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Abstract: Diabetic wounds are one of the serious, non-healing, chronic health issues faced by individ-
uals suffering from diabetic mellitus. The distinct phases of wound healing are either prolonged or
obstructed, resulting in the improper healing of diabetic wounds. These injuries require persistent
wound care and appropriate treatment to prevent deleterious effects such as lower limb amputation.
Although there are several treatment strategies, diabetic wounds continue to be a major threat for
healthcare professionals and patients. The different types of diabetic wound dressings that are cur-
rently used differ in their properties of absorbing wound exudates and may also cause maceration to
surrounding tissues. Current research is focused on developing novel wound dressings incorporated
with biological agents that aid in a faster rate of wound closure. An ideal wound dressing material
must absorb wound exudates, aid in the appropriate exchange of gas, and protect from microbial
infections. It must support the synthesis of biochemical mediators such as cytokines, and growth
factors that are crucial for faster healing of wounds. This review highlights the recent advances
in polymeric biomaterial-based wound dressings, novel therapeutic regimes, and their efficacy in
treating diabetic wounds. The role of polymeric wound dressings loaded with bioactive compounds,
and their in vitro and in vivo performance in diabetic wound treatment are also reviewed.

Keywords: diabetes; polymers; biomaterials; scaffolds; wound dressings

1. Introduction

Diabetes is a metabolic disorder that ranks as one of the top ten reasons for death
among the global population. The International Diabetes Federation (IDF) has reported
463 million diabetic cases in 2019, and this count is suspected to grow to 578 million in
2030 [1,2]. Diabetes mellitus (DM) occurs when the pancreas fails to secrete the necessary
amount of insulin required to maintain a normal blood sugar level in the human body.
A drastic rise in blood sugar level impairs the process of wound healing, and results
in chronic non-healing wounds, which may lead to hospitalization or lower extremity
amputation [3]. In diabetic patients, the different phases of wound healing are hindered by
various factors such as stalled expression of growth factors, metabolic insufficiency, and
reduced physiological response, which prolong the time required for wound recovery [1,3]
Diabetes is also connected with different types of illnesses such as chronic kidney failure,
cardiovascular disease, stroke, and peripheral neuropathy [4]. Moreover, changes in motor
and sympathetic functions may result in physical deformation of the feet due to extreme
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skin dehydration and wound formation [1]. A recent report states that almost 50 to 70%
of all limb amputations are due to diabetes, and one leg is removed every thirty seconds
among patients suffering from diabetes [3,5]. The management of diabetic wounds using
polymer-based dressing materials has gained a lot of attention among clinicians due to
their beneficial properties such as significant antibacterial, mechanical, and wound healing
properties [3]. This review highlights the recent advancements in natural and synthetic
polymer-based biomaterials for treating diabetic wounds.

2. Wound Healing—Physiology

Wound healing is an intricate biological process that occurs when there is a loss of
integrity in skin or body tissues [6]. Wound healing requires the involvement of different
types of cells, growth factors, enzymes, and various components of the extracellular matrix
for repairing and restoring damaged tissues and organs [3]. It occurs in four distinct stages:
haemostasis, inflammation, proliferation, and remodelling (Figure 1).
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These four phases must proceed in an ordered fashion to avoid interruptions or
delays in wound closure [7]. Haemostasis is a process that begins immediately after an
injury to stop bleeding, and results in the formation of blood clots. During this event,
platelets aggregate at the wounded site owing to the interaction with proteins such as
collagen and fibronectin. Soluble fibrinogen is converted into insoluble fibrin to arrest
bleeding. The area surrounding the clot and damaged tissue produces growth factors and
pro-inflammatory cytokines that aid in efficient wound healing. When the bleeding has
stopped, the inflammatory phase is initiated, and this involves the migration of leucocytes
to the injured site to eliminate debris and infectious microorganisms [8]. This phase is
characterized by the sequential infiltration of distinctive kinds of cells such as macrophages,
neutrophils, and lymphocytes, which protect the wounded site from infections [9–11].
Macrophages play a vital role in all the stages of wound healing [12,13] as they release
cytokines that are responsible for inflammation, activation of leukocytes, and clearance
of apoptotic cells. As soon as apoptotic cells are cleared, macrophages are transformed
into a pro-regenerative state that activates fibroblasts and keratinocytes, resulting in the
regeneration of tissues. The proliferative phase is overlapped with the inflammatory phase,
which leads to the proliferation and migration of epithelial cells. Fibroblasts and epithelial
cells perform a vital task in the formation of collagen and granulation tissue at the site of the
wound. The main components of the extracellular matrix—collagen, glycosaminoglycans,
and proteoglycans—are synthesized by fibroblasts, and they play a vital role in the healing
of the wound. At the end of the proliferative phase, the wound healing process moves
into the final remodelling phase, which is characterized by the formation of granulation
tissue [9,14].

