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Abstract: FRP bars are used in concrete structures as an alternative to steel bars as they have many
advantages such as high tensile strength, high strength-to-weight ratio, electromagnetic neutrality,
lightweight and no corrosion. There is a perceived lack of standard regulations for the design of
concrete columns with FRP reinforcement, e.g., in Eurocode 2. This paper describes a procedure for
predicting the bearing capacity of concrete columns with FRP reinforcement based on the interaction
of axial force and bending moment, which was developed on the basis of existing design recommen-
dations and standards. It was shown that the bearing capacity of eccentrically loaded RC sections
depends on two parameters, which are the mechanical reinforcement ratioω and the location of the
reinforcement in the cross-section expressed by the β factor. The analyses carried out showed the
existence of a singularity in the n–m interaction curve indicating the fact that in a certain loaded
range, the curve is concave, and more it was shown that the balance failure point for sections with
FRP reinforcement takes place for eccentric tension. A simple procedure for calculating the required
reinforcement from any FRP bars in concrete columns was also proposed. Nomograms developed
from n–m interaction curves provide for the accurate and rational design of FRP reinforcement
in columns.

Keywords: load-bearing capacity; RC column; FRP bars; axial force-bending moment interaction; design

1. Introduction

Reinforced concrete structures are often exposed to destructive environmental influ-
ences such as the effects of moisture, salt, frost, acid and frequent changes in temperature
and loads. These are factors that cause accelerated corrosion of the steel reinforcement in
RC elements. For this reason, non-metallic reinforcement made of FRP (Fibre Reinforced
Polymer) bars is increasingly used in concrete structures. The market offers a wide range
of FRP bars made from different materials with very different mechanical properties. Com-
posite bars have a very high tensile strength, and, in most cases, a low modulus of elasticity
compared to steel bars. The tensile properties of FRP bars have linear elastic characteristics
up to rupture. Due to the lack of plastic deformation, the failure occurs suddenly. There-
fore, the behaviour of concrete columns reinforced with FRP bars is different from that of
columns reinforced with steel bars.

A complete overview of the approach and design philosophy of concrete structures
reinforced with FRP composites is presented in Fib Bulletin [1]. In the design of concrete
structures with FRP reinforcement, either the guidelines [2] or a few national standards,
among others [3–6], can be used. An overview of the design recommendations and stan-
dards for the design of concrete elements reinforced with FRP bars are presented in the
works [7,8].

However, due to the very conservative provisions of some standards [3,4] and the
lack of standard regulations in the European standards, i.e., in Eurocode 2 [9], concerning
the design of concrete columns with FRP reinforcement, further experimental research in
this field is necessary as well as proposals for analytical methods to properly capture and
present the performance of concrete columns with such reinforcement.
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Numerous formulas for calculating the capacity of axially compressed columns can
be found in the literature [10], but there are few for the case of eccentric compression [11].
Currently, the literature on the subject lacks any practical analytical formulas for the
behaviour evaluation and design of concrete columns with FRP bars. However, commercial
programs can be used to determine the design M–N interaction curves.

Recommendations [1,2] only concern the bending and shear resistance of RC beams.
Therefore, this article fills an important gap in this area. This paper evaluates the perfor-
mance of eccentrically loaded columns with FRP reinforcement based on the interaction
between axial force and bending moment. For this aim, formulas were developed to deter-
mine the coordinates of the characteristic points of the interaction curve, considering the
current design recommendations and standards for the design principles of concrete struc-
tures with FRP reinforcement. For a broad and comprehensive analysis, the nominal axial
and flexural resistance were calculated in two scenarios: neglecting and considering the
contribution of FRP bars in compression. Based on the formulas and diagrams developed,
a simple procedure for the design of reinforcement from any FRP bars in concrete columns
was proposed.

2. Properties of FRP Reinforcement

FRP bars are made of continuous fibres of various high-strength materials and a
matrix, which is a polymer resin. The strength characteristics of composite bars depend,
among other things, on the type of fibre used, the type of matrix and the fibre saturation of
the matrix. Rods made from FRP are characterized by, among other things, high tensile
strength, corrosion resistance and a lack of magnetic properties. The most commonly used
materials for non-metallic bars are glass fibre (GFRP), carbon fibre (CFRP), basalt fibre
(BFRP) and aramid fibre (AFRP).

The mechanical properties of FRP reinforcement are characterized by three parameters:
tensile strength ff, ultimate strain εfu and elastic modulus Ef. These parameters vary
widely and depend primarily on the type of fibre. Thus, for CFRP bars: ff = 600–3000 MPa,
εfu = 0.5–1.8%, Ef = 80–500 GPa, for GFRP bars: ff = 400–1600 MPa, εfu = 1.2–3.7%, Ef = 30–60 GPa,
for AFRP bars: ff = 600–2500 MPa, εfu = 1.8–4.0%, Ef = 30–125 GPa [12] and for BFRP
bars: ff = 1100–1450 MPa, εfu = 2.2%, Ef = 55–78 GPa. In order to improve the mechanical
properties of FRP bars and reduce their manufacturing costs, research is being conducted
on bars made of Hybrid Fibre-Reinforced Polymer (HFRP), in which carbon and basalt
fibres and various resins are applied [13].

