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Abstract: The isothermal crystallization properties of polypropylene/graphite nanosheet (PP/GN)
nanocomposites under supercritical N, were systematically studied by a self-made in situ high-
pressure microscope system. The results showed that the GN caused irregular lamellar crystals to
form within the spherulites due to its effect on heterogeneous nucleation. It was found that the grain
growth rate exhibits a decreasing and then increasing trend with the enhancement of Ny pressure.
Using the secondary nucleation model, the secondary nucleation rate for spherulites of PP/GN
nanocomposites was investigated from an energy perspective. The increase in free energy introduced
by the desorbed Nj is the essential reason for the increase in the secondary nucleation rate. The
results from the secondary nucleation model were consistent with those acquired through isothermal
crystallization experiments, suggesting that the model can accurately predict the grain growth rate
of PP/GN nanocomposites under supercritical N, conditions. Furthermore, these nanocomposites
demonstrated good foam behavior under supercritical N.

Keywords: PP/GN; grain growth rate; secondary nucleation model; foaming behavior

1. Introduction

Many functional lightweight microcellular foams have been prepared based on de-
veloped microcellular foaming technology [1,2], which are widely used in industrial ap-
plications requiring properties such as sound insulation [3], thermal insulation [4,5], and
electromagnetic shielding [6,7]. The crystallization kinetics of composites directly affect
cellular structure, which in turn affects the physical properties of the microcellular foam.

Primary nucleation and secondary nucleation together constitute the entire crystalliza-
tion behavior of the polymer. Primary nucleation is a “from nothing to something” process,
i.e., the formation of ordered regions in the disordered phase, which can be characterized
by grain density. Secondary nucleation describes the process of continued growth in the
nucleus [8] and is usually quantified by the grain growth rate [9,10]. Currently, studies
on the crystallization behavior mainly focus on the total crystallization kinetics [11-13],
without separating the primary and secondary nucleation [14,15]. Numerous scholars
have explored the total crystallization kinetics based on the Avrami equation [16], which
determines the crystallization behavior through the crystallization rate constant as well as
the Avrami index [17-19]. However, the crystallinity increases due to further refinement
of crystals; in practice, the calculated Avrami index is not an integer [20]. Therefore, the
quantitative interpretation of the nucleation and crystal growth patterns by Avrami’s index
is not reliable. A secondary nucleation model of the crystal growth frontier was later
developed by Lauritzen and Hoffmann and was mainly used to determine the regime
transition in crystallization behavior.

The presence of supercritical gas increases the free volume, thus enhancing the mobility
of molecular chains and giving the polymer molecules a strong plasticizing effect [21,22].
The improvement of polymer crystallization behavior by high pressure gas is related to

Polymers 2023, 15, 1204. https:/ /doi.org/10.3390/polym15051204

https://www.mdpi.com/journal /polymers


https://doi.org/10.3390/polym15051204
https://doi.org/10.3390/polym15051204
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0001-9035-8265
https://doi.org/10.3390/polym15051204
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym15051204?type=check_update&version=2

Polymers 2023, 15, 1204

2 of 14

its solubility in the polymer [23,24]. In order to have a clearer view of the crystal growth
of polymer composites under supercritical fluids, the research cannot remain in the study
of the total crystallization kinetics [25,26]. Therefore, it is essential to employ in situ high-
pressure visualization devices to characterize the crystallization behavior online. However,
the above crystallization kinetic model is not applicable to describe the crystallization
behavior under supercritical fluid. The current rapid development of supercritical fluid
foaming technology makes it important to develop a secondary nucleation model applicable
to describe the crystallization behavior under high pressure gas.

In this paper, supercritical N, is used as the high-pressure medium, which can prepare
excellent microcellular foams with dense and fine cell structure. The inexpensive and widely
used thermoplastic polypropylene as well as the common graphite nanoflakes were adopted
as the research objects. The effects of crystallization behavior and grain morphology of
PP/GN nanocomposites under high pressure N, were systematically researched using a
homemade in-situ high pressure microscope (HPM-2) system. A secondary nucleation
model for the three-phase system was successfully developed. The free energy induced by
GN was considered. The inherent mechanism of Ny pressure on the crystal growth rate of
PP/GN nanocomposites was investigated. Finally, the feasibility of PP/GN nanocomposite
foaming was verified by using the mold opening foam injection technique (MOFIM).