3. Wound Healing in Diabetes

The normal phases of wound healing are disrupted due to diabetes (Figure 2). Diabetic
wounds (Figure 3) continue to persist in the inflammatory phase, and the development of
matured granulation tissues is inhibited by the hindering of the initiation of the proliferative
phase in wound healing [3,15]. Intrinsic and extrinsic factors are involved in impairing
the healing of diabetic wounds. Continuous mechanical stress and recurrent trauma can
further deteriorate the healing process and result in ulcer formation [16,17]. Diabetic wound
healing is delayed due to various causes such as neuropathy, poor immunity, microbial
infection, oxygen deficit, and minimal activity of growth factors [3,7,18]. Numerous cells
such as macrophages, neutrophils, fibroblasts, lymphocytes, keratinocytes, mast cells,
and endothelial cells are actively involved in the normal wound healing process. Several
growth factors and cytokines are secreted by these cells, which perform a key role in
accelerating wound healing. Increased blood sugar level alters macrophage polarization,
which serves as one of the chief causes for impaired diabetic wound healing. Events such
as continuous secretion of pro-inflammatory cytokines, reduced angiogenic response [7],
decreased activity of neutrophils, macrophages, and fibroblasts, were observed in diabetic
wounds [19,20]. Diabetic wounds may also result in sensory disability towards temperature,
pressure, and lesions. Lack of pain and abnormal vasodilator autoregulation together
aggravate the process of wound healing [3]. Diabetic wounds may limit physical movement
and cause psychiatric stress and depression [15].
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4. Types of Diabetic Wound Dressings

Wound dressings quicken the process of wound healing by allowing water trans-
mission, providing a moist atmosphere, and aiding in improved granulation and re-
epithelialization. They can be incorporated with therapeutic molecules or anti-microbial
agents for efficient treatment of wounds [3]. The most commonly used diabetic wound
care products available on the market are Comfeel, Granuflex, and Duoderm. However,
serious concerns are raised about their use in treating infected wounds, as they may cause
maceration to the surrounding tissues that are present around the wound. Intrasite Gel
and Aquaform are two types of hydrogels that are used in wound treatment, but their use
in treating diabetic foot lesions are restricted in individuals with limb ischemia [21]. Even
though there are different types of commercially available diabetic wound dressings, the
percentage of exudate absorption varies between them, which demands the development of
new materials for treating different types of diabetic wounds. The new materials developed
must hold a perfect balance between therapeutic molecules and antibiotics that are used to
reduce healing time and the chance of formation of new ulcers [22].

The different forms of wound dressings (Figure 4) are as follows.
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(i) Films are transparent, sticky materials that are widely used in the field of wound
treatment. Their transparent nature assists in monitoring the healing of wounds without
disturbing the injured site and dressing material [23]. They allow the permeation of
gases including oxygen, water vapor, and carbon dioxide between the wounded site and
the environment [24]. Film-based dressing materials have various benefits such as high
flexibility and elasticity, and ease in fabricating them in the desired size and shape based
on the application [25].

(ii) Hydrogels are commonly used in tissue engineering and wound recovery. They
are formulated by the physical or chemical cross-linking of natural or synthetic polymers.
Due to their three-dimensional polymeric network, they have the ability to absorb a high
quantity of water molecules when compared with their dry weight. This property makes
them superior among all wound dressing materials as they can retain excessive moisture
content at the wounded site [26]. They can be fabricated in various forms and sizes, and
loaded with anti-microbial substances, cells, and growth factors for reducing the time
required for wound closure [27]. The ability of hydrogels to maintain a moist milieu helps
in promoting granulation and re-epithelization, which, in turn, results in the regeneration
of tissues.

(iii) Nanofibrous dressings are a group of nanofibers with sizes ranging from nanome-
tres (nm) to micrometers (µm) [28]. Various strategies are employed to fabricate nanofibers,
but the electrospinning technique is one of the most extensively utilized methods due to its
enormous merits such as cost-effectiveness, ease, versatility, control of porosity, and tuning
of mechanical properties of nanofibers. Once applied on the wound, the nanofibers can
be removed easily without causing any damage to the applied site [29–31]. They can be
loaded with various bioactive molecules for treating non-healing wounds [32]. Nanofibers
have the ability to imitate the native extracellular matrix. They also offer an appropriate
environment for cell proliferation and adhesion for rapid healing of wounds [33].

(iv) Foam is a type of wound dressing material that is composed of both hydrophilic
and hydrophobic foam with bioadhesive boundaries [34]. The hydrophobic portion pre-
vents unnecessary entry of liquids into the wound bed but permits gaseous exchange
and water vapor permeation. The advantages of using a foam-based wound dressing are
that they can maintain appropriate moisture content and absorb excess volume of wound
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exudates [35]. Based on the thickness of the wound, foam has the ability to absorb different
amounts of wound exudates [36]. However, foams are inappropriate for dry wounds with
fewer exudates [37].

(v) Wafer-based wound dressings are extremely porous freeze-dried polymers that
have similar characteristics to those of foams. Wafers absorb the exudate of a wound and
transform it into a gel or viscous solution that provides a moist atmosphere [38]. A few
polymers including xanthan gum and sodium alginate have been used for the fabrication of
wafers for biomedical applications [39]. The wound exudate-absorbing property of wafers
helps in reducing fluid collection and microbial infection, which, in turn, aids in the quick
recovery of wounds.

(vi) Sponges are soft and flexible with interconnected pores. Due to their porous
nature, they have excellent swelling ability, which is an ideal feature of a wound dressing
material [40]. Different kinds of sponges have been fabricated with different types of
polymers for delivering therapeutic molecules for the efficient treatment of diabetic wounds.
Sponges have been proven to help in cell migration and prevent microbial infection at the
wound site [3]. Due to the presence of interconnected pores, sponges enhance the migration
of fibroblasts, which results in faster closure of wounds.