The nature of FRP bars confers them orthotropic properties. Therefore, their com-
pressive strength is different from their tensile strength, where the compressive strength
is much lower. For GFRP and CFRP bars, the compressive strength is between 30% and
60% of the tensile strength, depending on the diameter of the bars [14]. However, the
compressive elastic modulus of GFRP bars is close to the tensile elastic modulus [15]. In
addition, some composite bars prove to be sensitive to environmental influences, e.g., high
alkalinity, UV exposure, elevated or reduced temperature, cyclic wetting and drying and
cyclic freezing [8]. They are also characterised by low resistance to creep under long-term
loads [16] and require appropriate technological treatments to ensure adequate bonding
with concrete [17]. Therefore, the design values of FRP reinforcement paraments are much
smaller than their characteristic values. They are determined according to the rules [18], in
which the partial material factor and the relevant conversion factors are introduced.

3. Performance of Columns Reinforced with FRP Bars

Numerous experimental studies on the behaviour of mainly short concrete columns
reinforced with GFRP, CFRP and BFRP bars under axial and eccentric forces have been
carried out [19–25]. Numerical analyses are also being carried out [26–28] and analytical
formulas are being developed for the design of FRP reinforcement [25,28,29].

Experimental results [21] show that the axial load-carrying capacity of columns of
rectangular cross-section with CFRP bars is comparable to that of columns with steel
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reinforcement with the same ratio of reinforcement, and for eccentrically loaded columns,
their bearing capacity is up to 12% lower depending on the eccentricity of the axial force.
For eccentrically loaded columns (e/h = 1/3) with GFRP bars, the decrease in bearing
capacity is greater; the bearing capacity is approximately 30% lower than that of columns
with steel bars. The bearing capacity of rectangular columns axially and eccentrically
loaded with GFRP and CFRP bars is strongly influenced by the spacing of the ties and their
configuration; decreasing the tie spacing increases the bearing capacity of the columns by
10% to 20% [22,24]. Tests [20] of eccentrically loaded columns (e/D ≤ 1/3) with circular
cross-sections reinforced with CFRP bars showed that their bearing capacity was 4% lower
than that of their counterparts with steel reinforcement and was 2% higher for the axial
force eccentricity e/D = 2/3. In contrast, axially compressed columns of circular cross-
section with CFRP bars showed bearing capacities up to 12% higher than the reference
columns with steel reinforcement [19]. In all the studies cited, the mechanism for the
exhaustion of the load capacity of composite reinforced columns was the same. First, there
is crushing and spalling of the concrete cover, followed by buckling in the longitudinal bars
and crushing in the concrete in the core of the section, accompanied by large deformations.
It should be mentioned that buckling in the reinforcement bars in the columns can be
accelerated by geometrical imperfections of these bars caused by transverse deformations
of the concrete [30].

In order to improve the effectiveness of FRP reinforcement, there are also studies of
concrete columns with hybrid reinforcement, e.g., steel bars and GFRP bars [31], as well as
studies of columns with fibre concrete and CFRP or GFRP bars [32,33], which show that
such solutions are available.

The experimental results of columns with FRP reinforcement presented above cor-
respond to the results of FEM analyses [19], which found a strong influence of the axial
force eccentricity and the type of FRP bars on the bearing capacity of the sections. When
the axial force eccentricity is e/d ≤ 0.5, the bearing capacity of columns with GFRP bars
is several per cent lower than that of columns with steel reinforcement, while an increase
in bearing capacity of up to several per cent is observed when CFRP bars are used. Other
experimental studies also agree with the results of FEM analyses [28].

To avoid over deformation of elements reinforced with FRP bars, the limit strains and
limit stresses in tension bars are reduced to εf = min (εfu; 0.010) and ff = min (ffu; 0.010
Ef), respectively [34], and the stress in the compression bars is limited to 40% of the tensile
strength [20]. Standards [3,4] prescribe the neglect of FRP compression bars in the analysis
pf the bearing capacity of a column. However, studies [35,36] indicate that the skip of the
strength of the FRP compression bars is too conservative since the tested bearing capacity
of the axially compressed columns is higher than that derived from the standard estimates.
Similarly, according to studies [23], the contribution of longitudinal FRP reinforcement
should not be neglected in the calculation of the resistance of axially loaded columns,
since the results of analytical solutions based on elastic theory give good agreement with
experimental data.