2. Materials and Methods
2.1. Materials and Preparation

Homopolymerized polypropylene (J-150) was supplied by Lotte Chemical Co., which
has a density of 0.90 g/cm? and a melt index of 10 g/10 min. The number-average molecular
weight (Mn) is approximately 250,000, and its crystallization and melting temperatures
are 117.7 °C and 168.7 °C, respectively. The graphite nanoflake (XF011) was prepared
by XFNANO Tech. Co., Ltd. (Nanjing, China); its diameter is between 3 and 6 microns,
and its thickness is about 40 nm. N with a purity of 99.99%, was used as a supercritical
fluid. Prior to formal experience, in order to remove moisture, PP was maintained at 80 °C
for 4 h. A twin-screw extruder (SJZS-10B, Wuhan, China) was subsequently employed
to prepare PP/GN nanocomposites. a homogeneous PP/GN nanocomposites with a GN
content of 0.1% were successfully fabricated under the shearing action of the twin screws,
which displayed in Figure 1a. A hot press device was adopted to prepare the films for
visualization and observation. A small amount of PP/GN was placed between two clean
glass sheets to form a sandwich structure, as shown in Figure 1b, which was subsequently
placed together on a hot press device and formed by hot pressing at 190 °C and 2000 psi
for 5 min. The thickness of thermoforming film is approximately 10 pm.

2.2. Online Characterization of Crystallization Behavior

The crystal morphology and crystal growth behavior of PP/GN nanocomposites under
different N pressures were observed by a self-developed in situ high-pressure visualization
system, the schematic diagram of which is shown in Figure 1c. Figure 1d displays an Nj
and temperature treatment diagram during isothermal crystallization. Samples were first
held at 190 °C for 5 min to eliminate thermal history. The samples were then cooled to
different heat treatment temperatures (T;) using alcohol as the cooling medium with a
cooling rate of approximately 10 °C/min, at which the nucleation and growth of the crystals
were observed. Ny was introduced prior to specimen heating and subsequently drained to
remove N after sufficient crystallization.
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Figure 1. (a) Preparation of PP/GN nanocomposites based on twin-screw extruder, (b) fabrication of
thin films, (c) the self developed in-situ visualization system, (d) N, and temperature diagram during
isothermal crystallization.

2.3. MOFIM Fabrication Process

The mold opening foam injection molding technology was adopted to fabricate
lightweight PP/GN nanocomposite foams. The melt temperatures from the loading port
to the injection end were 200 °C, 210 °C, 220 °C, 220 °C, 210 °C, and 200 °C, respectively.
However, the mold temperature used in the experiments was 90 °C. The injection rate and
shot size to be applied were 100 mm/s and 60 mm?, respectively. The packing pressure was
held at 40 MPa for 26 s to ensure that the cells formed during the filling process were re-
compacted and dissolved into the polymer melt. However, the samples were subsequently
removed after a cooling time of 40 s.

2.4. Characterizations

The Nanomeasure software was used to measure the grain size of the same spherulites at
different moments, and the slope of its variation with time is the spherulites growth rate. Grain
density was defined as the number of grains in the observation area divided by the area.

After completing the isothermal crystallization behavior of PP/GN nanocomposites
on the visualization device, the fully crystallized sample is transferred to the center of
the carrier stage. Additionally, the spherical morphology of PP/GN nanocomposites was
observed by polarized light microscopy (POM, BX53, Olympus, Tokyo, Japan).

The three-dimensional grain morphology of PP/GN nanocomposites was recorded
using a confocal laser microscope (CLSM, LSM 800, Carl Zeiss, Oberkochen, Germany).
The spherulite morphology was first observed under the microscope, then switched to
scanning mode with the laser turned on to get a clear confocal scan image.

X-ray diffraction (XRD) was employed to determine the crystal structure of PP and
PP/GN nanocomposites. The voltage and current used for the tests were 40 kV and 100 mA,
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respectively. Fourier transform infrared spectroscopy (FTIR) was conducted to investigate the
functional groups of PP and PP/GN nanocomposites in the range of 500 cm ! to 4000 cm .