5. Polymeric Biomaterials

Although there have been numerous advancements in the area of wound healing,
the treatment of chronic wounds continues to be a major problem in patients suffering
from diabetic foot ulcers and other major injuries [41]. An ideal wound dressing material
must possess special features such as absorbing wound exudates, aiding in appropriate
exchange of gas, and protecting from microbial infections. They must also support in
the synthesis of biochemical mediators such as cytokines and growth factors that are
essential for the proper healing of wounds [42]. Bioactive compounds extracted from
natural sources have been investigated to understand their role in accelerating the process
of healing diabetic wounds. The study of natural materials in the form of wound dressing
has gained special attention because of their potency in inducing the formation of new
tissues. Synthetic polymers are also extensively used in treating diabetic wounds as they
exhibit excellent mechanical, bioinert, and biocompatible characteristics. Both natural
and synthetic polymeric biomaterials are considered as satisfactory wound dressings
due to their exceptional properties such as increased wound healing efficacy, less/no
immunogenicity, good mechanical strength, and biocompatibility. Table 1 shows the
different types of wound dressing materials prepared using both natural and synthetic
polymers. Herein, we discuss the various wound dressing polymeric biomaterials that are
used for treating diabetic wounds.

Table 1. Different types of polymeric biomaterial-based dressings.

Authors Material/Dressings Therapeutic
Compounds Applications Ref.

Ahmed et al.
Polyvinyl

alcohol—Chitosan
nanofiber mats

Zinc oxide NP Microbial-Infected DW
Care [43]

Cam et al.
Polyvinylpyrrolidone-

Polycaprolactone
nanofibrous mats

Pioglitazone DW Healing [44]

Almasian et al.
Polyurethane—

Carboxymethylcellulose
nanofibers

Plant extract of Malva
sylvestris DW Treatment [45]

Chen et al.
Poly-N-

acetylglucosamine
nanofibers

Polydeoxyribonucleotide Diabetic Skin Ulcer [46]
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Table 1. Cont.

Authors Material/Dressings Therapeutic
Compounds Applications Ref.

Choi et al.
Polyethylene glycol—

Polycaprolactone
hybrid nanofibers

Human Epidermal
Growth Factor

Diabetic Ulcer
Treatment [47]

Cui et al. Polylactide-based
nanofibers Doxycycline Chronic Wound

Management [48]

Grip et al.
Hydroxypropyl Methyl-
cellulose/Polyethylene

oxide nanofibers
β-Glucan DW Care [49]

Kanji et al. Polyethersulfone
nanofibers

Human umbilical cord
blood-derived CD34+

cells
DW Management [50]

Lee et al. PLGA nanofibers
Platelet-derived growth

factor, Vancomycin,
and Gentamicin

Diabetic Infected
Wound Care [51]

Lee et al. PLGA nanofibers Insulin DW Recovery [52]

Merrel et al. Polycaprolactone
nanofibers Curcumin DW Management [53]

Pinzón-García et al. Polycaprolactone
nanofibers Bixin DW Healing [54]

Ranjbar-Mohammadi
et al.

Polycaprolactone—
Gum Tragacanth

nanofibers
Curcumin DW Care [55]

Shalaby et al. Cellulose acetate
nanofibers Silver NP

Microbial-Infected
Diabetic Lesion

Treatment
[56]

Zehra et al. Polycaprolactone
nanofibers Sodium Percarbonate DW Management [57]

Lee et al. PLGA—Collagen
scaffold membranes Glucophage DW Management [58]

Zheng et al.
PLGA—Cellulose

nanocrystals nanofiber
membranes

Neurotensin DW Care [59]

Liu et al.
Cellulose acetate—Zein

composite nanofiber
membranes

Sesamol DW Treatment [60]

Lee et al. PLGA membranes Metformin DW Healing [61]

Ren et al. Poly-L-lactic acid
fibrous membranes

Dimethyloxalylglycine-
loaded mesoporous

silica NP
DW Treatment [62]

Lobmann et al. Hyaluronic acid
membranes Human keratinocytes Diabetic Foot Wounds [63]

Augustine et al.

Poly(3-
hydroxybutyrate-co-3-

hydroxyvalerate)
membranes

Cerium oxide
NP/gelatin DW Treatment [64]

Augustine et al.
Polyvinyl

alcohol—Polylactic
acid hybrid membranes

Connective tissue
growth factor

Wound Dressing
Membranes For

Diabetic Lesions And
Chronic Ulcers

[65]
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Table 1. Cont.

Authors Material/Dressings Therapeutic
Compounds Applications Ref.

Arantes et al. Chitosan films Retinoic acid / solid
lipid nanoparticles DW Healing [66]

Arul et al. Collagen films Biotinylated GHK
peptide DW Dressing [67]

Inpanya et al. Fibroin films Aloe gel DW Management [68]

Kim et al.
Polyvinylpyrrolidone—

Polyvinyl alcohol
films

Sodium fusidate Wound Healing [69]

Mizuno et al. Chitosan films Fibroblast growth
factors DW Healing [70]

Song et al. Cellulose films Selenium Cutaneous DW Healing [71]

Tan et al. Sodium alginate
hydrocolloid films Vicenin-2 DW Management [72]

Tong et al.
Polyvinyl

alcohol—Cellulose
anocrystal films

Curcumin DW Care [73]

Voss et al. Cellulose—Polyvinyl
alcohol films

Propolis and/or
Vitamin C DW Management [74]

Wu et al. Silk Fibroin—Chitosan
films

Adipose-derived stem
cells DW Care [75]

Da Silva et al. Hyaluronic acid
spongy hydrogels

Human adipose stem
cells Diabetic Foot Ulcer [76]

Lai et al.
Sodium carboxymethyl-

cellulose
hydrogels

Fern extracts (Blechnum
orientale Linn.)