In summary, it can be concluded that the experimental results to date and some numer-
ical and analytical analyses indicate some discrepancies with the standards in estimating
the resistance of columns with FRP bars. Therefore, further research is needed. In order
to make the right choice for the type of FRP reinforcement, a method of predicting and
evaluating the behaviour of columns reinforced with such bars over the entire load range
is needed. This can be achieved by analysing the axial force-bending moment interaction
curves for different FRP reinforcements.

4. Ultimate Capacity of RC Columns

According to the standards [3,4], for each applicable factored load combination in
columns, the design strength at all sections shall satisfy and interaction between load effects
shall be considered. In a study [25], a theoretical model was developed to predict the axial
force-bending moment interaction diagrams in circular section columns reinforced with
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BFRP and GFRP bars. The principles of equilibrium and strain compatibility were used
to develop the theoretical diagrams. In [28], the axial compression behaviour of hollow
core concrete columns reinforced with GFRP was investigated numerically and empirically.
Based on the data base obtained from ABAQUS and the laboratory test, various empirical
formulas were proposed to predict the axial compression resistance of columns. In [29],
an analytical diagram of the interaction between axial load and bending moment was
developed for square section columns reinforced with GFRP bars. The small strip concrete
method was used to determine the response of the compression concrete.

The strength of an eccentrically loaded RC section is equal to the values of the axial
force N and the bending moment M lying on the interaction curve N–M (Figure 1) deter-
mined by the allowable strain of the concrete and the longitudinal reinforcement. The
ultimate axial force Nu and the ultimate bending moment Mu for a specified state of stress
are determined from the relation:

Nu =
x

σcdAc ± σf 1 A f 1 ± σf 2 A f 2 (1)

Mu =
x

σczcdAc ± σf 1S f 1 ± σf 2S f 2 (2)

where: Ac is the cross-sectional area of the compressed zone of the concrete, σc is the
compressive stress distribution in the concrete, σf1 and σf2 are the stresses in the tension
and compression bars, respectively, Af1 and Af2 are cross-sectional area of the tension and
compression bars, respectively, Sf1 and Sf2 are the static moments of the cross-sectional
area of the tension and compression bars, respectively, related to the centre of gravity of
the section.
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The bearing capacity of a reinforced concrete column depends primarily on its slen-
derness [37]. If the column is short, there is material failure. If the column is slender, failure
occurs through buckling at a bearing significantly lower than the strength of the materials
used. There is another known mode of shear failure of slender columns [38], which occurs
primarily during seismic loads.

There are often many load combinations in columns, with three static equilibrium
paths possible [39], as illustrated in Figure 1: (1) Axial force acting on a constant eccentric.
This is the case for loads transferring to the column from prefabricated beams. (2) Constant
bending moment and increasing axial force. Such a situation may result in multistorey build-
ing columns in which moments are primarily due to adjacent floor loading. (3) Constant
axial force but increasing bending moment. Such a situation may result, in an approximate
manner, in building columns or in bridge piers, when they are subjected to lateral wind
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loads that seldom modify the column axial load but considerably increase the column
bending moments. The equilibrium paths are different for short columns—OS path and
slender columns—OL path.

For the design of a column to be considered adequate (safe), the combination of action
effects (M, N) must be less than the combination of design strengths (Mu, Nu) from the
interaction curve.

For slender columns, it is necessary to consider the effect of geometric imperfections
with an additional bending moment Mi and the impact of second-order effects expressed
by bending moment M2. The N–M interaction curves are very useful in the analysis of the
bearing capacity of concrete columns with any reinforcement for all possible load paths.
To simplify the analysis, the N–M interaction curve can be replaced by a broken line. In
this case, it is sufficient to indicate the coordinates of a few characteristic points of the
interaction curve.

4.1. Interaction n–m with Compression Bars

This section presents an analytical model for predicting the bearing capacity of rectan-
gular concrete columns reinforced with any FRP bars. The use of force equilibrium and
strain compatibility principles provides the most direct approach to analysis.

The following assumptions were made in the analysis: (a) the plane sections remain
plane, (b) the concrete strength is neglected, (c) a parabolic–rectangular stress diagram in
the compression zone, (d) a linear elastic stress diagram for the tension and compression
bars. Figure 2 shows the material models for concrete and FRP bars. Above this, the
strength factors for concrete and FRP bars are set to unity, and the environmental reduction
factor for FRP was also set to unity.

Polymers 2023, 15, 1161 5 of 16 
 

 

 
Figure 1. Interaction curves and load paths. 

For slender columns, it is necessary to consider the effect of geometric imperfections 
with an additional bending moment Mi and the impact of second-order effects expressed 
by bending moment M2. The N–M interaction curves are very useful in the analysis of the 
bearing capacity of concrete columns with any reinforcement for all possible load paths. 
To simplify the analysis, the N–M interaction curve can be replaced by a broken line. In 
this case, it is sufficient to indicate the coordinates of a few characteristic points of the 
interaction curve. 