The cell structure of PP/GN nanocomposite foams was studied with field emission
scanning electron microscopy (FE-SEM). The samples were first immersed in liquid nitrogen
for 30 min, followed by rapid fracture to keep the section intact. The surface of the sample
was sprayed with platinum, and the morphology was observed under SEM.

3. Secondary Nucleation Model

The growth process of spherulites includes the formation of nuclei and the growth
of grains. The density of spherulites stands for the primary nucleation rate, while the
growth rate of spherulites shows the secondary nucleation rate. To quantify the secondary
nucleation rate of PP/GN nanocomposites, a secondary nucleation model is usually used
to calculate it, which is expressed as follows,

I

nkT ( AE + AG* + AGN)
= —exp| — (1)

h kT

where, ”,’;—T is the prefactor expression, T is the isothermal treatment temperature, and

k and h are the Boltzmann constant and Planck’s constant, respectively. n stands for
the number of kinetic units capable of nucleation, AE and AG* represent the diffusion
activation energy and the critical nucleation free energy, respectively. AGy is the additional
free energy caused by N,. The detailed calculation method regarding AGy are discussed in
our previous articles [27,28], and can be calculated by,

AGy = AGp — AGt + AGas + AGaw @)

where, AG,, represents the mixing free energy of the polymer/Nj, system, AG; is the trans-
lational free energy of Ny, AG,s and AG,y, stand for the stronger hydrogen-like interaction
energy and the relatively weak interaction energy, such as the dispersion force required for
the desorption of N from the polymer homogeneous system, respectively.

The introduction of GN will change the crystallization behavior as well as the crystal
morphology of PP materials. Generally speaking, the addition of GN lowers the nucleation
barrier of PP crystals, and the entanglement between PP and GN also affects the nucleation
of PP molecular chains. Therefore, the free energy variations attributed to GN cannot be
neglected, which can be expressed as:

AGy = ¢32tDi Ly f(0) ®3)

where, ¢35 is filler volume fraction, D; and L; stand for the diameter and length of snake
tube model, respectively. In addition,  represents the interfacial energy of the matrix and
filler, f(9) is a coefficient considering the interfacial wetting angle.

Finally, after the free energy changes caused by Ny and GN are considered, the
nucleation rate of the PP/GN/Nj system can be determined by [29],

AE + AG* + AGN + AG
nkT exp<— N f) @

I==- KT

4. Results and Discussions
4.1. Structure and Morphology

In order to explore the effect of GN on the crystal structure of PP, the XRD spectra
of PP, GN, and PP/GN nanocomposites are given in Figure 2a. A strong diffraction peak
of GN was found only at 26.52° over the entire test range for the (002) crystal plane,
which represents the characteristic 7-7 stacking [30-32]. Pure PP exhibited three strong
diffraction peaks at 13.8°, 16.6°, and 18.26°, which correspond to the (110), (040), and (130)
crystallographic planes of PP « grains, respectively. Three weaker diffraction peaks were
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also found at 20.86°, 21.54°, and 25.14°, belonging to the (111), (—131), and (060) crystal
planes, respectively. After the incorporation of GN, in addition to the conventional six
diffraction peaks, the PP/GN nanocomposites exhibited a diffraction peak corresponding
to GN at 26.38. However, no new crystal structures were induced under the current GN
content, which also implies that GN is uniformly dispersed in the PP/GN matrix.
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Figure 2. (a) XRD patterns of PP and PP/GN nanocomposites, (b) FTIR patterns of PP and PP/GN
nanocomposites, (c) Cross-sectional morphology of PP/GN nanocomposites.

The FTIR spectra of PP, GN, and PP/GN nanocomposites are shown in Figure 2b. It
can be noticed that four sharp and strong peaks are found near 2917 cm~!-2838 cm !,
which are characteristic peaks of PP. Among them, the asymmetric stretching vibration
peaks of —CHj3 and —CH, were detected at 2951 cm~! and 2917 em !, respectively,
and the symmetric stretching vibration peaks of —CHj3 and —CH,; were observed at
2871 cm~! and 2838 cm ™!, respectively. The peaks at 1456 cm~! and 1375 cm ™! are
due to the bending vibration of —CH, and the symmetric deformation vibration of —CHs.
No significant detection peaks were found in the FTIR spectrum of GN [33], which further
indicates that GN is pure graphite and does not have any oxygen-containing functional
groups [34]. As expected, the incorporation of GN does not affect the structure of PP.
Figure 2c gives the cross-sectional morphology of the PP/GN nanocomposites. Apparently,
GN is uniformly dispersed in the PP matrix. The good dispersion of GN provides the basis
for the subsequent analysis of the crystallization behavior.
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4.2. Crystalline Morphology of PP/GN