Diabetic Ulcer
Treatment [77]

Li et al. Hydroxyapatite/Chitosan
composite hydrogels Exosomes (SMSCs-126) DW Treatment [78]

Masood et al.
Chitosan—

Polyethylene glycol
hybrid hydrogels

Silver NP DW Healing [79]

Shi et al. Chitosan—Dextran
hydrogels Silver NP DW Treatment [80]

Thangavel et al. Chitosan hydrogels L-glutamic acid DW Healing [81]

Zhang et al.
Poly (γ-glutamic acid)—

Heparin—Chitosan
composite hydrogels

Superoxide dismutase DW Treatment [82]

Choi et al. Polyurethane foams

Silver nanoparticles
and Recombinant

Human Epidermal
Growth Factor

Bacteria-Infected DW
Management [83]

Pyun et al. Polyurethane foams
Recombinant Human

Epidermal Growth
Factor

DW Treatment [84]

Atia et al.
Sodium

alginate—Gelatin
wafers

Diosmin nanocrystals DW Healing [85]

Anisha et al.
Hyaluronic

acid—Chitosan
sponges

Silver nanoparticles Wound Dressing for
Diabetic Foot Ulcer [86]
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Table 1. Cont.

Authors Material/Dressings Therapeutic
Compounds Applications Ref.

Lipsky et al. Collagen sponges Gentamicin Diabetic Foot Ulcer [87]

Mohandas et al. Chitosan—Hyaluronic
acid composite sponges

Fibrin nanoparticles
incorporated with

vascular endothelial
growth factors

Wound Dressing For
DW [88]

Shi et al. Chitosan—Silk hybrid
sponges

Gingival mesenchymal
stem cell-derived

exosomes
DW Healing [89]

Wang et al. Chitosan—Collagen
sponges

Recombinant Human
Acidic Fibroblast
Growth Factors

DW Healing [90]

Xia et al. Chitosan composite
sponges

Quaternary ammonium
chitosan nanoparticles

Wound
DressingMaterial for

Diabetic Chronic Injury
[91]

Kondo et al.
Hyaluronic

acid—Collagen
sponges

Epidermal growth
factors DW Healing [92]

Raveendran et al. Chitosan bandages

Ciprofloxacin and
Fluconazole-

containing Fibrin
nanoparticles

DW Management [93]

Mohanty et al.
Sodium

alginate—Chitosan
bandages

Epidermal growth
factor, curcumin, and
mesenchymal stem

cells

DW Healing [94]

Kumar et al. Chitosan hydrogel
composite bandages

Zinc oxide
nanoparticles

Wound Dressing
Material [95]

NP—nanoparticles; PLGA—polylactic-co-glycolic acid; DW—diabetic wound.

5.1. Natural Polymers

Natural biomaterials are considered to be suitable candidates for preparing wound
dressing material due to their exceptional properties such as less/no immunogenicity
and good biocompatibility. They also serve as satisfactory matrices for cells that play
imperative roles in the process of wound healing. Some of the widely accepted natural
products extracted from natural sources that are widely used as wound dressing material
are collagen, gelatin, fibrin and silk proteins.

5.1.1. Collagen

Collagen provides integrity to human skin and serves as a principal component of the
extracellular matrix (ECM) [96]. It is abundantly present in bones, ligaments, and tendons.
It has distinctive properties such as excellent biocompatibility, thermal stability, mechanical
strength, and low immunogenicity [97,98]. Collagen plays a vital role in haemostasis as it
interacts with the platelets that are deposited at the site of wound through chemotaxis [99].
It mediates various pro-regenerative physiological interactions that are responsible for
wound healing. Collagen is extensively used as a matrix for wound treatment and tissue
regeneration. Collagen is isolated from different types of sources such as bovine, equine
and, porcine tissues [100,101]. Although there are 29 types of collagens, type 1 collagen is
widely available and can be extracted easily from mammalian connective tissues [102,103].
The most commonly used type 1 collagen is isolated from the tendons of rat tails [104,105].
Bovine collagen is extracted from several tissues such as bone, skin, and the Achilles ten-
don [106,107]. Collagen is formulated in the form of scaffolds with varying concentrations
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and pore sizes. These scaffolds can absorb wound exudates, attach onto the wound bed,
and provide moist environment [108].

Collagen-based scaffolds (Figure 5) are commonly used as a wound dressing material
for treating skin burns, foot ulcers, and pressure sores [109]. In certain cases, collagen is
combined with other sources such as fibronectin or elastin to improve the fluid-binding
property of the scaffolds [110,111]. Collagen is also fabricated in the form of implants that
can be used as a support for delivering keratinocytes for skin regeneration [112–114]. After
implantation, collagen scaffolds are infiltrated by connective tissues that are composed
of glycosaminoglycan, new collagen, fibroblasts, and macrophages. Based on the cross-
linking percentage, collagen scaffolds are degraded into small peptides within a few weeks
of implantation, and replaced by native collagen that is synthesized by fibroblasts [115].
Apligraf®—the first tissue-engineered wound dressing material that was approved for
treating diabetic ulcers—was made up of two-layered collagen hydrogels loaded with
human keratinocytes and fibroblasts [116]. Subsequently, several modifications were
carried out by altering the concentration of collagen to improve the mechanical strength
of Apligraf®. When collagen concentration was increased, there was a significant rise in
the proliferation of fibroblasts and stimulation of keratinocyte growth factor, which lead to
the faster healing of wounds [117]. At present, collagen-based wound dressing materials
are widely accepted in managing full-thickness wounds and skin burns. It is also possible
to enhance the activity of collagen by combining it with bioactive therapeutic agents and
antimicrobial compounds substances that accelerate the rate of wound closure [118]. Type
1 collagen has the ability to draw growth factors toward the wounded area and quicken the
healing and regeneration of damaged tissues [98]. However, in the case of diabetic wounds
or diabetic foot ulcers, the epidermis becomes ulcerous, resulting in the deficiency of type 1
collagen. This further delays the proliferation and migration of fibroblasts, which, in turn,
prolongs the time required for wound healing [119]. Lee et al. determined the ability of
collagen (colladerm) wound dressing in treating diabetic foot ulcers. When patients were
treated with collagen dressing every 2–3 days for up to 3 weeks, a significant decrease in
the wound area with 73.7% healing of the diabetic wound ulcer was observed. The results
demonstrated the safety and efficacy of collagen dressing in faster healing of diabetic
foot ulcers [120]. Hauck et al. demonstrated the possible use of hyaluronan/collagen
hydrogels loaded with high-sulphated hyaluronan in treating dermal wounds in diabetic
mice models. The hydrogel enhanced the healing rate of damaged tissues with decreased
inflammation, improved vascularization, and increased pro-regenerative macrophage
activation, and hastened the formation of new tissues for wound closure [121]. Shagdarova
et al. prepared hydrogels using chitosan, collagen, and silver nanoparticles for treating
diabetic injuries/wounds. The hydrogels had a fibrous porous structure with a better
swelling ratio. When applied onto diabetic wounds, the hydrogels elevated the expression
of genes such as vascular endothelial growth factor, Interleukin 1b, tissue inhibitor of
metalloproteinases-1, and transforming growth factor beta 1 [122].

