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Abstract: In this review, all available publications on the polymerization of all isomers of bifunctional
diethynylarenes due to the opening of C≡C bonds were considered and analyzed. It has been shown
that with the use of polymers of diethynylbenzene, heat-resistant and ablative materials, catalysts,
sorbents, humidity sensors, and other materials can be obtained. Various catalytic systems and
conditions of polymer synthesis are considered. For the convenience of comparison, the publications
considered are grouped according to common features, including the types of initiating systems.
Critical consideration is given to the features of the intramolecular structure of the synthesized
polymers since it determines the entire complex of properties of this material and subsequent
materials. Branched and/or insoluble polymers are formed as a result of solid-phase and liquid-
phase homopolymerization. It is shown that the synthesis of a completely linear polymer was carried
out for the first time by anionic polymerization. The review considers in sufficient detail publications
from hard-to-reach sources, as well as publications that required a more thorough critical examination.
The review does not consider the polymerization of diethynylarenes with substituted aromatic rings
because of their steric restrictions; the diethynylarenes copolymers with complex intramolecular
structure; and diethynylarenes polymers obtained by oxidative polycondensation.

Keywords: poly-p-diethynylbenzene; anionic polymerization; click reaction; solid-phase polymerization;
liquid-phase polymerization; catalytic activity; stereoisomers; modification; intramolecular structure

1. Introduction

Polymerization of monomers containing internal and/or terminal C≡C bonds using
various polymerization methods (solid phase or liquid phase) and various catalytic systems
leads to polymers that have a complex of unique electrophysical, optical, and physicochem-
ical properties. Various aspects of polymerization features and properties of substituted
polyacetylenes are considered in numerous reviews [1–11].

At the same time, polymers synthesized by polymerization of aromatic compounds with
terminal ethynyl groups H–C≡C–Ar–C≡C–H acquire their specific properties, for example,
1,4–diethynylbenzene and 1,3-diethynylbenzene [12–16], 1,2-diethynylbenzene [17], 1,4-diethynyl
naphthalene and 4,4′-diethynyldiphenylmethane [12], 4,4′-diethynylbiphenyl [12,14,18,19],
2,5-diethynylthiophene [20], 3,6-diethynylcarbazole [21], etc. The most frequently studied monomer
of this group of compounds is p-diethynylbenzene (p-DEB), also due to the fact that it is the most
commercially available compound. Initially, numerous patents and articles were devoted to the
creation of homo- and copolymers based on p-DEB with the formation of prepolymer resins.
These prepolymers are of interest, first of all, for the creation of specific heat-resistant and ablative
materials for aviation and space technology [22–28]. In addition, homo- and copolymers with a
complex of other interesting properties have been synthesized on the basis of DEB, for example,
components of solar cells, optically active polymers, polymers with photoelectric and catalytic
activity, microporous and electrochromic polymers, membranes for separating gases and liquids,
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humidity sensors, etc. Possible applications of synthesized polymers will be given below when
considering various methods of their synthesis. Many approaches and various catalytic systems
have been proposed for the synthesis of these polymers.

However, it must be kept in mind that DEB is a bifunctional monomer. Therefore,
its homopolymerization can proceed both along one and both –C≡CH bonds with the
formation of polymers of three different types of intramolecular structure: linear, branched,
and crosslinked. In turn, the resulting structure of macromolecules will fundamentally
affect the properties of the polymers being formed.

The presence of –Ph–C≡CH side substituents in DEB polymers having any of the
listed intramolecular structures provides an additional opportunity for the design of final
polymers. Due to the targeted selection of these substituents, it is possible to change
and regulate the properties of already synthesized polymers by modifying them through
polymer-analogous transformations. Ethynyl and/or phenylene fragments in the side
substituents –Ph–C≡C–H can play the role of chemically active fragments capable of
reactions with any organic compounds, heteroatoms, or their compounds. Figure 1 shows
the schemes of various modification reactions described in [29–33].
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Figure 1. Schemes of the synthesis of organic element derivatives of poly-p-DEB.

There are known click reactions of groups –C≡CH with various reagents. The same
reactions can be recommended for modification of DEB polymers having side substituents
–PhC≡CH, for example, reactions with aromatic diazides (cycloaddition azides) [34–36],
the Sonogashira-Hagihara catalytic reaction with halogen derivatives [37,38] in accordance
with the schemes in Figure 2a.
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scheme from [39]. Reprinted with permission from [39]. Copyright 2012, American Chemical Society.

Indeed, an interesting two-stage process was demonstrated in [39]. Initially, branched
copolymers of m- or p-DEB with phenylacetylene having unpolymerized groups –C≡CH
were synthesized. Then, the azide-alkyne click reaction of these copolymers with azide-
ended polystyrene was carried out according to the scheme shown in Figure 2b.

The –PhC≡CH substituents are present in all types of intramolecular structures of DEB
polymers in varying amounts. However, only in soluble linear or branched poly-p-DEBs
is it possible to carry out an effective, controlled modification reaction. In addition, only
in strictly linear DEB polymers, substituents—PhC≡CH should be present in each link
of the polymer. Therefore, only in linear modified polymers, in principle, it is possible
to realize a structure that is a poly-conjugate chain, along which there will be sufficiently
extended clusters (Figure 3). For the synthesis of such cluster systems, it is possible to use
any heteroatoms or molecular fragments introduced by modification reactions listed above
(Figures 1 and 2a). Thus, knowledge of the intramolecular structure of DEB polymers is
important information necessary to assess the possibility of modification and possible areas
of their application.
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To ensure that all these modification reactions are carried out with the formation of
cluster chains along the main linear polyene chain, an additional necessary condition is the
absence of defects or small defects in the polymer chains of the polymers used. First of all,
there must be strict repeatability of polymer units with 4-ethynylphenyl substituents. In
addition, it is necessary to take into account the possibility of connecting links according
to the “head-to-tail” and “head-to-head” types. Therefore, the question arises about the
possibility or impossibility of synthesizing a completely linear poly-p-DEB and about the
structure of its probable stereoisomers.

The review considers all the methods used for the synthesis of polymers of all DEB
isomers using polymerization reactions due to the C≡C bond. In necessary cases, to
understand the features of the ongoing processes, the results of experiments conducted
by the authors of the articles are analyzed in more detail. The probable intramolecular
structure of the obtained soluble polymers, including one proposed by the authors of
the reviewed articles, is considered and analyzed. The information on possible cis-trans
isomers of synthesized poly-DEBs was analyzed. In addition, the proposed applications of
these synthesized polymers are considered.

The review does not consider DEB copolymers, which significantly complicate the in-
tramolecular structure of the resulting DEB copolymers. The reactions of DEB homo- and
copolycondensation with the formation of ethynylene-phenylene fragments are not considered.

2. Synthesis, Structural Features, and Properties of p-Diethynylbenzene Polymers
2.1. Solid-Phase Polymerization of p-DEB Initiated by Physical Methods of Exposure

Solid-phase polymerization of p-DEB under pressure in combination with shear defor-
mation was studied in [40]. The studies were carried out on Bridgman anvil cells, which
makes it possible to obtain pressures up to 10 GPa at various temperatures. The shear stress
in the sample was created by rotating one of the anvils relative to the other. It was found
that at 2.5 GPa, a temperature of 22 ◦C, and a shear angle of 800◦ (2.22 complete turn),
explosive polymerization occurred, accompanied by the formation of a black insoluble
polymer. At a temperature of 22 ◦C, a shear angle of 0◦, and pressures of 2.5 and 5.0 GPa,
the polymer yield was 1 and 5%, respectively. The authors did not report anything about
the solubility and intramolecular structure of these polymers. However, taking into account
the available information about p-DEB polymers, it should be agreed that this polymer had
a frequently crosslinked structure.