Figure 3 shows the crystallization behavior of PP and PP/GN nanocomposites under
air. Larger and sparser spherulites are observed in Figure 3a. After the introduction of GN,
the spherulites size is significantly refined, and the spherulites density is greatly increased,
as shown in Figure 3b. According to the POM graphs in Figure 3c,d, the PP spherulites
possess a clear cross extinction phenomenon and no 3-type grains were found [35], which
has been verified by the XRD results in the last section. In addition, the refining effect of
GN on PP grains is more clearly shown in the POM diagram.

-
(d)
100 pm

Figure 3. Grain morphology of PP and PP/GN nanocomposite under air and 140 °C, (a,c) show PP
morphology, (b,d) present PP/GN nanocomposite.

Figure 4 displays optical photographs of PP/GN nanocomposites isothermal crystal-
lization behavior at 140 °C and 13.79 MPa. Firstly, as can be observed from Figure 4a, the
distribution of GN within the PP matrix is relatively uniform. Moreover, it can be seen
from Figure 4b that many spherulites are nucleated around GN, which fully demonstrates
the heterophase nucleation of GN. Due to the facilitative nucleation effect of GN and the
reduction of the system’s nucleation energy barrier, GN, as nucleation sites, induce a large
number of ordered structures. Consequently, the PP molecular chains on the surface of
GN preferentially start the orderly chain arrangement to form spherical crystals first. With
the passage of time, spherulites centered on GN were eventually formed, as shown in
Figure 4c,d. However, the Nj exclusion phenomenon, i.e., where the red arrow in Figure 4d
is observed. This is due to the different solubility of N; in the crystalline and amorphous
regions. Ny can only be dissolved in the amorphous region rather than in the crystalline
phase. Above the melting points of PP, PP/GN, and Ny, they form a homogeneous three-
phase system. After dropping to the isothermal treatment temperature, more and more
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amorphous regions are transformed into crystalline ordered regions as the crystallization
process continues to complete. The N in the decreasing amorphous region is continu-
ously expelled, which is shown in the macroscopic expression as the region shown by the
red arrow.

100 um

Figure 4. Grain morphology of PP/GN nanocomposite at 140 °C and 13.79 MPa, (a) 0 s, (b) 56 s,
(c) 134 s and (d) 320 s.

Figure 5a—j plot POM images of PP/GN nanocomposites crystallized isothermally at
130 °C and 140 °C under elevated N, pressure. It can be noticed that the cross extinction
(Maltese-cross) phenomenon of the grains is not obvious, and the spherulites also behave
more coarsely under all experimental conditions. This may be due to the disordered
arrangement of the stacked sheet crystals of spherulites, which diminishes their optical
anisotropy. It is the heterogeneous nucleation effect of GN that enables the disorderly
arrangement of such irregularly shaped and laminated stacked crystals; as shown in
Figure 4, the spherulites grow gradually from the GN surface. Moreover, the disorderly
stacking of lamellae is further accelerated by the exclusion of N, during grain growth
with pressure, which makes this phenomenon more obvious. To quantitatively analyze the
effects of T, and Ny pressure on the crystallization behavior of PP/GN nanocomposites, the
average grain size of spherical crystals was calculated based on the POM diagram, and the
grain density as well as the grain growth rate were obtained from the visualization results.
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Figure 5. (a—j) POM photos of PP/GN nanocomposites, evolution of (k) Grain size, (1) grain density
and (m) grain growth rate with N, for PP/GN isothermal crystallization at 130 and 140 °C.