5.1.2. Gelatin

Gelatin is a natural polymer that is obtained from the partial hydrolysis of col-
lagen [123]. Due to its salient features such as availability, biodegradability, biocom-
patibility, cell-interactivity, and non-toxicity, gelatin is commonly used in the field of
biomedicine [124]. When used as a scaffold, gelatin has the ability to absorb water
molecules, making it an appropriate candidate for wound dressing material. The main
drawback associated with gelatin is its poor stability and mechanical strength. There-
fore, to increase its mechanical stability, gelatin is cross-linked with agents such as glu-
taraldehyde, fructose, dextran, genipin, formaldehyde, and carbodiimides [125]. Sama-
dian et al. developed berberine-loaded cellulose acetate/gelatin electrospun mats as
wound dressing for treating diabetic foot ulcers. The fibres had an average diameter of
502 ± 150 nm, and demonstrated antibacterial behaviour against Staphylococcus aureus and
Pseudomonas aeruginosa. The electrospun mats exhibited suitable tensile strength and water
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uptake potency required for a wound dressing material. A haemolytic assay performed
using red blood cells showed that the percentage of haemolysis was significantly low for
berberine-loaded cellulose acetate/gelatin electrospun mats when compared with the posi-
tive control—water [126]. Yu et al. prepared a paeoniflorin-sodium alginate (SA)-gelatin
skin scaffold with a mesh-like structure with uniform pore distribution for treating diabetic
wounds. Animal models showed improved deposition of collagen with microvascular
regeneration when treated with the skin scaffold, thereby proving their possible use in the
field of diabetic wound treatment [127]. Sadeghi et al. prepared biodegradable scaffolds
using gelatin and sulphated alginate as skin replacements to accelerate the healing of
diabetic wounds. The carbodiimide mode of cross-linking followed by lyophilization was
carried out to prepare the scaffolds. Cell culture analysis proved the non-toxicity of the
scaffolds, with enhanced cell growth when the quantity of sulphated alginate was increased
in the scaffold. Diabetic animal models proved the ability of the scaffold to cure wounds by
providing the required environment for faster healing of wounds [128].

Figure 5. Collagen scaffold loaded with therapeutic molecules for diabetic wound treatment.

5.1.3. Fibrin

Fibrin is obtained from fibrinogen, which is converted in response to tissue injury. It
acts as a mesh and forms blood clots to prevent bleeding. Fibrin is extensively used for
clinical applications, in the form of sealants and haemostatic agents [129]. When used in
the form of scaffolds, it has the ability to deliver inflammatory cells and growth factors that
are necessary for wound repair and tissue regeneration [130].