In article [41], it was first recorded that the crystals of p-DEB under UV or γ-irradiation
in quartz cuvettes at 77 ◦K or at room temperature for at least 10 h acquire a yellow color.
At the same time, the crystals did not change their shape, size, and surface. One of
the two types of crystals formed, the darker one, showed strong dichroism. At room
temperature, the irradiation was much more effective than at 77 ◦K. Mainly crosslinked
insoluble products were formed. The soluble fraction was≈10%. Based on optical measure-
ments, the authors assumed that the polymer molecules formed consist of approximately
14 monomeric units. As one of the variants of the polymer chain structure, the authors
proposed a linear polyene, because, in their opinion, “anisotropic absorption can be ob-
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served if predominantly one acetylene radical in each DEB molecule is involved in the
polymerization reaction”. The authors consider that the reason for the termination of the
photopolymerization process is the accumulation of mechanical stresses, which limit the
conversion rate. However, in their opinion, the growing polymer chain does not lead to a
violation of the crystal lattice of the monomer. Unfortunately, the intramolecular structure
of the fractions has not been studied by any physicochemical methods, such as NMR and
IR spectroscopy or the study of molecular weight distribution. The scheme of possible
chain growth presented by the authors (Figure 4) is not correct, since it has an image of
pentavalent carbon.

Polymers 2023, 15, x FOR PEER REVIEW 5 of 54 
 

 

measurements, the authors assumed that the polymer molecules formed consist of ap-
proximately 14 monomeric units. As one of the variants of the polymer chain structure, 
the authors proposed a linear polyene, because, in their opinion, “anisotropic absorption 
can be observed if predominantly one acetylene radical in each DEB molecule is involved 
in the polymerization reaction”. The authors consider that the reason for the termination 
of the photopolymerization process is the accumulation of mechanical stresses, which 
limit the conversion rate. However, in their opinion, the growing polymer chain does not 
lead to a violation of the crystal lattice of the monomer. Unfortunately, the intramolecular 
structure of the fractions has not been studied by any physicochemical methods, such as 
NMR and IR spectroscopy or the study of molecular weight distribution. The scheme of 
possible chain growth presented by the authors (Figure 4) is not correct, since it has an 
image of pentavalent carbon. 

 
Figure 4. The scheme of possible poly-p-DEB grew from article [41] with translated captures. Re-
printed with permission from Broude, V. L. (1968). Copyright 1968 Institute of Chemical Physics 
RAS. 

Later, a large series of articles by this group of authors was devoted to a more detailed 
EPR study of low-temperature (4.2–340 °K) solid-phase polymerization of crystalline p-
DEB initiated by UV irradiation [42–46] or γ-irradiation [44–48]. It was found that after 
the termination of irradiation, the opening of the cuvettes, and the volatilization of the 
unreacted monomer, insoluble products remain in the main. This indirectly indicated the 
initial branched nature of macromolecules, although no studies of the intramolecular 
structure were carried out. Later, this group of authors used EPR and optical spectroscopy 
in the temperature range of 77–230 °K to study the generated macroradical in more detail. 
According to the authors, in this polymer, an unpaired electron is localized on the termi-
nal monomeric unit of a stereoregular polymer. At 230–310 °K, its delocalization in the 
poly-conjugated system occurred due to the addition of a linear macroradical to the dou-
ble bond of the polymer molecule. The reaction produces a branched polymer of p-DEB. 
Subsequently, crosslinking of polymeric branched chains with the formation of an insol-
uble polymer took place. The same processes occur in p-DEB, deuterated in the ethynyl 
group [46,47]. 

The same authors in [47–49] explain the possible reasons for the synthesis of soluble 
poly-p-DEB with low conversion and low molecular weight. They studied p-DEB samples 

Figure 4. The scheme of possible poly-p-DEB grew from article [41] with translated captures. Reprinted
with permission from Broude, V.L. (1968). Copyright 1968 Institute of Chemical Physics RAS.

Later, a large series of articles by this group of authors was devoted to a more detailed
EPR study of low-temperature (4.2–340 ◦K) solid-phase polymerization of crystalline p-
DEB initiated by UV irradiation [42–46] or γ-irradiation [44–48]. It was found that after
the termination of irradiation, the opening of the cuvettes, and the volatilization of the
unreacted monomer, insoluble products remain in the main. This indirectly indicated
the initial branched nature of macromolecules, although no studies of the intramolecular
structure were carried out. Later, this group of authors used EPR and optical spectroscopy
in the temperature range of 77–230 ◦K to study the generated macroradical in more de-
tail. According to the authors, in this polymer, an unpaired electron is localized on the
terminal monomeric unit of a stereoregular polymer. At 230–310 ◦K, its delocalization
in the poly-conjugated system occurred due to the addition of a linear macroradical to
the double bond of the polymer molecule. The reaction produces a branched polymer of
p-DEB. Subsequently, crosslinking of polymeric branched chains with the formation of
an insoluble polymer took place. The same processes occur in p-DEB, deuterated in the
ethynyl group [46,47].

The same authors in [47–49] explain the possible reasons for the synthesis of soluble
poly-p-DEB with low conversion and low molecular weight. They studied p-DEB samples
by EPR after low doses of radiation (D < 500 kGy). The authors believe that at temperatures
when the mobility of the polymerizing system increases (heating of irradiated samples at
77 ◦K; softening of the matrix during the subsequent reaction at T ≥ Troom), the macro-
radical has the ability to attach to the double bonds of the formed macromolecule. This
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leads to the formation of short, branched polymer molecules. In addition, the macroradical
can “twist”. In this case, conditions are created for the transition of an unpaired electron
into the plane of conjugated π-electrons of a macromolecule, where it is delocalized along
the π-conjugation chain. These reasons, according to the authors [47–49], lead to a loss of
macroradical activity, which in turn leads to a decrease in the polymerization rate and a
decrease in molecular weight.

After the first report in 1968 [41] on the radiation-induced solid-phase polymerization
of p-DEB, a publication appeared [50] on the study of radiation polymerization of p-DEB
and some of its derivatives. For this purpose, the authors [50] sealed p-DEB crystals in glass
vacuumed (~10−5 torr) ampoules. The ampoules were then irradiated with γ-rays from the
60Co source (dose rate of 9·105 rad/h) for 120 h. The brown poly-p-DEB conversion was
11%. With increasing polymerization time (125 or 150 h) an insoluble fraction appeared,
and the amount of the soluble fraction decreased. The authors reported that spectral data
were obtained for poly-p-DEB (1H NMR, 13C NMR, and IR spectra). However, the spectra
were not given and the intramolecular structure of the polymer was not proposed.

In the article [27], an acetone-soluble prepolymer was synthesized by irradiation of
solid p-DEB with 60Co γ-rays at a lower dose (10 kGy, 50 kGy, and 100 kGy) at room
temperature. According to the results of mass spectrometry, the prepolymers required to
create composites consisted only of dimers, trimers, and unreacted monomers. UV-Vis
spectra show that the content of oligomers increases with an increase in the radiation dose.
The authors converted these prepolymers into a crosslinked gel state by subsequent heating
at 110 ◦C. Thus, even a branched polymer was not synthesized in the work.