4.1. Interaction n–m with Compression Bars 
This section presents an analytical model for predicting the bearing capacity of rec-

tangular concrete columns reinforced with any FRP bars. The use of force equilibrium and 
strain compatibility principles provides the most direct approach to analysis. 

The following assumptions were made in the analysis: (a) the plane sections remain 
plane, (b) the concrete strength is neglected, (c) a parabolic–rectangular stress diagram in 
the compression zone, (d) a linear elastic stress diagram for the tension and compression 
bars. Figure 2 shows the material models for concrete and FRP bars. Above this, the 
strength factors for concrete and FRP bars are set to unity, and the environmental reduc-
tion factor for FRP was also set to unity. 

 
 
 
         
                                𝜎௖ = 𝑓௖௢ ൬1 − ቀ1 − 𝜀௖0.002ቁଶ൰ 
 
 
  

(a) (b) 

Figure 2. Material models for (a) concrete and (b) FRP bars. 

Figure 3 shows the strain profiles in the ultimate load state of a RC section from axial 
tension (strain profile 1) to eccentric tension (strain profile 2–4) and eccentric compression 
(strain profile 4–8) to axial compression (strain profile 9). The strength of the tensile rein-
forcement is determined by its limit strain εfu and the strength of the concrete by the limit 

Figure 2. Material models for (a) concrete and (b) FRP bars.

Figure 3 shows the strain profiles in the ultimate load state of a RC section from axial
tension (strain profile 1) to eccentric tension (strain profile 2–4) and eccentric compression
(strain profile 4–8) to axial compression (strain profile 9). The strength of the tensile
reinforcement is determined by its limit strain εfu and the strength of the concrete by the
limit strain εcu. According to recommendations [34], the strain in FRP tensile bars is limited
to εfu = 0.01.
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According to EC2 [9], the limiting strain in the extremity of the concrete compression
fibre εcu = 0.0035 is assumed to be no greater than 0.002 for axial compression. In the same
range, the strain in the compression bars εf2 change.

Lines from 1 to 9 in Figure 3 correspond to the nine strain states of the RC section
considered, for which the formulae for the coordinates of the points on the interaction
curve in the axis system of the normalised axial force n and bending moment m have been
determined:

n =
N

fcobd
(3)

m =
M

fcobd2 (4)

where: fco—compressive strength of concrete, b—width of section and d—effective height
of the section.

The section is symmetrically reinforced (Af1 = Af2, a1 = a2). The cross-section is
described by two parameters: the mechanical reinforcement ratioω [10] and the position
of the reinforcement in the section expressed by the factor β:

ω =
A f 1

bd
ε f uE f

fco
(5)

β =
a1

d
(6)

where: Ef is the modulus of elasticity of the FRP bars.
Based on the equilibrium of the cross-sectional forces, formulas were derived for

calculating the coordinates of the nine points on the interaction curve corresponding to the
nine strains profiles presented in Figure 3. These formulae are given in Table 1. Table 1 also
gives the values of the relative compression zone depth ξ = x/d, where x is the compression
zone depth. Figure 4 shows the graphs of the n–m relationship, developed on the basis of
the formulae in Table 1, for different mechanical reinforcement ratiosω = 0–0.8, and a fixed
reinforcement position, i.e., β = 0.10.

Table 1. The coordinates of the points on the interaction curve n–m.