Figure 5k,1 provides the dependence of grain size, grain density, and grain growth
rate of PP/GN nanocomposites on pressure. PP/GN nanocomposites exhibit the same
crystallization behavior across the two T,. As the N; pressure increases, the grain size
gradually decreases, while the grain density shows the opposite trend. This indicates that
although GN has refined the PP grains, supercritical N still exhibits further refinement
of the crystallization behavior. This is due to the plasticizing effect of supercritical N,
on PP/GN nanocomposites, which enhances the motility of crystallizable molecules. In
addition, the free volume of materials is increased with the addition of N, which induces
the rearrangement of molecular chains into a crystal structure with lower free energy and
thus easier nucleation. Seeger et al. [36] found that the Ty, of PP under supercritical Nj
is slightly augmented with increasing N, pressure. The enhancement in Ty, implies the
formation of more perfect, thicker lamellar crystals and more stable grains [37,38]. These
perfect crystals with thicker sheet crystals usually take longer to melt. At the same melting
time, the crystalline residues increase with increasing Ny pressure due to the melt memory
effect. These crystalline residues then become a thermal nucleation site [39,40], which
further increase the nucleation density.

Compared to the variation of grain size and grain density with pressure, the grain
growth rate demonstrates two different trends within the scope of pressure. As the pressure
was lower than 13.79 MPa, the increase in N, pressure showed an inhibitory effect on
the grain growth rate, while a further increase in pressure displayed a promotional effect.
This interesting phenomenon may be due to the nucleation-limiting effect and the entropy-
increasing effect of N at high pressure. However, the phenomenon is not significant,
and the grain growth rate remains lower at higher temperatures, such as 140 °C. This
may be due to the lack of self-folding drive for the molecular chains caused by the lower
supercooling, which results in a lower growth rate. To further explain this phenomenon
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from the energy point of view, a secondary nucleation model for a three-phase system
was developed.

In order to observe the crystal morphology of PP/GN nanocomposites more clearly,
the scanning images using CLSM are given in Figure 6. From the 3D image, it can be seen
that the spherical crystals exhibit a radial shape. It is also observed that the Z-axis thickness
of the spherical crystal that crystallized isothermally at 140 °C is thicker compared to
those at 130°C. This indicates that higher layer thicknesses are formed at higher isothermal
treatment temperatures. In addition, based on the L-H theory, samples treated at higher
isothermal treatment temperatures also have higher melting points. As the crystallization
is completed, the PP molecular chains are progressively consumed and N is continuously
discharged. When all molecular chains are depleted, concave molecular dissipation regions
as well as the expulsion of N, are found.
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Figure 6. CLSM grain morphology of PP/GN nanocomposite at 13.79 MPa, (a) 2D-image and
(b) 3D-image under 130 °C, (c) 2D-image and (d) 3D-image under 140 °C.

4.3. Secondary Nucleation Rate of PP/GN Nanocomposite

Based on the established secondary nucleation model, the mechanism for the effect of
high-pressure N; on the grain growth behavior was explored in detail with the addition
of 0.1% GN as an example. The experimental results and model predictions regarding
the grain growth rate are shown in Figure 7. It can be seen that the calculated results
match well with the trends for the experimental results, indicating that the established
PP/GN/Nj; secondary nucleation model can predict the crystallization behavior of PP/GN
nanocomposites under supercritical N,. Compared with the previously studied pure PP
crystallization behavior under supercritical Ny, there was no significant difference in terms
of the growth rate trend, except that it became slower. It still manifests the nucleation-
limiting effect of N, at relatively low pressure and the nucleation-promoting effect of
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N, at higher pressure. As shown in Figure 7a, an interesting phenomenon is that the
secondary nucleation rate of PP/GN nanocomposites at 5 MPa is significantly greater
than that at 22.5 MPa at 130 °C. However, the difference in secondary nucleation rates
between 5 MPa and 22.5 MPa was not considerable at 140 °C. This implies that the re-
promotion of Nj on the secondary nucleation rate allows the material to grow at the same
rate at higher pressures as at lower pressures at higher Tc. This stronger repromotion at
high temperatures may be attributed to the relatively high solubility of N, under high
temperatures and pressures.
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Figure 7. Growth rate calculated by experiments and secondary nucleation rate calculated by model
for PP/GN nanocomposite under different temperature, (a) 130 °C and (b) 140 °C.