In [48,49], the radical polymerization of p–DEB initiated by γ-radiation in a matrix
of a glassy solution in dimethylformamide (DMF) was studied at temperatures of 77 and
300 ◦K. For the subsequent heating of the irradiated samples at 77 ◦K, in addition to the
traditional heating method, microwave radiation was used. The studies were carried out by
methods of EPR spectroscopy, calorimetry, size-exclusive chromatography, and gravimetry.
Due to the two ethynyl groups in the monomer molecule, a crosslinked polymer is mainly
formed in all experiments. In the case of using a dose of 750 kGy, a soluble polymer with
a conversion rate of 4.5% was obtained. The polymer chains contained 4–8 monomeric
units and had a fairly wide molecular weight distribution (Mw/Mn = 1.8, where Mw is the
weight-average molecular mass, and Mn is the number-average molecular mass), which
indicated a significant number of branches. At the end of the polymerization process, there
was an increase in the number of closed groups –C≡CH and the regular formation of
insoluble fractions. Unfortunately, the intramolecular structure of the soluble part has not
been studied by spectral methods.

A low-temperature (100–210 ◦K) solid-phase polymerization process of p-DEB initiated
by chlorine was described in [51]. For this, chlorine was frozen on a crystalline p-DEB at
a temperature of 77 ◦K; then, the temperature was gradually raised to 210 ◦K at a rate of
~0.3 ◦K/min. The heating-cooling procedure was repeated. The polymerization process
took place at noticeable rates near the melting point of chlorine and accelerated at its melting
point. The unreacted monomer and chlorine were removed from the sample by vacuuming.
When the procedure was repeated 10 times, a non-volatile product soluble in ethanol
was obtained with a yield of ~15%wt. This oligomer had 2–3 units. When the procedure
was repeated 20 times, a polymer fraction was also obtained, soluble only in DMF and
tetrahydrofuran (THF). The synthesized polymer had 8–9 units and a very wide molecular
weight distribution (Mw/Mn = 3.75). In this case, polymerization of p-DEB can occur only
due to the presence of two reactive ethynyl groups, while the reaction of phenylacetylene
under similar conditions led to the formation of only dimers [51]. The authors believed
that branched poly-p-DEB is formed as a result of the reaction of a growing macroradical
with the polyene chain of the formed polymer, as they had previously observed during UV-
and γ-initiated solid-phase DEB polymerization [44–49]. Unfortunately, when discussing
IR spectra, the authors did not even qualitatively analyze the areas of oscillations in the
C≡CH group, let alone a quantitative analysis of the dynamics of changes in these groups.
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In all cases, all fractions contained chlorine in an amount of ~40–50%wt. The IR spectra
showed bands at 738, 786, and 878 cm−1 characteristic of the C–Cl bond, but the authors
did not indicate possible places of chlorine addition.

The mechanism of polymerization of acetylenes by molecular chlorine at low tem-
peratures is considered in more detail in [52,53]. It is shown that without external energy
influence, radicals are spontaneously formed. The formed radicals initiate polymerization
and chlorination reactions of p-DEB, which occur when prepared at 77 ◦K mixtures are
heated. The features of the intramolecular structure are not discussed in any way, and when
discussing IR spectra, the characteristic bands of C≡C and C–H bonds in the –C≡C–H
group are not even mentioned.

The depositions of p-DEB in an ultrahigh vacuum on Cu(111) substrates and subse-
quent annealing at temperatures from 175 to 350 ◦C were studied in [54]. Annealing of
self-assembled DEB structures led to surface covalent aggregates and meshes that did not
have a linear chain structure.

2.2. Gas-Phase Polymerization of p-DEB

The process of frontal polymerization of p-DEB occurring as a result of high-temperature
initiation at elevated nitrogen pressure (P = 2–6 MPa) in a standard Crawford bomb has
been studied in [55]. Thermal initiation of the process was carried out using a nichrome coil
when an alternating current of 8 V was applied to it. According to the authors [55], after
that, the process of intense evaporation began, followed by rapid polymerization of p-DEB
in the gas phase. Due to the high thermal effect of polymerization, the temperature in the
reactor remains high even after the thermal initiation impulse is switched off. The p-DEB has
a low melting and boiling points, as well as high volatility. Therefore, after evaporation and
polymerization of the first upper layer, each subsequent layer of p-DEB also evaporated and
polymerized in the gas phase. As a result, an insoluble crosslinked polymer in the form of a
black cylindrical rod was obtained. As a result of the Raman spectrum analysis, the authors
assumed that the polymer had a graphite structure. Using SEM, microspheres were imaged
with a rather narrow size distribution and with an average diameter of 100–200 nm. It is not
excluded that in this case, condensation of p-DEB vapors into the liquid phase and subsequent
liquid-phase polymerization in the melt at a high temperature may occur, similar to [56].

2.3. Liquid-Phase Polymerization of p-DEB without the Use of Catalysts

Liquid-phase polymerization is the method that, in principle, makes it possible to
obtain poly-p-DEB in sufficient quantities and a controlled structure to create the required
final materials.

Heating (100–280 ◦C) in sealed ampoules in an argon medium of mixtures of p-DEB
and polynaphthalene, anthracene, and polynaphthalene copolymer with benzene [57]
and with polyphenylene (1/2 wt.) [58] led to the formation of either soluble or insoluble
products. According to the authors (in accordance with the IR spectra), depending on
the experimental conditions, p-DEB was grafted to polyarylenes (soluble products were
obtained) or polyarylenes were crosslinked with grafted p-DEB with the formation of
trans-vinyl bridges.

The possibility of using p-DEB as a dispersant of solid fuels in a ramjet engine is
considered in [59,60]. For this, the kinetics of heat release during its thermally initiated
polymerization under isothermal conditions in the temperature range of 90–150 ◦C-steam
in a Crawford bomb at an initial pressure of 2 MPa has been studied.

Apparently, the first attempt at liquid-phase homopolymerization of p-DEB in a melt
was described in [56,61] in 1967. The authors polymerized DEB in sealed ampoules in a
melt under argon for 6 h at temperatures of 100–185 ◦C, always obtaining a dark insoluble
product. The intramolecular structure of polymers has not been investigated.

The thermal curing reaction of p-DEB was studied in [62] by comparing the activation
energies of the thermal curing reactions of various acetylene monomers. p-DEB as one of
the objects of comparison is considered together with other acetylene monomers: o- and



Polymers 2023, 15, 1105 8 of 51

m-DEB, 1,2,4- and 1,3,5-triethynylbenzenes, as well as 1,2,4,5-tetraethynylbenzene. The aim
of the work was to obtain complete information about the features of the curing processes
of individual phenylacetylene monomers and their various compositions in the synthesis
of resins with terminal acetylene groups (PAA resins). This work did not consider the
structural features of the products obtained.

Interaction in a sealed degassed ampoule of p-DEB with iodine (DEB/iodine = 1/1 mol)
at 130 ◦C for 6 h produced a yellow polymer containing 60–68% iodine and soluble in
benzene and chloroform [63]. A solid insoluble polymer block was obtained at a ratio of
p-DEB/iodine ≤ 1/0.7 mol. Increasing the heating time also resulted in the formation of an
insoluble polymer.

The authors believe that the polymerization mechanism first involves the process of
halogenation, and then dehalopolycondensation in accordance with the scheme (Figure 5)
on the example of polymerization of a structural analog—phenylacetylene.
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Figure 5. The scheme of dehalopolycondensation. Reprinted with permission from Ref. [63] Copy-
right 1989 Elsevier.

Based on IR (including strong bond νC–I = 595 cm−1) and 1H-NMR spectra, the authors
propose a branched structure of soluble poly-p-DEB (Figure 6a).
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Films made of soluble poly-p-DEB had σ20 = 10−10 Ω−1cm−1. After heat treatment
at 130 ◦C, the polymer became insoluble. The iodine content decreased to 27%, and the
absorption bands characteristic of C–I and C≡C bonds disappeared. The authors explained
this by the process of disappearance of links with substituents –CI=CHI in accordance with
the scheme shown in Figure 6b.