Strain Profile Number ξ = x
d ni = Ni

fcobd mi = Mi
fcobd2

1 -∞ n1 = −2ω m1 = 0
2 0 n2 = −ω(1 + β) m2 = −ω

(1−β)2

2
3 1/6 n3 = 1

9 −
2
5 ω(2 + 3β) m3 = 1

9

(
1+β

2 −
1
16

)
+ 3

5 ω(1− β)2

4 7/27 n4 = 17
81 −

ω
20 (13 + 27β) m4 = 17

81

(
1+β

2 −
11

102

)
+ 27

40 ω(1− β)2

5 7/17 n5 = 17
54 −

ω
10 (2 + 9β) m5 =

161+238β
1512 + 18

40 ω(1− β)2

6 1+β
2 n6 = 17

42 (1 + β) m6 = 139
1176 (1 + β)2 + 7

20 ω
(1−β)2

1+β

7 3/4 n7 = 17
28 + 7

15

(
1
2 − β

)
ω m7 = 17

28

(
1+β

2 −
297
952

)
+ 7

30 ω(1− β)2

8 1 + β n8 = 17
21 (1 + β) + 7

20 ω m8 = 10
147 (1 + β)2 + 7

40 ω
(1−β)2

1+β

9 +∞ n9 = 1 + β + 4
10 ω m9 = 0

The fourth point on the interaction line (n4; m4) is the point at which the strains in the
concrete and reinforcement simultaneously reach limit values, i.e., in the tension bars at
0.01 and in the extreme compression fibre of the concrete at 0.0035. Then, the height of the
compression zone is equal to ξ = 7/27. This means that for a height of the compression
zone ξ < 7/27, the tensile reinforcement decides the section load capacity (tension failure),
and for a height of the compression zone ξ > 7/27, the concrete in the compression zone
decides the section load capacity (compression failure). Point no. 4 is referred to as the
balance failure point. The balance failure point for sections with FRP reinforcement takes
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place for eccentric tension, which is different from that for sections with steel reinforcement.
In Figure 4, it can be seen that for a mechanical reinforcement ratioω ≥ 0.3, the crushing of
the concrete in the compressed zone (εcu = 0.0035) already takes place for eccentric tension.

The diagrams in Figure 4 show that for a fixed position of the reinforcement β, the bear-
ing capacity of an eccentrically loaded section increases proportionally with the mechanical
reinforcement ratioω.
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In practice, only the part of the diagram for eccentric compression is important, because
the axial compressive force and bending moment most often act on reinforced columns.
Cases where columns are tensioned eccentrically are encountered occasionally. There-
fore, we most often have cases of calculating the required reinforcement for eccentrically
compressed columns.

It can be seen that for eccentric compression, the RC section resistance depends on the
eccentricity of the axial force. In Figure 4, the dashed line shows the interaction of n–m
forces for a section reinforced with steel bars with yield strength fsy = 400 MPa, Es = 200 GPa
andω = 0.2. Comparing, in Figure 4, the interaction curves of sections with FRP and steel
bars for ω = 0.2, it can be seen that their behaviour is the same during eccentric tension.
However, for eccentric compression, the load capacity of sections with steel reinforcement
is much higher. This is the result of a much higher ratio of steel reinforcement ρ for a
constant mechanical reinforcement ratio ω. For a constant ratio reinforcement ρ, the load
capacity of columns with steel reinforcement is lower.

For a given mechanical reinforcement ratio ω, the location of the reinforcement in
the section determines the resistance of the RC section. Figure 5 illustrates the effect of
the location of the reinforcement in the RC section expressed by the coefficient β for a
mechanical reinforcement ratioω = 0.6 on the interaction of n–m forces.

As expected, placing the reinforcement closer to the neutral axis results in a reduction
in the bearing capacity for both eccentric compression and eccentric tension. As the
eccentricity of the axial force e/d approaches zero, the differences in RC section bearing
capacity become smaller and smaller, and for axial compression, the differences disappear.
Figure 5 also shows the n–m interaction lines for the two extreme cases of the position
of the reinforcement, i.e., at the edges of the section (β = 0) and in the neutral axis of the
section (β = 1.0).

The location of the bars in reinforced concrete columns depends primarily on the
required cover thickness and varies in most cases within a β-factor of 0.10 to 0.20. In
columns with FRP reinforcement, bars may be placed closer to the outer edges due to the
lack of a need to protect this reinforcement from corrosion, the high strength of FRP bars
and the smaller bar diameters used.
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4.1.1. The Method Validation

In order to validate the presented method, the results obtained from the proposed
formulae were compared with the results obtained from FEM analyses performed with
the XTRACT application from Imbsen Software Systems [40]. Figure 6a shows that the
analytical calculation results coincide with the FEM analysis results. In addition, Figure 6b
shows a comparison between the analytical results and the experimental results [21], in
which rectangular columns reinforced with CFRP bars loaded axially and eccentrically
were tested. Section dimensions: 150 mm × 150 mm, length column: 900 mm, longitudinal
reinforcement: 4 φ 12 mm, CFRP (ff = 2000 MPa, Ef = 150 GPa, εfu = 1.38%), concrete
compressive strength: fco = 44.7 MPa, axial force eccentricities: e/h = 0, 0.5 and 1.0. When
the column’s (for e/h = 1.0) load capacity was reached, the measured deformation in the
tension bars was equal to εf1

∼= 0.4%.
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As can be seen in Figure 6b, the experimental results are similar to those obtained
from the proposed analytical method. However, it can be seen that geometric imperfections
had a large impact on the experimental results, and the axial compression (e/h = 0) is
accompanied by a large bending moment. The convergence in the numerical analysis
results and the experimental results with the analytical results allow us to conclude that
the proposed method reasonably predicts the ultimate capacity of columns reinforced with
FRP bars.
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4.1.2. Singularity of the Interaction Curve

The n–m interaction curve between points 4 and 8 (see Figure 4) is concave, which
seems to be contrary to the generally known rules. According to plasticity theory, the
convexity and normality of the limit surface does follow from Druckrer’s postulate for
stable material [41].