Fibrin serves as a substrate for different types of cells such as platelets, fibroblasts,
endothelial cells, and macrophages. It triggers the process of cellular proliferation and
new blood vessel formation, thereby leading to efficient healing of wounds. Fibrin can be
formulated in different structures such as nanoparticles, hydrogels, scaffolds and films.
Fibrin-based cell delivery is widely accepted for treating dermal wounds, as it stimu-
lates neovascularization and the rejuvenation of skin cells [131]. For treating skin burns,
fibrin-based hydrogels/films are utilized for the transplantation of keratinocytes to induce
fibroblast formation and re-epithelization. Fibrin scaffolds loaded with vascular endothelial
factor and fibroblast growth factor enhanced re-epithelization, collagen deposition, and
accelerated wound closure in mice with diabetic wounds [132]. Fibrin as a scaffold has the
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ability to mimic the extracellular matrix and enhance the interaction of cells responsible for
tissue regeneration [133,134]. Geer et al. studied the re-epithelializing performance of fibrin
using human keratinocytes under in vitro conditions [135]. Falanga et al. demonstrated
that when bone marrow-derived mesenchymal stem cells (Figure 6) were entrapped within
fibrin, they reduced the time taken for wound closure in acute and chronic wounds [136].
When bone marrow nuclear cells were mixed and injected along with fibrin gel to treat
infarcted myocardium, it resulted in neovascularization and increased tissue regeneration.
Fibrin-based formulations are highly efficient in curing diabetic wounds. Crisci et al. inves-
tigated the efficacy of fibrin rich in leukocytes and platelets (FLP) in treating osteomyelitis
ulcers in diabetic feet. FLP was collected from diabetic individuals suffering from os-
teomyelitis and skin lesions for a minimum period of 180 days. Surgical debridement was
carried out to deliver FLP directly into skin lesions of patients, and the development of
lesions was assessed periodically. The study report (Figure 7) stated that FLP treatment
settled down skin lesions with no indication of microbial infection [137].Polymers 2023, 15, x FOR PEER REVIEW 12 of 25 
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Losi et al. employed electrospinning and spray phase-inversion procedures to syn-
thesize bilayered fibrin/poly(ether)urethane scaffolds rich in platelet lysate for treating
diabetic wounds. Cell culture experiments performed using L929 mouse fibroblasts proved
that the efficacy of two important growth factors—platelet-derived growth factor (PDGF)
and vascular endothelial growth factor (VEGF), which play a crucial role in healing chronic
wounds—was retained in the electrospun scaffolds. An in vitro release study of PDGF and
VEGF from the synthesized scaffolds demonstrated an initial burst release of growth
factors within 24 h of study, followed by sustained release for one week. When ap-
plied onto full-thickness wounds in diabetic animal models, a significant improvement
in wound closure within 2 weeks of treatment was observed. Moreover, improved re-
epithelialization and collagen deposition were also witnessed in wounds treated with
the scaffolds, thereby proving their potency in healing diabetic wounds/ulcers [138].
Poly(ether)urethane-polydimethylsiloxane/fibrin-based scaffolds containing poly(lactic-co-
glycolic acid) nanoparticles loaded with recombinant human vascular endothelial growth
factor and basic fibroblast growth factor were fabricated by Losi et al. with the intention of
triggering cellular proliferation and accelerating the process of wound healing in genetically
diabetic mice. The presence of growth factors in the scaffolds quickened the rate of closure
of full-thickness skin wounds on day 15 in diabetic mice. Histological analysis showed
extensive re-epithelialization, with increased granulation tissue formation/maturity and
collagen deposition, thereby elucidating the efficiency of the prepared scaffolds in treating
diabetic wounds [133].

5.1.4. Silk Proteins

Silk cocoons are discarded as waste by the silk industry, but they can be used as
valuable resources for fabricating wound dressings that can aid in faster healing of wounds.
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Silk-based biomaterials are extensively used in the field of medicine due to their excellent
biocompatibility and biodegradability. The FDA approved product silk voice is a type
of scaffold, prepared using reconstituted or solubilized silk protein [139]. Silk protein
has the capability to induce cell migration and proliferation, and attract cells such as
keratinocytes to the wounded site, thereby accelerating the process of wound healing [140].
Two different types of proteins—silk fibroin and silk sericin—are isolated from the cocoons
of silkworms (Figure 8). They are widely used in biomedical applications due to their lower
immunogenicity, biodegradability, biocompatibility, moisture absorption, UV resistance,
and antibacterial properties [141].
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Silk proteins are fabricated in various forms such as films, nanofibers, and sponges
for biomedical applications. When used as a wound dressing material, silk proteins have
enhanced fibroblast adhesion and lead to faster healing of wounds [142]. The middle and
posterior silk glands of silkworm Bombyx mori secretes two important proteins, silk fibroin
and silk sericin, which are extensively used to accelerate the healing of wounds [143].
Silk fibroin has extraordinary thermal stability and mechanical strength when compared
with polymers such as collagen and polylactic acid. In addition, the presence of an RGD
peptide sequence promotes the attachment, movement, and proliferation of cells such as
keratinocytes, endothelial, epithelial, and glial cells, and osteoblasts for the effective healing
of wounds. Porous silk fibroin scaffolds/sponges can be prepared using different types of
techniques such as lyophilization, gas forming, and freeze-drying/foaming methods [144].
Liu et al. prepared silk fibroin scaffolds incorporated with neurotensin-loaded gelatin
microspheres as a novel therapeutic regime for healing diabetic foot ulcers in diabetic rat
models. Macroscopic evaluation of wounds showed significant reduction in wound size on
day 14 in the experimental group. In addition, histological and immunofluorescence analy-
ses demonstrated the accumulation of fibroblasts with a substantial expression of collagen
at the site of the wound. The prepared scaffolds had a good porosity of approximately 85%,
with an average pore size of 40–80 µm [145]. Guan et al. fabricated microneedle patches
with multiple features such as anti-microbial, anti-oxidant, and pro-angiogenic proper-
ties for targeting diabetic lesions/wounds. The microneedles were constructed using silk
fibroin methacryloyl with tremendous biocompatibility and mechanical stability. Two dif-
ferent bioactive molecules—VEGF and Prussian blue nanozymes—were loaded on the tip
of microneedles with polymyxin—an anti-bacterial agent—at the base layer of the micronee-
dle patches. The patches played a significant role in treating diabetic skin wounds [146].
Xu et al. prepared electrospun Huangbai liniment-loaded silk fibroin/poly-(L-lactide-co-
caprolactone) nanofibers for treating diabetic wounds. The fibres were smooth, without
any bead formation when viewed under a scanning electron microscope. The nanofibers
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exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus. Cell culture
experiments showed enhanced adhesion and proliferation of NIH-3T3 cells when cul-
tured on the nanofibers. Animal experiments using a diabetic mice model proved that the
nanofibers had the ability to elevate the synthesis of collagen and expression of the TGF-β
signalling pathway, which, in turn, promoted efficient healing of diabetic wounds [147].
Silk sericin is a globular protein with significant features such as non-immunogenicity,
good biocompatibility, biodegradability, anti-oxidant properties, and regenerative potency.
It serves as a promising biomaterial in the field of medicine. Silk sericin-based hydrogels
were prepared using horseradish peroxidase (HRP) and hydrogen peroxide cross-linking
methods. A chorioallantoic membrane assay performed using chick embryos showed a
minimal rise in the number of new blood vessels in the test group when compared with that
of the control. The hydrogel showed collagen deposition and mild induction of superoxide
dismutase and catalase in diabetic wounds treated with hydrogel in the mouse model [148].
Samad et al. formulated carboxymethyl cellulose/sericin hydrogels for diabetic wound
treatment. The hydrogels had porous morphology, excessive swelling efficacy, and anti-
microbial properties. When applied on to full-thickness excision wounds in diabetic rats,
the upregulation of collagen deposition and downregulation of pro-inflammatory markers
was witnessed, which led to the healing of wounds without any insulin treatment [149].