After boiling a 15% solution of p-DEB in DMF (b.p.= 153 ◦C) in a nitrogen atmosphere
for 48 h, a polymer with a conversion rate of 29% and Mn = 1459 was obtained [64]. An
increase in the time of thermal polymerization to 49 h led to the formation of a gel. Based
on the results of IR and NMR spectra, the authors believed that the polymer had a branched
structure. The curing of poly-p-DEB was studied using dynamic and isothermal differential
scanning calorimetry (DSC).

In the case of irradiation with UV light or γ-60Co (≈2 Mrad) by radiation of p-DEB
solutions in ethanol (10 mmol/mol) at 77 and 300 ◦K, the samples, respectively, remained
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colorless or slightly yellow. This indicated the absence of the polymerization process of the
monomer in solution under the influence of the radiation used [41,45].

Taking into account the reaction schemes given in [65], p-DEB was used in this work
to create a prepolymer preliminarily. The method of creating a prepolymer is not given in
full. The process of gel formation (temperature 100 ◦C) is unclear in the absence of any
solvent since it is known that pyrolysis of p-DEB at this temperature leads to an insoluble
solid product [56,61,62]. Subsequently, the prepolymer was used to create compositions
with fir powder. The structure of the prepolymer is not investigated or discussed by the
authors. The reaction schemes suggest the probable structure of the crosslinked product.
However, these structural elements are most likely characteristic of polymers based on
o-DEB and m-DEB.

2.4. Liquid-Phase Polymerization of p-DEB with the Use of Catalysts

The first attempts at a liquid-phase synthesis of poly-p-DEB in the presence of catalytic
systems are described in the patent [66] and in articles [67–71]. It was reported in [68,69]
that in the presence of the iso-(C4H9)3Al—TiCl4 complex (Al/Ti = 0.5), an insoluble poly-
mer is formed in 6 h with a yield of 40%. In [70], they only state the fact of the formation
of an insoluble polymer in the presence of iso-(C4H9)3Al and TiCl4 without specifying
any polymerization conditions. Nevertheless, the authors [70,72] believed that 1,2,4- or
1,3,5-cyclotrimerization of p-DEB occurs first, as was observed in the case of phenylacety-
lene [73]. Subsequently, the polymer mesh is formed according to the scheme (Figure 7).

Polymers 2023, 15, x FOR PEER REVIEW 9 of 54 
 

 

After boiling a 15% solution of p-DEB in DMF (b.p.= 153 °C) in a nitrogen atmosphere 
for 48 h, a polymer with a conversion rate of 29% and 𝑀 = 1459 was obtained [64]. An 
increase in the time of thermal polymerization to 49 h led to the formation of a gel. Based 
on the results of IR and NMR spectra, the authors believed that the polymer had a 
branched structure. The curing of poly-p-DEB was studied using dynamic and isothermal 
differential scanning calorimetry (DSC). 

In the case of irradiation with UV light or γ-60Co (≈2 Mrad) by radiation of p-DEB 
solutions in ethanol (10 mmol/mol) at 77 and 300 °K, the samples, respectively, remained 
colorless or slightly yellow. This indicated the absence of the polymerization process of 
the monomer in solution under the influence of the radiation used [41,45]. 

Taking into account the reaction schemes given in [65], p-DEB was used in this work 
to create a prepolymer preliminarily. The method of creating a prepolymer is not given in 
full. The process of gel formation (temperature 100 °C) is unclear in the absence of any 
solvent since it is known that pyrolysis of p-DEB at this temperature leads to an insoluble 
solid product [56,61,62]. Subsequently, the prepolymer was used to create compositions 
with fir powder. The structure of the prepolymer is not investigated or discussed by the 
authors. The reaction schemes suggest the probable structure of the crosslinked product. 
However, these structural elements are most likely characteristic of polymers based on o-
DEB and m-DEB. 

2.4. Liquid-Phase Polymerization of p-DEB with the Use of Catalysts 
The first attempts at a liquid-phase synthesis of poly-p-DEB in the presence of cata-

lytic systems are described in the patent [66] and in articles [67–71]. It was reported in 
[68,69] that in the presence of the iso-(C4H9)3Al—TiCl4 complex (Al/Ti = 0.5), an insoluble 
polymer is formed in 6 h with a yield of 40%. In [70], they only state the fact of the for-
mation of an insoluble polymer in the presence of iso-(C4H9)3Al and TiCl4 without speci-
fying any polymerization conditions. Nevertheless, the authors [70,72] believed that 1,2,4- 
or 1,3,5-cyclotrimerization of p-DEB occurs first, as was observed in the case of phenyla-
cetylene [73]. Subsequently, the polymer mesh is formed according to the scheme (Figure 
7). 

 
Figure 7. The schemes of polymer mesh formation from [70] with translated captures. Reprinted 
with permission from Korshak, V.V. (1972). Copyright 1972 Institute of Organoelement Com-
pounds RAS. 

The patent [66] reported on the polycyclotrimerization reaction of diethynylarylenes 
using catalysts [(RO) P] ∙ CoHal , (where R = AlkC≤6, Hal = Cl, Br, I). The goal is the 

Figure 7. The schemes of polymer mesh formation from [70] with translated captures. Reprinted with
permission from Korshak, V.V. (1972). Copyright 1972 Institute of Organoelement Compounds RAS.

The patent [66] reported on the polycyclotrimerization reaction of diethynylarylenes
using catalysts [(RO)3P]n·CoHal, (where R = AlkC≤6, Hal = Cl, Br, I). The goal is the
synthesis of thermosetting polymers cured at 150–200 ◦C. However, only one example
describes the synthesis of poly-p-DEB only in the presence of triethyl phosphate cobalt
iodide complex [(EtO)3P]4·CoI. The yield of the insoluble polymer was 70.6% for 1 h in
boiling ethanol. The IR spectrum of the crosslinked polyphenyl product shows the presence
of trisubstituted benzene nuclei in the polymer molecule (at 810–850 cm−1).

The studies [67,74] report on the continuation of studies on the homopolymeriza-
tion of diethynylarylenes, including p-DEB, in the presence of various complex cobalt
catalysts. Apparently, the catalyst was the [(EtO)3P]4·CoI complex mentioned in [66]. Ac-
cording to the authors, highly crosslinked polyphenylenes are formed by the mechanism of
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polycyclotrimerization with the formation of 1,3,5- and 1,2,4 (98%)-substituted phenylene
fragments (Figure 8). At the same time, ≡CH proton signals almost completely disappear
in the 1H-NMR spectra.
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The article [75] reports on the approbation of a larger number of the same trialkylphos-
phate complexes of cobalt. However, the kinetic features of p-DEB polymerization are con-
sidered in the presence of only one trialkylphosphite complex of cobalt [(C2H5O)3P]4·CoBr.
The reaction was carried out in a solution of benzene, toluene, dioxane, or alcohol in an inert
gas medium at temperatures of 50–100 ◦C. The total yield of non-soluble products varied
in the range of 15–68%, and the total yield of soluble products was 20–44%. The molecular
weight of soluble branched polymers of p-DEB reached 2600. NMR spectra showed that
during polymerization, the number of ethynyl group protons gradually decreases so that
by the end of the reaction, the ratio of the total number of olefin and aromatic protons
to ethynyl protons is Hol+ar/Heth = 8/1. This indicated the presence of branches in the
polymer. The authors proposed a scheme for the polycyclotrimerization of p-DEB through
the formation of a complex of three ethynyl groups with a transition metal atom (Figure 9),
although they also allowed for other intermediate stages.
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The structure of highly branched polyphenylene for poly-p-DEB (Figure 9) synthesized
using complexes [(RO)3P]n·CoHal and proposed in [66,67,74,75], was confirmed in [76],
who studied the thermal characteristics of poly-p-DEB, and in a series of reviews [71,77–79].