According to the authors, this is a concavity of the n–m curve resulting from the
adopted strain hypothesis of strength and the use of a linear elastic material of high
strength-FRP bars and an elastic plastic material-concrete. The concavity of the curve can
be proved by the existence of an inflection point on this curve.

The strain state of the section, for the pivot point B (Figure 3), is limited by the strain
in the concrete εcu = 0.0035 and the section height ξ varying from 7/27 to (1 + β). The
interaction curve equations in this strain range are as follows:

m(ξ) =
17
27

ξ

(
1 + β

2
− 99

238
ξ

)
+

7ω

40
(1− β)2

ξ
(7)

n(ξ) =
17
27

ξ +
7ω

20

(
2− 1 + β

ξ

)
(8)

An inflection point on the curve exists when the second derivative of the parametric
function is equal to zero:

d2m(ξ)

dn2(ξ)
=

m′′(ξ)n′(ξ)−m′(ξ)n′′(ξ)
(n′(ξ))3 = 0 (9)

The solution of Equation (9) can be reduced to a third-degree polynomial:

− ξ3 − 441
340

ωξ(1 + β) +
343
330

ω
(

1 + β2
)
= 0 (10)

The analytical solution of Equation (10) is elaborate. As a result of the numerical
solutions, the heights of the compressed zone ξo can be determined, and from this, the
coordinates of the inflection point on the interaction curve (n(ξo); m(ξo)) can be calculated.

For example, for ω = 0.2 and β = 0.1, the height of the compression zone is ξo = 0.439,
and the coordinates of the inflection point are n(0.439) = 0.320; m(0.439) = 0.195. The
inflection point on the interaction curves occurs when ω ≥ 0.027. The concavity in the
interaction curve is visible in Figure 6a for FEM analysis and has also been observed in
other analyses of columns with hybrid reinforcement [26] and FRP reinforcement [26,28].

4.2. Interaction n–m without the Compression Bars

As mentioned earlier, the compressive strength of composite bars is much lower than
their tensile strength [14]. Therefore, due to the orthotropic properties of FRP bars and the
lack of sufficient experimental investigations, some standards [3,4] prescribe the neglect
of compression FRP bars in the analysis of the section bearing capacity. Table 2 gives the
formulae for the coordinates of the points of the n–m interaction curve for a symmetrically
reinforced section without compression bars.

Figure 7 shows the n–m interaction diagrams described by the coordinates of the
points in Table 2 for a mechanical reinforcement ratio ω varying between 0.0 and 0.8. From
these diagrams, it can be seen that the bearing capacity of eccentrically compressed sections
in which compression reinforcement is neglected is significantly lower than when this
reinforcement is included (see Figure 3). The bearing capacity differences found are small
for eccentric tension, but for eccentric compression, they are very large. Figure 7 also
shows, with a dashed line, the n–m interaction for a section reinforced with steel bars
(fsy = 400 MPa,ω = 0.2).
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Table 2. Coordinates of the interaction points of the n–m forces without compression bars.

Strain Profile Number ξ = x
d ni = Ni

fcobd mi = Mi
fcobd2

1 -∞ n1 = −2ω m1 = 0
2 0 n2 = −ω(1 + β) m2 = ω

(1−β)2

2
3 1/6 n3 = 1

9 −ω m3 = 1
9

(
1+β

2 −
1
16

)
+ ω

1−β
2

4 7/27 n4 = 17
81 −ω m4 = 17

81

(
1+β

2 −
11
102

)
+ ω

1−β
2

5 7/17 n5 = 17
54 −

11
20 ω m5 =

23+34β
216 + ω 11

20
(1−β)2

1+β

6 1+β
2 n6 = 17

42 (1 + β)−ω 7
20

1−β
1+β m6 = 139

1176 (1 + β)2 + ω 7
40

(1+β)2

1+β

7 3/4 n7 = 17
28 −ω 7

80 m7 = 17
28

(
1+β

2 −
297
952

)
+ ω 7

80
1−β

2

8 1 + β n8 = 17
21 (1 + β) m8 = 10

147 (1 + β)2

9 +∞ n9 = 1 + β m9 = 0
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Figure 7. Effect of the mechanical reinforcement ratio ω on the interaction n–m without the compres-
sion bars.

If the eccentricity of the axial force is e/d < 0.3, then the amount of reinforcement has
no effect on the bearing capacity of the eccentrically compressed section. The neglect of
the forces transmitted by the compression bars in the analysis of the bearing capacity of an
eccentrically compressed section makes the use of FRP reinforcement in ‘heavily’ loaded
columns problematic.

5. Required Reinforcement

Figure 8 shows the n–m interaction curves limited to eccentrically compressed RC
sections for two cases: including the compression bar resistance (Figure 8a) and neglecting
the compression bar resistance (Figure 8b). These are curves for a reinforcement position
defined by a factor β = 0.10 and a mechanical reinforcement ratio varying from ω = 0 to
ω = 0.8.