In order to elucidate the re-promoting effect of supercritical N, on the grain growth
rate, Figure 8 shows the variation of each free energy with pressure. The percentage of each
free energy at a given pressure is given in Table 1. After the addition of GN, it is still the
AE and AGy that have a large effect on the secondary nucleation rate. AGy, the percentage
of free energy caused by GN accounts for only 0.03%, which is due to the relatively small
amount of GN added. It is important to note that the positive value of AGy is a resistance
to secondary nucleation, which will limit the grain growth rate. This is mainly due to the
influence of the interfacial energy existing between GN and PP. For the PP molecular chain
to detach itself from the PP/GN/N; three-phase system to nucleate, it needs to conquer
not only the influence of Ny, but also the interfacial energy between PP and GN.

Table 1. Detailed percentage of AGy, AG Iz AE, AG* under different pressures.

Temperature (°C) Pressure (MPa) AG” AGy AE AGy
6 57.89 33.6 8.48 0.03

130 15 57.03 34.13 8.81 0.03

23 57.7 329 9.37 0.03

6 53.38 40.48 6.11 0.03

140 15 52.87 40.74 6.36 0.03

23 54.06 39.1 6.81 0.03

For AGy, it shows a tendency to augment and then reduces with increasing pressure,
and the proportion for each free energy of AGy is shown in Table 2. It can be found that all
AG; rises at each temperature. For example, AG; accounts for only 19.52% at 6 MPa, while
21.8% is recorded with 21.8% as the pressure enhances to 23 MPa with a T of 130 °C. It
is the increase in AG; that impairs the nucleation limiting effect of N, and consequently
reveals a re-promotion of the secondary nucleation rate. Therefore, the increase in AG;
induced by N; desorbed from the homogeneous system is the underlying reason for the
re-promotion effect exhibited by N, at higher pressures, i.e., the entropy-increase induced
by Nj promotes crystallization.
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Figure 8. Dependence of AGy, AGf, AE, AG* on Nj pressure at (a) 130 °C and (c) 140 °C, variation
of AGgs, AGt, AGpy, AGaw on Ny pressure at (b) 130 °C and (d) 140 °C.

Table 2. Detailed percentage of AGys, AGt, AGy;, AGay under different pressures.

Temperature (°C) Pressure (MPa) AGys AGayw AGt AGy,
6 53.44 26.82 19.52 0.22
130 15 52.23 26.23 21.16 0.38
23 51.71 25.99 21.8 0.5
6 53.53 27.73 18.58 0.16
140 15 52.31 27.12 20.3 0.27
23 51.79 26.88 20.97 0.36

4.4. Foaming Performance of PP/GN Nanocomposite

The PP/GN nanocomposite microporous plastic parts were prepared by MOFIM tech-
nology, and the foaming feasibility of this material was investigated. Figure 9 demonstrates
the cell morphology of PP/GN nanocomposite microporous plastic parts. It can be noticed
that the introduced supercritical N, excites the cell structure of PP/GN nanocomposites,
and in addition, the addition of GN refines the cell structure of PP materials. At the incorpo-
ration of 0.05% GN, the cell size is still large, and the cell density is low. However, the cell
size is reduced and the cell structure is denser at the same opening distance after adding
0.1% GN. Furthermore, the 0.1% GN widens the opening distance of PP/GN nanocompos-
ites. This implies that compliant products can be prepared with less raw material, which
saves resources.
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Figure 9. Cell morphology of PP/GN nanocomposite microporous plastic parts prepared by MOFIM
technique, PP/0.05%GN nanocomposite foams with opening distance of (a) 2 mm, (b) 3 mm,
(¢) 4 mm, PP/0.1%GN nanocomposite foams with opening distance of (d) 2 mm, (e) 3 mm,
(f) 4 mm, (g) 5 mm.

5. Conclusions

The isothermal crystallization behaviors of PP/GN nanocomposites at different treat-
ment temperatures and N, pressures were researched by a self-made in-situ high pressure
microscopy system. The PP/GN nanocomposites exhibit a decrease in spherulite size and
an increase in spherulite density with enhanced N; pressure within the scope of pressure.
The grain growth rate of PP/GN nanocomposite displays a trend of inhibition followed by
promotion with rising N pressure. Based on secondary nucleation model, according to the
proportion for the respective energies of nucleation energy and their changes at different
Ny pressures, it is found that the increased AG; in the homogeneous system under higher
pressure Ny is the essential reason for the augment secondary nucleation rate, which means
that the entropy-increasing effect caused by N, promotes the crystallization. Moreover,
PP/GN nanocomposites exhibit good foaming ability at supercritical N».
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