5.2. Synthetic Polymers for Diabetic Wounds

Synthetic polymers are used in combination with natural polymers for treating diabetic
wounds because they exhibit excellent mechanical properties. They are used for tissue
engineering applications owing to their inert and biocompatible characteristics. Synthetic
polymers such as polycaprolactone (PCL), poly(vinyl alcohol) (PVA), Poly(2-hydroxyethyl
methacrylate) (pHEMA), polylactide (PLA), and polyglycolic acid (PGA) have been used
as scaffolds in tissue engineering and wound healing applications along with natural
polymers [3,150,151].

5.2.1. Polycaprolactone (PCL)

PCL is a hydrophobic polymer that has a great degradation rate and excellent bioac-
tivity. It is a linear aliphatic semicrystalline polymer. PCL polymer can be modified by
changing the molecular weight, crystallinity, or structure using polyethylene glycol and
hydrophobic ceramics, or by creating copolymers with PLA and PGA. PCL exhibits reduced
cellular attachment owing to its hydrophobicity, which can be altered by modifying its
surface with other biomaterials [152]. An organic and inorganic composite scaffold con-
taining two-dimensional nanovermiculite and PCL electrospun fibres for treating diabetic
wounds were prepared by Huang et al. The results show that polycaprolactone electro-
spun fibres with two-dimensional vermiculite nanosheets could significantly improve
neo-vascularization, re-epithelialization, and collagen formation in the diabetic wound
bed [153]. Amine-terminated block copolymers containing PCL and polyethylene glycol
and PCL were electrospun using electrospinning technique by Choi et al. The human
epidermal growth factors (EGF) were immobilized on the surface of the nanofibers. Dorsal
wounds were created in diabetic animals in order to study the wound healing efficacy of
the prepared wound dressing material. Immunohistochemical studies showed that the
EGF receptor were highly expressed in the nanofiber-treated groups. The results showed
that the prepared nanofibers could be a potential material for treating diabetic wounds [47].
Merrell et al. used PCL nanofibers as drug delivery vehicles. He prepared PCL nanofibers
loaded with curcumin and used them as a diabetic wound dressing material. In total, 70%
of human foreskin fibroblast cells (HFF-1) cells were viable when treated with the prepared
nanofibers. A streptozocin-induced diabetic mouse model were used for the in vivo study,
which showed an increased rate of wound closure in animals treated with the nanofibers.
The study proved that the prepared nanofibers are bioactive, with anti-inflammatory and
antioxidant properties [53]. Lv et al. prepared a PCL/gelatin nanofiber composite scaf-
fold containing silicate-based ceramic particles (Nagelschmidtite, NAGEL, Ca7P2Si2O16)



Polymers 2023, 15, 1205 16 of 25

through the co-electrospinning technique for diabetic wound healing (Figure 9). In vivo
studies revealed that these nanofiber composite scaffolds promoted angiogenesis, the depo-
sition of collagen, and re-epithelialization at the wounded site in the diabetic mice. The
results suggested that the release of Si ions and the structure of nanofibrous scaffolds have
the potential for diabetic wound healing, and pave the way for biomaterials used in the
field of both wound healing and tissue engineering applications [154].
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5.2.2. Poly(vinyl alcohol) (PVA)

PVA is an excellent biocompatible synthetic polymer produced by the hydrolysis of
vinyl acetate. It is one of the US Food and Drug Administration (FDA)-approved synthetic
polymeric materials. The value of PVA is growing at an enormous rate, as it is utilized
for biomedical applications owing to desirable characteristics such as non-carcinogenic,
non-toxic, bio-adhesive, and swelling behaviours. PVA has been potentially used in soft eye
lenses, cartilages, and eye drops, etc. PVA can be fabricated in different forms such as fibres,
gel, and film that support in aiding the adhesion and proliferation of cells [155]. Huang
et al. fabricated electrospun brown alga-derived polysaccharide and PVA nanofibers
for skin repair in diabetic mice. Brown alga-derived polysaccharide is a sea mustard
found in marine areas. The result suggested that the prepared nanofibers decreased
inflammation and stimulated angiogenesis at the wound site of diabetic mice [156]. Lin
et al. synthesized PVA/cobalt-substituted hydroxyapatite nanocomposites as a wound
dressing material for diabetic foot ulcer treatment. The nanocomposites were prepared
using solvent casting method. The result showed that the prepared nanocomposites had
high mechanical properties and excellent bioactivity. The nanocomposites discharged
a small number of cobalt ions into the cell-cultured medium, which showed better cell
growth. The prepared nanocomposites could be a potential wound dressing material
for diabetic foot ulcer treatment [157]. Zhu et al. fabricated PVA hydrogel loaded with
fibroblast growth factor 21 and metformin for diabetic wound healing. The fabricated
hydrogel were injectable, adhesive and ROS scavenging abilities. In vivo results showed
the formation of blood vessels with faster healing of diabetic wounds [158]. Wang et al.
prepared PVA/chitosan nanocomposite hydrogels incorporated with Tibetan eighteen-
flavour dangshen pills (TEP) for treating chronic diabetic wounds. TEP is a traditional
Tibetan medicine used to treat skin diseases with analgesic, anti-inflammatory, and healing
properties. This hydrogel were treated with L939 cells, which showed no cytotoxic effect
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and demonstrated that the new formulation can be used for treating diabetic wounds with
the help of traditional medicine [159]. Cellulose and PVA-based films incorporated with
Vitamin C and/or propolis for faster diabetic wound healing were created by Voss et al.
Cellulose-PVA/Vitamin C and Cellulose-PVA/Vitamin C/Propolis films were prepared in
order to analyse the release of Vitamin C in a precise manner. When Cellulose-PVA/Vitamin
C/Propolis were used in an STZ-induced diabetic animal model, it showed faster wound
closure. Histopathological analysis showed better results when treated with Cellulose-
PVA/Vitamin-C/Propolis. The results suggest that the prepared PVA-based film could be
a potential treatment procedure for faster wound healing (Figure 10) [74].
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Ahmed et al. fabricated chitosan, PVA, and zinc oxide nanofibrous mats using electro-
spinning technique for faster healing of diabetic wounds. The compounds chitosan and
PVA have wound-healing properties, and zinc oxide has excellent antibacterial activity.
The result showed that these nanofiber mats exhibit efficient antibacterial and antioxidant
properties. In vivo analysis showed that there was faster healing of diabetic wounds in
groups treated with nanofiber mats [43]. Kim et al. developed a new film-forming hydrogel
including PVA, polyvinylpyrrolidone, and propylene glycol incorporated with sodium
fusidate for wound healing applications. The film showed excellent elasticity and flexibility,
and could be an effective pharmaceutical product for wound treatment [69].

