 903 cm−1 (Si–OH).
The peak at 1635 cm−1 is likely due to the C=O stretching of carboxylic acids and O–H
deformation of carboxylic acids and alcohols. There are also peaks appearing at 1122 cm−1,
which could be attributed to C–O stretching vibrations, and at 824 cm−1, related to C–H
bending. The tabulated peak assignments of functional groups are given in Table S1. When
the spectra of the uncoated bare glass slide and PAA are taken into account [40], one can
conclude that these data show no indication of new peaks in the coating. However, there
were significant differences between the coatings with different suspension concentrations
in terms of the Si–OH band. These variations are most prominent in SS0.5. This could be
attributed to the glass support due to the lesser thickness of the SS0.5 coating.

Performance Analysis of the Coatings

The abrasion resistance characteristics of the prepared nanocomposite coatings are
presented in Figure 9. All coatings showed an increase in EWCA after the Taber abrasion
test. It is also evident that increasing the abrasion cycle number resulted in further increases
in EWCA. The coatings reached the lowest EWCA value of 38◦ after 30 abrasion cycles
under a constant load of 250 g. The increase in EWCA has been attributed to changes in
the coating surface caused by the Taber abrasion test, which affected the surface roughness
and morphology [47]. The coatings maintained appreciable hydrophilic characteristics
throughout up to 30 cycles of abrasion. The images of the coatings after 30 cycles are given
in Figure S5 and illustrate that the majority of the coatings remained intact after Taber
cycling. However, some parts of some of the coatings were lost, exposing the glass, after
several abrasion cycles. Although the water contact angle measurements were taken on
the abraded area where the coating appeared to be intact, the exposed glass support could
have also affected the contact angle values. Measurements were not taken on the exposed
glass areas. The work of adhesion (WA) was calculated after every 10 cycles of the Taber
test, according to Equation (5), where cosθ is the equilibrium water contact angle measured
after every 10 cycles and γL is the surface tension of the liquid (water), which is known
in the literature (γL= 72.8 mN/m) [48,49]. The results are presented in Table S2, revealing
that the work of adhesion value decreases by approximately 10% after 30 Taber cycles. This
results in a change from superhydrophilic to hydrophilic behavior, which is illustrated in
Figure 9.

WA = γL (1 + cosθ) (5)
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Figure 9. Taber abrasion test data.

The adhesion of the coating to the substrate can be measured with the tape test [50,51].
According to the ASTM D3359 standard, the adhesion is rated from 0B to 5B, where 5B
represents the highest rating for the tape test durability [52]. In this study, all formulated
coatings showed a 3B–4B adhesion level, as demonstrated in Table 5. Since the adhesion
level determines how well the coating adheres to the substrate, we concluded that the
superhydrophilic coatings show good adhesion between the substrate and the coating.

Table 5. Adhesion test results.

Sample Set Adhesion

SS 0.5 4B-3B

SS 1.6 4B-3B

SS 3.2 4B-3B

The transparency of the coatings was characterized by UV–Vis spectra in the spectral
range of 400–700 nm. The optical transmittance of the prepared coatings is illustrated
in Figure 10. The transparency was drastically decreased with the increase in the solids’
loading (binder and silica) in suspension, imparting a higher viscosity and, thus, a higher
thickness and roughness. The decrease in transparency was associated with an increase in
the thickness and surface roughness of the coatings.
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to the substrate. The abrasion resistance of the superhydrophilic coatings (on glass sub-
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The coatings showed a moderate increase in EWCA after Taber abrasion cycles. The UV–
Vis spectra demonstrated that the coating transparency was dependent on the coating 
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4. Conclusions

Superhydrophilic thin coatings, composed of silica nanoparticles and PAA with var-
ious random roughnesses, were prepared by dip coating into different concentrations
of solids (silica nanoparticle and PAA) in water suspensions. Because of the different
viscosities of the suspensions, the coatings had different thicknesses and morphologies.
The coatings were studied with respect to their wetting characteristics. The spreading
dynamics of water droplets were investigated by relating the droplet base diameter to time.
The different coatings showed similar (but very low) power law indices. Droplet volume
decrease was considered to be the main reason for the low power law index values. The
adhesion properties for all of the coatings were similar and demonstrated good adhesion to
the substrate. The abrasion resistance of the superhydrophilic coatings (on glass substrates)
exhibited good retention of the hydrophilic attributes for up to 30 abrasion cycles. The
coatings showed a moderate increase in EWCA after Taber abrasion cycles. The UV–Vis
spectra demonstrated that the coating transparency was dependent on the coating thickness
and roughness levels, with the maximum values exceeding 90%.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym15051242/s1, Figure S1: The sketch of a water droplet on
a substrate; Figure S2: Plot of Log(D) vs Log(t) for PAA coating; Figure S3: Plot of volume vs time
for PAA coating; Figure S4: FTIR spectrum of several samples; Figure S5: Top view images of the
coatings after 30 cycles of taber test. Left (SS0.5), middle (SS1.6), right (SS3.2). The abraded area is
demonstrated in between the orange lines; Table S1: IR Absorptions and their assignments; Table S2:
Work of adhesion values for the coatings after several abrasion cycles.
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