A large number of publications have been devoted to the polymerization of p-DEB in
the presence of the nickel acetylacetonate/triphenylphosphine Ni(C5H7O2)2·Ph3P com-
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plex. In some examples of early patents [80–83], the synthesis of poly-p-DEB in N2 medium
in a solution of anhydrous dioxane with a conversion of 57% was reported. The polymer
is recommended to be used in compositions when creating carbon materials. Poly-p-DEB
had Mn = 2900. For synthesis, 71 parts of p-DEB, 1.062 parts of Ni(C5H7O2)2, 2.124 parts of
Ph3P and 737 parts of anhydrous dioxane were loaded into the reactor. The authors of this
review recalculated the mass fractions into molars in order to compare these indicators with
those indicated in subsequent publications. The ratio of the values of p-DEB/Ni(Acac)/
Ph3P = 137/1/2 was obtained. According to the NMR spectrum (the spectrum is not
shown), the branched polymer molecules had phenylene fragments. The prepolymer
contained 15.0% acetylene groups. A significant excess of the number of aromatic protons
compared to the number of acetylene protons in poly-p-DEB indicated the formation of
such protons due to the effective polycyclotrimerization reaction of ethynyl groups in the
presence of a Ni(C5H7O2)2·Ph3P catalyst. However, the phrase of the authors (“Analysis
by NMR as described above showed the prepolymer to have a ratio of aromatic protons to
olefinic protons of greater than 30/1”) is surprising, because in PMR spectra these protons
are not distinguishable. The authors probably meant acetylene protons, not olefin protons.

A group of authors in later publications [84–88] studied the polymerization of p-
DEB in the presence of the same Ni(C5H7O2)2·Ph3P catalyst under various conditions:
component ratio, solvent type, temperature, and effect of LiCl addition. The purpose of
the research is to develop conditions for the synthesis of poly-p-DEB, capable of forming
heat-resistant and easily carbonized fibers from it. The process of poly-p-DEB synthesis
was carried out in a medium of dry polar solvents (DMF, DMA, or N-MP) at temperatures
of 70–120 ◦C for 1–9 h in an inert gas medium. The conversion reached 96%. The polymer
solution was subjected to preliminary structuring by heating it at 100 ◦C for 6 h. Then it
was molded into an aqueous precipitation bath through a spinneret having 300 holes with a
diameter of 0.05 mm. The fiber dried at 50 ◦C was subjected to heat treatment up to 250 ◦C
at a heating rate of 5 ◦C/min. As a result, the authors obtained an elementary fiber with a
diameter of 0.025 mm and a strength of 21–27 kg/mm2.

The patent [84] shows the only used ratio of the components of the catalytic com-
plex Ph3P/Ni(C5H7O2)2 = 1/2. A later patent [85] indicated a different ratio of the com-
ponents of the reaction system, which was changed in the intervals of DEB/Ph3P/Ni
(C5H7O2)2 = 1.4–1.6/0.1–0.12/0.005–0.006 mol/L. An increase in the conversion of p-DEB
was noted [87] due to an increase in the concentration of Ph3P in the reaction medium
and in the case of the addition of LiCl. The polymer yield was quantitative at a ratio of
DEB/Ph3P/Ni(C5H7O2)2 = 313/1/20 mol/L. According to the authors [86], polymeriza-
tion occurred with the formation of an intermediate active center—hydride acetylenide
(Figure 10a)—and therefore poly-p-DEB has a linear structure of non-branched polyene
(Figure 10b). The authors substantiated this assumption by comparing the intensities of the
bands of phenyl (1510 cm−1) and ethynyl (3300 cm−1) groups in the IR spectra of p-DEB
and poly-p-DEB [87].
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Unfortunately, in this article, the corresponding IR spectra were not given and the
NMR spectra of poly-p-DEB were not taken, which would make it possible to determine the
intramolecular structure of the polymer. Later, these authors reported in an article [30] that
under the previously used [85,87] synthesis conditions, polymers are formed that “have a
predominantly linear structure with a trans-transoid conformation and contain free ethynyl
groups on almost every aromatic nucleus”. That is, in fact, the synthesized polymer had a
certain number of branches in the main chain.

Thus, the intramolecular structure of poly-p-DEB proposed in [30,87] differs from the
structure proposed in [80,83]. A possible reason may be the difference in the conditions
of the p-DEB polymerization reaction. Indeed, our recalculation of the mass loading of
components indicated in [80,83] for loading in the molar ratio gave the following values:
Ph3P/Ni(C5H7O2)2 = 2/1. On the other hand, in [85] a different ratio of these components
was used during polymerization, as indicated above. Unfortunately, [87] it is not indi-
cated under what specific conditions poly-p-DEB was obtained, the IR spectrum of which
was studied.

In an article that appeared much later [64], the authors argued that when using the
same complex Ni(C5H7O2)2·Ph3P catalyst, the main reaction should be polycyclotrimer-
ization of p-DEB, proceeding according to the scheme in Figure 11. However, in the poly-
merization scheme (Figure 11), the authors, probably mistakenly, depicted a cyclotrimer
obtained from m-DEB and not from the original p-DEB.
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The authors of this article [64] allowed a small part of the reactions to occur with
the formation of linear and/or branched structures. As a result of the reaction, a soluble
prepolymer was formed for 3 h with a yield of 79% and a value of Mn = 1875. It was shown
that the Ni-catalyzed polymerization of diethynylbenzene is an effective way to synthesize
prepolymers needed to produce composites. An increase in the polymerization time to 3.5 h
led to the formation of a gel. The FT-IR spectra of soluble catalytic and thermal prepolymers
showed characteristic bond vibrations of acetylene groups at 3300 cm−1 (stretching ≡C–H)
and 2106 cm−1 (stretching C≡CH), respectively. The 1H-NMR spectra show the same
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signals, which differ in intensity for some protons, including acetylene protons (≡C–H) at
3.1–3.3 ppm. The authors believed that the spectra indicate the realization of a branched
structure with the preservation of part of the groups –C≡CH. It is this structure that ensures
the formation of gels when certain polymerization times are reached. Unfortunately, the
absence of integral 1H-NMR spectra did not allow us to confirm this ratio of different types
of units. The purpose carried out by the authors’ research is to study the curing process
of poly-p-DEB, which is a good resin for creating carbon matrices. Using dynamic and
isothermic DSC, it was found that the exothermic crosslinking process began at 120 ◦C,
reached a maximum at 210 ◦C, and ended at 300 ◦C. More than 85% of –C≡CH groups
reacted during curing. For comparison, thermal poly-p-DEB synthesized by boiling a
solution of p-DEB in DMF was studied. It was found that the coke residue of catalytic
poly-p-DEB (pyrolysis at 800 ◦C) was 79–86%. On the contrary, the coke residue of thermal
poly-p-DEB was only 74%, which the authors explained by the presence of structural
defects in polymer chains.

In [89], a soluble prepolymer from p-DEB was synthesized using 13, 16 and 19%wt.
of the same catalyst Ni(C5H7O2)2·Ph3P according to the method taken from [64]. The
conversion of the soluble polymer was 77% for 2 h (19%wt. of the catalyst), without
reaching the gelation region. The prepolymer was evaluated as a polymeric precursor of
monolithic vitreous carbon. Based on 1H-NMR spectra, the authors confirmed the presence
of a branched polyphenylene structure. However, in the polymerization scheme (Figure 12),
taken from [64], the authors also mistakenly depicted a cyclotrimer obtained from three
m-DEB molecules.
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Oishi, S.S. (2014). Copyright 2014 Oishi S.S.