5.2.3. Poly(2-Hydroxyethyl Methacrylate) (pHEMA)

pHEMA is a hydrophilic, non-biodegradable, and biocompatible polymer that is
widely used for different types of wound healing, bone regeneration, and cancer treatment.
pHEMA-based biomaterial gained lot of attention in wound treatment and ocular therapy
due to its excellent biocompatible and minimal thrombogenic properties. Due to its trans-
parent nature, it facilitates the tracking of wound recovery when used as wound dressing
material. Bacterial cellulose pHEMA and silver were combined as a multifunctional wound
dressing material with efficient antimicrobial properties [160].

5.2.4. Polylactide (PLA) and Polyglycolic Acid (PGA)

PGA and PLA are extensively suitable for the fabrication of scaffolds. These two
synthetic polymers serve as a suitable platform for tissue construction. Moreover, these
polymers have been used as implantable materials in the field of medicine. Polyglycolic
acid is the first synthetic polymer utilized in the form of suture under the name of “Dexon”.
At the site of the wound, PLGA and PLA stimulate the supply of lactic acid, and help
in inducing angiogenesis and quickening the process of wound healing [155]. Khazaeli
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et al. prepared PLA/chitosan nanoscaffolds using the microwave-assisted electrospin-
ning technique loaded with cod liver oil for diabetic wound healing. The results showed
that the groups treated with nanoscaffolds exhibited wound recovery within 14 days of
treatment [161]. Zheng et al. fabricated polylactic co-glycolic acid/cellulose nanocrystal
nanofibers loaded with neurotensin to study their therapeutic potency in treating dia-
betic wounds. The prepared nanofibers were applied on wounds in diabetic mice, which
showed a slow release of neurotensin for 2 weeks. The results suggested that the pre-
pared nanofibers effectively stimulate the regeneration of tissues for diabetic foot ulcer
treatment [59]. Zha et al. prepared polyglycolic acid/silk fibroin nanofibrous scaffolds
incorporated with deferoxamine for diabetic wound healing application. The prepared
nanofibrous scaffold had a porous three-dimensional nanofibrous structure and exhibited
good mechanical strength, biodegradability, and biocompatibility, which could promote cell
adhesion, growth, and migration. The in vivo results showed that the prepared nanofibrous
scaffold accelerated the wound healing rate in treated groups [162].

6. Future Perspectives and Conclusions

To date, there are numerous polymer-based wound dressings for treating and man-
aging diabetic wounds/foot ulcers. These dressings differ in their porosity, mechanical
strength, swelling, and moisture absorption properties. They aid in cellular adhesion,
proliferation, and migration without causing any cytotoxicity or immunotoxicity. Wound
dressings protect wounds from microbial infections and physical damage. The efficacy
of the polymeric biomaterials can be improved by loading therapeutic molecules, growth
factors, and anti-microbial agents that could accelerate the process of wound closure by
triggering collagen deposition and vascularization. The implantation of the dressing mate-
rial exactly at the site of the wound is a challenging procedure, as it requires appropriate
coordination between the scientist and physician. The method employed to synthesize scaf-
folds is also crucial as it plays a vital role in determining the quality and performance of the
wound dressings. In addition, the fabrication technique may involve costly sophisticated
instruments, which may further increase the cost of treatment. Therefore, it is important
to recognize the issues that affect clinical translation, and pursue alternatives that can
overcome the current problems.

Further, research in the field of 3D printing and tissue engineering can improve the
potency of polymeric wound dressings for efficient diabetic wound treatment. Wound
dressing materials that are 3D printed can serve as a unique platform and can be incorpo-
rated with different types of bioactive compounds and antimicrobial agents that can speed
up the rate of wound healing. The use of 3D printing can overcome the disadvantages
associated with the conventional techniques, and is highly reliable and low-cost. Addition-
ally, the combination of biomarkers and nanoparticles that can be used to monitor wound
recovery can be loaded with the wound dressing materials for efficient diabetic wound
treatment.
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