After determining the section dimensions (b, h), the position of the reinforcement in
the section (a1) and the choice of concrete class (fco) have been determined, the values of
the sectional forces (n, m) from the actions can be plotted on the nomograms, as shown in
Figure 8, and the required mechanical reinforcement ratio (ω) can be read off. Then, on
the basis of the determined mechanical reinforcement ratio ω and the selected type of RFP
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reinforcement (Ef), the cross-sectional area of reinforcement required in the section can be
calculated using the formula:

A f 1 = A f 2 = bdω
fco

ε f uE f
(11)
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Figure 8. Curves of n–m interaction for sections: (a) with compression bars and (b) without compres-
sion bars.

Figure 9 shows the diagrams of the mechanical reinforcement ratio ω as a function
of the ratio of reinforcement ρ and the type of FRP bars defined by their elastic modulus
Ef. The diagrams were constructed for FRP bars with different fibre (Ef = 20–200 GPa)
and reinforcement ratio ρ from minimum (0.2%) to maximum (4%), as recommended by
EC2 [9]. These charts can be used as a nomogram to calculate the required reinforcement
ratio (ρ) of the section based on the mechanical reinforcement ratio (ω) and the type of FRP
bars (Ef). Then, using the readout of the reinforcement ratio ρ from the nomogram, the
cross-sectional area of the reinforcement Af1 and Af2 can be determined using the formula:(

A f 1 + A f 2

)
= ρbd (12)

Application Example

We design a reinforcement with CFRP bars (Ef = 180 GPa) and GFRP bars (Ef = 60 GPa)
in a column with cross-sectional dimensions h = 40 cm, b = 40 cm, a1 = 3.5 cm, d = 36.5 cm
made of concrete with a compressive strength of fco = 30 MPa for a combination of action
effects (including or neglecting geometric imperfections and second order effects) where
N = 1500 kN and M = 315 kNm (e = M/N = 21 cm). The calculation should be carried out
for two cases: with and without the presence of compression bars.

For this purpose, the normalised bending moment m and axial force n from the
considered load combination (N, M) is found using Equations (3) and (4). Then, the
mechanical reinforcement ratio ω is read from Figure 8a,b, on this basis, the ratio of
reinforcement ρ is read off from Figure 9, and the required reinforcement (Af1 + Af2) is
calculated from (12). The results of the calculations are given in Table 3. In the example
presented here, the characteristic strength values of concrete and FRP bars and loads
are used.
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Figure 9. Nomogram for determining the required of reinforcement ratio ρ (β = 0.10, fco = 30 MPa).  Figure 9. Nomogram for determining the required of reinforcement ratio ρ (β = 0.10, fco = 30 MPa).

Table 3. Calculation results.

Bar Type GFRP CFRP

Compression Bars Yes No Yes No

n, m from (3) (4) n = 0.342, m = 0.197
ω from (Figure 8a,b) 0.200 0.400 0.200 0.400
ρ from (Figure 9) 2.0% 4.0% 0.7% 1.3%

(Af1 + Af2) required from (12) 29.2 cm2 58.4 cm2 10.2 cm2 18.9 cm2

(Af1 + Af2) provided 2 × 5 φ 20
31.4 cm2

2 × 10 φ 20
62.8 cm2

2 × 3 φ 16
12.0 cm2

2 × 3 φ 20
18.8 cm2

6. Final Remarks

Non-metallic reinforcement made of FRP bars based on various types of fibre, usually
glass and carbon fibre, is increasingly used in concrete structures. FRP reinforcement is
used primarily in structures exposed to unfavourable environmental conditions. At present,
only a few standards and recommendations allow the design of structures with this type of
reinforcement. Numerous experimental studies are still being carried out and calculation
methods are being developed with the aim of introducing rules for the design of concrete
structures with FRP reinforcement into standards, including Eurocode 2 [9].

The behaviour of RC sections with FRP reinforcement is different from sections with
steel reinforcement. Sections reinforced with FRP bars have a significantly higher eccentric
tension carrying capacity than eccentric compression. The balance failure point for sections
with FRP reinforcement takes place for eccentric tension. The interaction curves for the
sections with FRP bars are concave at a certain segment.

In the design of reinforced concrete columns, axial force–bending moment interaction
curves are very effective, as they allow the most unfavourable combination of loads and
bearing capacity reserves to be easily determined. This paper presents n–m interaction
curves for eccentrically loaded sections with FRP reinforcement based on current guidelines
and standard recommendations. Interaction curves were developed for two cases: with
and without compression reinforcement bars. The bearing capacity of sections where
compression bars are not included is considerably lower especially for compression at low
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eccentricity since only the concrete part of the section carries the axial force. In this case, the
FRP reinforcement only acts as a minimum structural reinforcement due to cracking, as the
section’s load capacity is determined only by the concrete. Therefore, further experimental
research and analysis are needed on the effect of FRP bars in compression on the load
carrying capacity of concrete columns.