Indeed, the resin synthesized from a mixture of p- and m-DEP in the presence of
Ni(C5H7O2)2·Ph3P or TiCl4·Et2AlCl complexes is also formed due to the cyclotrimerization
process (Figure 13) [23]. In addition, the cyclotrimerization of acetylenes in the presence of
Ni(C5H7O2)2·Ph3P is indicated by the authors [24] who studied the co-cyclotrimerization
of mixtures of DEB and ethylphenylacetylene isomers and proposed the branched cy-
clotrimer structure.
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Figure 13. The structure of p-DEB oligomers. Reprinted with permission from [23]. Copyright 2007
Taylor & Francis.

During polymerization of p-DEB and other diethynylaromatic monomers in the presence
of rhodium catalysts [Rh(cod)ac] and [Rh(nbd)acac] (cod: cycloocta-1,5-diene; nbd: norborna-
2,5-diene; acac: acetylacetone) in the medium of CH2Cl2, the authors [14] synthesized insoluble
microporous polymers with yields of 80 and 85%, respectively. The polymers had SBET values
of 512 and 809 m2 g−1, respectively, and a micropore volume of 0.160 and 0.247 cm3 g−1. The
adsorption of H2 on polymers was reversible, in contrast to nitrogen adsorption. This allowed
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the authors to consider it possible to optimize the physical properties of polymers in order
to create materials for gas storage. Using the SEC and 13C CP/MAS NMR spectroscopy, it
was found that the polymer consisted of polyene conjugated meshes with ethynylarylene
substituents and crosslinked with arylene linkers (Figure 14).
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Figure 14. Synthesis of polyacetylene-type microporous organic polymers. Reprinted with permission
from [14]. Copyright 2011 John Wiley and Sons, Inc.

The soluble polymer was obtained only in the presence of a [Rh(nbd)acac] catalyst
after 2–3 min (no more!) after the start of synthesis. The authors found that this poly-DEB
was highly branched or partially crosslinked even at the beginning of its formation.

In a later article [15], the authors investigated the effect of reaction conditions (type
of catalyst, solvent, temperature, concentration of catalyst, and monomer) on the resulting
meshes of poly-p-DEB and the adsorption capacity of synthesized polymers. The use of
[Rh(nbd)acac] and [Rh(nbd)Cl]2/Et3N complexes in CH2Cl2 medium provided the synthesis
of insoluble, non-swellable crosslinked microporous polymers for 3 h at room temperature
with yields of 85 and 77%, respectively. A red precipitate fell out immediately after mixing
the reagents, or after a few minutes. An insignificant amount of unreacted –C≡C–H groups
remained in the polymers (Figure 15). During the polymerization of p-DEB in the presence of
[Rh(nbd)acac], the SBET value of the obtained poly-p-DEB increased depending on the solvent
used in the series: THF << pentane < benzene < methanol < CH2Cl2.
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The SBET value increased with increasing reaction time and temperature, as well as
with an increase in the initial concentration of the monomer. The maximum value of
SBET = 1469 m2g−1 was obtained for poly-p-DEB synthesized using [Rh(nbd)ac ac] in
CH2Cl2 for 72 h at 75 ◦C. The diameter of the micropores was about 1 nm. In addition to
micropores, poly-p-DEB contained mesopores. The heat treatment of poly-p-DEB at 280 ◦C
caused the complete disappearance of the –C≡CH side groups with the formation of new
crosslinking. The heat-treated poly-p-DEB showed a higher adsorption capacity for H2 and
CO2 compared to the non-thermalized polymer. At the same time, metathesis catalysts
(WCl6/Ph4Sn, MoCl5/Ph4Sn, Mo-carbene) proved to be ineffective in polymerization in
benzene solution at room temperature and reaction time up to 24 h, demonstrating a
conversion of 39, 2, and 11%, respectively.

The ability of numerous low molecular weight acetylene compounds (including 1,3-
and 1,4-diethynylbenzenes) to catalyze model acetylation and esterification reactions was
analyzed in [90]. The authors argued that acidic hydrogen of ethynyl groups –C≡CH
is capable of carrying out acetylation and esterification reactions, usually catalyzed by
acid. The logical development of these studies is the study of the catalytic activity of
polymers having –C≡CH groups [91]. In the article, the authors [91] for the first time
proved the principal possibility of the catalytic activity of this insoluble, non-swellable,
super-crosslinked red poly-p-DEB with a constant micro/mesoporous structure and a
specific surface area SBET up to 1007 m2g−1. The synthesis was carried out in the presence
of a catalyst [Rh(nbd)acac] in accordance with the methodology [15]. Part of the groups
–C≡CH was not polymerized and remained free (0.4 per monomer unit). Due to the
weakly acidic hydrogen atoms of these unreacted ethynyl groups, the polymer should have
been active in acid-catalyzed reactions. The authors evaluated the heterogeneous catalytic
activity of the acidic acetylene hydrogen using the acetylation reaction by methanol of five
aldehydes and two ketones at 60 ◦C. The conversion was 0.5–48% for 0.25 h and 14–49%
for 7 h. The control experiment showed that polyphenylacetylene, a structural analog of
poly-p-DEB, that does not have groups –C≡CH, did not activate this reaction. On the
other hand, monomeric phenylacetylene catalyzed a homogeneous acetylation reaction
of isopentanal with methanol with a conversion of 8%. However, the catalytic activity of
phenylacetylene was naturally lower than that of poly-DEB (32%). This was explained
by the lower acidity of the acetylene hydrogen atom of phenylacetylene, compared with
the acidity of the acetylene hydrogen atoms present in the side substituents –PhC≡CH
conjugated poly-p-DEB.

In the review devoted to the use of rhodium catalysts for the polymerization of
various mono- and diacetylenes, including p-DEB [9], the main types of Rh-based catalysts,
including those immobilized on both organic and silicon carriers, were considered. The
review indicates that during the polymerization of various diethynylarenes, strongly
crosslinked polyacetylene meshes were formed.

In the presence of a complex catalyst Ni(PPh3)2(C ≡ C–C6H4–C ≡ CH)2 in a mixture
of solvents dioxane-toluene (1/1 by volume) in an atmosphere of N2 at 25 ◦C for 6 h with a
conversion of 70%, soluble poly-p-DEB having Mw = 3000–30,000 was obtained [92]. The
synthesized polymers had low electronic conductivity. However, in the presence of ambient
humidity in tablet samples doped with chloric or sulfuric acids, the conductivity of the
samples sharply increased due to proton migration through the material. The authors
suggested that the mechanism of charge transfer through materials is based on the proton
conductivity of a thin layer of an aqueous acid solution adhering to the polymer grains.
It was proposed to use such materials in the development of humidity sensors since the
doped polymers showed a reversible change in conductivity depending on humidity.
In [93], the same polymer was studied as in [92], but in the form of a film sample applied
to a surface acoustic wave (SAW) delay line oscillator. The polymer structure was not
given. Poly-p-DEB has shown properties that made it possible to recommend it as a good
moisture-sensitive material. The effect of the dopant concentration (HClO4) on the electrical
properties and relative humidity of this poly-p-DEB was studied in [94]. The doped poly-p-
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DEB was characterized using electron spin resonance (ESR), UV-vis, IR, X-ray photoelectron
spectroscopy (XPS), and scanning electron microscopy (SEM). The conductivity of the
doped polymer increased by 11 orders of magnitude, reached 103 S·cm−1, and increased
with an exponential trend depending on relative humidity (below 60%). The authors
believed that the formation of a complex with charge transfer of poly-p-DEB with the
hydroxonium ion H3O+ took place. This led to the delocalization of the charge of the
π-electron along the polymer chain and a decrease in the transition energy of π→π*. A
rectilinear dependence of the current (four orders of magnitude) on the relative humidity
(10–60%) on a logarithmic scale was found in the doped poly-p-DEB. The authors of all
these publications declared the trans-linear structure of the polymer in the absence of any
instrumental studies of the intramolecular structure.

This group of authors in the following article [95] continued the research of poly-p-DEB
(catalyst Ni(PPh3)2(C ≡ C–C6H4–C ≡ CH)2) as a relative humidity (RH%) sensor. Electri-
cal measurements were carried out on gold electrodes. Thin-film coatings for them were
prepared in three ways: (A) a Langmuir-Blodgett (LB) monomolecular layer deposition,
(B) spin coating, and (C) transferring PDEB film formed on the water surface. All sensors
had a low impedance (in the range of 103–107 Ω in 15–92% RH) and a small hysteresis
(Figure 16). However, the sensor manufactured by the LB deposition method had a better
response. The authors explained this by the smallest thickness and more ordered structure
of the membrane. Using 1H NMR spectroscopy, the authors introduced certainty to the
knowledge of the intramolecular structure of the synthesized poly-p-DEB. They attributed
a relatively strong signal at 6.85 ppm to trans-polyene protons. The ratio of the sum of
olefin and aromatic protons to ethynyl protons was Hol+ar/Heth = 8/1 instead of 5/1 for
the linear structure. The authors believed that the polymer had a trans-polyene structure
with a certain number of side groups, probably in the branched structure in Figure 10c.

Polymers 2023, 15, x FOR PEER REVIEW 17 of 54 
 

 

sensors had a low impedance (in the range of 103–107 Ω in 15–92% RH) and a small hyste-
resis (Figure 16). However, the sensor manufactured by the LB deposition method had a 
better response. The authors explained this by the smallest thickness and more ordered 
structure of the membrane. Using 1H NMR spectroscopy, the authors introduced certainty 
to the knowledge of the intramolecular structure of the synthesized poly-p-DEB. They 
attributed a relatively strong signal at 6.85 ppm to trans-polyene protons. The ratio of the 
sum of olefin and aromatic protons to ethynyl protons was H /H = 8/1 instead of 
5/1 for the linear structure. The authors believed that the polymer had a trans-polyene 
structure with a certain number of side groups, probably in the branched structure in Fig-
ure 10c. 

 
Figure 16. Humidity response of PDEB-based sensors (A, B, and C) prepared with different meth-
ods. Reprinted with permission from Ref. [95]. Copyright 1999 John Wiley and Sons, Inc. 

In [96], the optical, photoluminescent, and electroluminescent properties of poly-p-
DEB synthesized in the presence of the same Ni(PPh ) (C ≡ C − C H −C ≡ CH)  catalyst 
and under the conditions specified in [92–94] were investigated. Accordingly, the authors 
[96] declared the linear structure in Figure 10b previously proposed in [94], contrary to 
the information available in [95] about the presence of a branched structure in Figure 10c. 
For poly-p-DEB, strong photoluminescence was detected when illuminated by an ultravi-
olet lamp and experimental single-layer LEDs were manufactured using poly-p-DEB as 
an emitting layer [96]. This allowed the authors to recommend the polymer as a lumines-
cent material for light-emitting devices. From the results of comparing the absorption 
spectra of poly-p-DEB, its two derivatives, and polyphenylacetylene, the authors con-
cluded that the aryl group in the side chain has a significant effect on the absorption spec-
tra of poly (phenylacetylene) derivatives. However, this conclusion is in contradiction 
with the results of the article [57], in which the hyperfine structure of the EPR spectra of 
nitropolyarylvinylenes, including poly-4-nitrophenyl acetylene, was investigated. The au-
thors believe that there is no interaction between the electrons of the main chain and the 
pendants in the polymer. Thus, the possible reasons for the spectral differences of 

Figure 16. Humidity response of PDEB-based sensors (A, B, and C) prepared with different methods.
Reprinted with permission from Ref. [95]. Copyright 1999 John Wiley and Sons, Inc.

In [96], the optical, photoluminescent, and electroluminescent properties of poly-p-
DEB synthesized in the presence of the same Ni(PPh3)2(C ≡ C–C6H4–C ≡ CH)2 catalyst
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and under the conditions specified in [92–94] were investigated. Accordingly, the au-
thors [96] declared the linear structure in Figure 10b previously proposed in [94], contrary
to the information available in [95] about the presence of a branched structure in Figure 10c.
For poly-p-DEB, strong photoluminescence was detected when illuminated by an ultravio-
let lamp and experimental single-layer LEDs were manufactured using poly-p-DEB as an
emitting layer [96]. This allowed the authors to recommend the polymer as a luminescent
material for light-emitting devices. From the results of comparing the absorption spectra of
poly-p-DEB, its two derivatives, and polyphenylacetylene, the authors concluded that the
aryl group in the side chain has a significant effect on the absorption spectra of poly (pheny-
lacetylene) derivatives. However, this conclusion is in contradiction with the results of the
article [57], in which the hyperfine structure of the EPR spectra of nitropolyarylvinylenes,
including poly-4-nitrophenyl acetylene, was investigated. The authors believe that there is
no interaction between the electrons of the main chain and the pendants in the polymer.
Thus, the possible reasons for the spectral differences of polymers synthesized in [96] can
be different lengths of polymer chains, different cis- or trans-isomerization, as well as
the presence of phenylene fragments in the chain. The conclusions in [96] will be valid
provided that the same structure of the main polymer chains of the studied polymers is
proved, which was not proven in this work.

In [97], photoluminescence, electroluminescence, and conductivity of doped (HClO4,
H2SO4, HBF4, I2, FeCl3, CH3COOH) poly-p-DEB synthesized in the presence of Ni(PPh3)2
(C ≡ C–C6H4–C ≡ CH)2 catalyst and under the conditions specified in [92–94] were in-
vestigated. However, according to the authors of this article, the polymer has a branched
trans-structure (Figure 10c) with Mw~11,000 and a polydispersity index of 3.0. It was found
that the use of HClO4 made it possible to increase the initial conductivity of poly-p-DEB
(10−14–10−13 S·cm−1) by 10 orders of magnitude to 6.3·10−3 S·cm−1. Other dopants (H2SO4,
CCl3COOH, HBF4, I2, FeCl3, p-CH3-C6H4-COOH, CH3COOH) showed lesser effect.

The same opinion about the existence of a branched poly-p-DEB structure is shared by
the authors [98] who study the dependence of the conversion, Mw and Mw/Mn on various fac-
tors: the concentration of the monomer and the catalyst Ni(PPh3)2(C ≡ C–C6H4–C ≡ CH)2
(Figures 17 and 18), temperature (0–50 ◦C), gas medium (N2, CO2, H2, air), solvent type (1,4-
dioxane, DMSO, THF, toluene, benzene, CH2Cl2 etc.), and additives (H2O, EtOH, Et3N,
Ph3N). The authors showed that a trans polymer with Mw up to 27,100 has a ratio of
Hol+ar/Heth = 8/1, indicating branched chains.
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It was shown in [99] that not only Ni(PPh3)2(C ≡ C–C6H4–C ≡ CH)2, but also other Ni
complexes, including those containing polar acetylides, have catalytic activity with respect to
p-DEB (although to a lesser extent). Air-stable complexes Ni(PPh3)2(C ≡ C–CH2OCOCH3)2,
Ni(PBu3)2(C ≡ C–C6H4–C ≡ CH)2, Ni(PBu3)2(C ≡ C–CH2OCOCH3)2 in a mixture of 1,4-
dioxane/toluene (1/1 by volume) were provided the yield of soluble poly-p-DEB 58, 28,
and 52% for 10 h (at 25 ◦C), 48 (60 ◦C) and 33 (60 ◦C) hours, respectively. The polymers
had Mw = 13,000–28,000. Complexes containing PBu3 ligands showed lower activity than
complexes containing PPh3 ligands. The authors attributed this to the higher basicity and
interconnected donor capacity of PBu3, which increased the electron density of the metal–
carbon bond and reduced the reactivity of this bond. The replacement of Ni by Pd in one
of the complexes with the same ligands led to a decrease in the activity of the complex. For
the Ni(PPh3)2(C ≡ C–C6H4–C ≡ CH)2 complex, the conversion of 74.4% was achieved at a
temperature of 25 ◦C for 3 h, while for the Pd(PPh3)2(C ≡ C–C6H4–C ≡ CH)2 complex the
conversion of 79.9% was achieved at a higher temperature of 60 ◦C in only 18 h. FT-IR, 1H,
and 13C NMR spectroscopy confirmed the branched π-conjugate structure of the polyene chain
poly-p-DEB. According to the authors, an additional confirmation is a wide and multimodal
molecular mass distribution (Mw/Mn up to 3.0) and small Mark–Houwink constants (a = 0.26).