The bearing capacity of sections with FRP reinforcement depends on two parameters:
the mechanical reinforcement ratioω and the position of the reinforcement in the section
expressed by the coefficient β.

The proposed method of designing the reinforcement is universal. Based on this
procedure, any of the possible types of FRP bars and others with linear elastic characteristics
can be designed. This procedure can be used in the design of column reinforcement, but
then the design values of loads and material strengths considering partial safety factors
and environmental reduction factor have to be introduced.

The analysis of the reinforced concrete section follows the provisions of the strength
design method and the unified design rules, with all strength conditions satisfying the
applicable equilibrium and deformation compatibility conditions. The presented analytical
method and the developed nomogram allow a rational choice for the type of FRP bars and
their amount in the section.
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Notation

The following symbols are used in this paper:
Af1, Af2 cross-sectional area of FRP reinforcement
Ef tensil elastic modulus of FRP reinforcement
Es tensil elastic modulus of steel reinforcement
M, Mu bending moment, ultimate bending moment
N, Nu axial force, ultimate axial force
a1, a2 position in section of FRP reinforcement
b section width
d effective section height
e eccentricity of axial force
h section height
fco compressive strength of concrete
ff tensile strength of FRP reinforcement
fsy yield strength of steel reinforcement
n, m normalised axial force, normalised bending moment
β position of the reinforcement in the section factor
ξ relative compression zone depth
ρ reinforcement ratio
εcu ultimate strain of concrete
εfu ultimate tensile strain of FRP longitudinal reinforcement
ω mechanical reinforcement ratio



Polymers 2023, 15, 1161 14 of 15

References
1. FRP Reinforcement in RC Structures; fib Bulletin, Technical Report, 40; fib: Lausanne, Switzerland, 2007. Available online: https:

//www.fib-international.org/publications/fib-bulletins/frp-reinforcement-in-rc-structures-115-detail.html#Ch01 (accessed on
10 January 2023).

2. ACI 440.1R-03; Guide for the Design and Construction of Concrete Reinforced with FRB Bars. ACI Committe 440. ACI
International: Farmington Hills, MI, USA, 2003.

3. ACI 318-14; Building Code Requirements for Structural Concrete and Commentary. ACI: Farmington Hills, MI, USA, 2014.
4. CSA S806–12; Design and Construction of Building Components with Fiber-Reinforced Polymers. Canadian Standards Associa-

tion: Mississauga, ON, Canada, 2012.
5. CNR-DT-203/2006; Guide for the Design and Construction of Concrete Structures Reinforced with Fiber-Reinforced Polymer Bars.

CNR Advisory Committee on Technical Recommendations for Construction: Rome, Italy, 2006.
6. Japan Society of Civil Engineers. Recommendation for design and construction of concrete structures using continuums fiber

reinforcing materials. Concr. Eng. Ser. JSCE 1997, 23, 325.
7. Gudonis, E.; Timinskas, E.; Gribniak, V.; Kaklauskas, A.; Arnautov, A.K.; Tamulenas, G. FRP reinforcement for concrete structures:

State-of-the-art review of application and design. Eng. Struct. Technol. 2013, 5, 147–158. [CrossRef]
8. Kotynia, R. Wymiarowanie i kształtowanie wybranych konstrukcji betonowych ze zbrojeniem niemetalicznym (Design and

details of selected concrete structures with non-metallic reinforcement). In Proceedings of the XXXIII Ogólnopolskie Warsztaty
Pracy Projektanta Konstrukcji, Szczyrk, Poland, 6–9 March 2018; Volume 2, pp. 295–408.

9. PN-EN 1992-1-1; Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings. European
Committee for Standardization: Brussels, Belgium, 2004.

10. Ye, Y.-Y.; Zhuge, Y.; Smith, S.T.; Zeng, J.-J.; Bai, Y.-L. Behavior of GFRP-RC columns under axial compression: Assessment of
existing models and a new axial load-strain model. J. Build. Eng. 2022, 47, 103782. [CrossRef]

11. Ali, S.; Ahmad JSheikh, M.N.; Yu, T.; Hadi, M.N.S. Analytical load-moment (P-M) interaction diagrams of GFRP bar reinforced
circular geopolymer concrete columns. Structures 2021, 34, 2445–2454. [CrossRef]

12. fib Model Code for Concrete Structures 2010; Ernst & Sohn: Berlin, Germany, 2013. Available online: https://www.fib-
international.org/publications/model-codes.html?gclid=Cj0KCQiA3eGfBhCeARIsACpJNU8j1rhgSDuWAy9a8czpuU2i9k6
DrrLNkt4xIPLfFmENLOGNuAX6i3MaAq_dEALw_wcB (accessed on 10 January 2023).
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