In [100], the catalytic activity of complex catalysts containing various phosphine
and alkynyl ligands was compared: NiL2(C≡CR)2; NiL2(C≡CR)Cl and NiL2Cl2, where
L2 = (PPh3)2, (PBu3)2 and Ph2PCH2CH2PPh2; R = p-C6H4C≡CH, C6H5, H, CH2OH, and
CH2OCOCH3. Soluble π-conjugated poly-p-DEB with yields up to 95% and Mw up
to 48,000 was synthesized in an atmosphere of N2 in a mixture of dioxane/toluene at
25 ◦C for 3 h. It was found that the activity of nickel acetylides with various phos-
phine ligands decreased in the sequence: Ni(PPh3)2(C ≡ C–C6H4–C ≡ CH)2 > Ni(PBu3)2
(C ≡ C–C6H4–C ≡ CH)2 > Ni(PPh3)2(Ph2PCH2CH2PPh2)(C ≡ C–C6H4–C ≡ CH)2. The
activity of nickel acetylides containing (PPh3)2 and nonpolar alkynyl ligands is slightly
higher than the activity with the polar ligand C≡CCH2OCOCH3. In the case of nickel
acetylides containing (PBu3)2, an inverse dependence was generally observed. The
Ni(PPh3)2Cl2 complex did not show catalytic activity. The work did not consider the
structure of the resulting poly-p-DEB and did not carry out the necessary spectral studies
for this.

In [101], the mechanism of polymerization of p-DEB in the presence of Ni(PPh3)2
(C ≡ C–C6H4–C ≡ CH)2 was investigated in a mixture of DO/toluene at 60 ◦C for 48 h.
It was shown that additions of the electron donors hydroquinone, NEt3, EtOH, and H2O
(electron donor/catalyst = 5 mole ratio) affected the conversion of the monomer, varying in
the range of 54–88%. The values of Mw and Mw/Mn changed, respectively, in the intervals
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1.0–2.7·10−4 and 1.6–8.6. The authors proposed a coordination insertion mechanism by
the insertion of monomers into metal–carbon σ-bonds. According to the authors, for a
large-sized p-DEB, trans-connection is most appropriate. According to the authors, the
chain transfer to the monomer probably occurred during the polymerization of p-DEB. This
was indicated by a decrease in the molecular weights and polydispersity index (Mw/Mn)
of the polymer with an increase in the concentration of the monomer. The termination
of the polymer chain occurred due to the transfer of acidic hydrogen from the π-bound
p-DEB into the growing chain (Figure 19). In accordance with the scheme, an unbranched
trans-poly-p-DEB was formed. However, the article does not investigate the intramolecular
structure of the polymer by any spectral methods. Moreover, this conclusion contradicted
the results of works [97–99], the authors of which reported on the branched structure of
poly-p-DEB synthesized on a Ni catalyst. Later [102], this group of authors reported on the
branched nature of polymer chains of poly-p-DEB obtained under similar conditions.
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The structure of the initial soluble poly-p-DEB doped with FeCl3, as well as the
mechanism of doping were investigated by a set of spectral methods (FT-IR, Raman,
UV, 1H, and 13C NMR spectra) in [102]. Doping was carried out through a joint solvent
CHCl3. The electrical conductivity of the initial poly-p-DEB was 5.5·10−14 S·cm−1 at room
temperature. The addition of 22.6–50.1%wt. FeCl3 to the polymer resulted in an increase
in conductivity to 4.0·10−5 S·cm−1. A further increase in the doping concentration led
to a drop in conductivity to 6.5·10−6 S·cm−1. According to the authors, this is due to a
decrease in the concentration of charge carriers, and not to chlorination (results of XPS and
FT-IR spectroscopy). The initial polymer was synthesized in 1,4-dioxane-toluene mixed
solvent using Ni(PPh3)2(C ≡ C–C6H4–C ≡ CH)2 in accordance with [98]. The authors
of this article [102] have declared a branched structure in Figure 10c for poly-p-DEB,
referring to an earlier publication [98]. In the 1H-NMR spectra of this polymer, the ratio
Hol+ar/Heth = 8/1 was obtained.

Poly-p-DEB was used to create SAW humidity sensors [103]. The PDEB-based SAW
sensor was constructed by applying 10 single-molecule layers of poly-p-DEB on a piezo-
electric substrate using the LB method using a polymer solution in CHCl3. The frequency
characteristics of the SAW sensors were studied in the temperature range of 30–90 ◦C in the
relative humidity range of 20–85%. A linear decrease in frequency with increasing temper-
ature is detected; at the same time, the dependence of frequency shift on temperature was
−5 kHz/◦C. Thus, it became necessary to measure temperature and humidity in order to
compensate for the influence of temperature on the sensor response. The frequency of the
poly-p-DEB sensor decreased almost linearly with increasing humidity in the 20–85% relative
humidity range. The sensitivity at 22 and 30 ◦C was −0.4 and −0.36 kHz/RH%, respectively
(Figure 20). The poly-p-DEB sample was synthesized in accordance with [95] in the presence
of Ni(PPh3)2(C ≡ C–C6H4–C ≡ CH)2 under an N2 atmosphere for 6 h at 25 ◦C. That is why
it had to have a branched structure in Figure 10c, as was found in an earlier article [95].
However, the authors of this article [103] for some reason indicated the linear structure of the
polymer in Figure 3, without confirming this with any additional studies.
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A series of air- and moisture-resistant nickelocene acetylides catalysts of the general
formula (π-C5H5)LNi(C≡CR) (where L = PPh3, PBu3; R = p-C6H4C≡CH, C6H5, H) was
studied in [104] during polymerization of p-DEB in DMSO or pyridine at temperatures
of 40 or 60 ◦C for a time of 6 or 24 h. As a result, soluble polymers with a high yield
were obtained (19–85.2%), with high values of Mw = 10,500–23,400 and Mw/Mn = 2.7–4.3.
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Complexes containing PPh3 as a ligand were more active than complexes containing PBu3.
The authors explained this by the greater basicity and the associated σ-donor ability of
PBu3, which increases the density of the electron cloud of the nickel-carbon bond and
reduces the reactivity of this bond. The catalytic activity of the complex increased with an
increase in the degree of conjugation of the corresponding alkynyl ligand. According to the
results of 1H-NMR spectroscopy, the ratio Hol+ar/Heth = 8/1, characteristic of branched
poly-p-DEB, was obtained instead of 5/1 for a linear polymer. According to the authors, the
branched structure of poly-p-DEB was additionally confirmed by a higher polydispersity
index (Mw/Mn = 2.7–4.3) and smaller Mark–Houwink constants (value a = 0.26). The
presence of cis- or trans-isomers has not been discussed.

In [105], the features of the polymerization of p-DEB in pyridine in the presence of
(π–C5H5)(PPh3)Ni(C ≡ CC6H4C ≡ CH) are considered in more detail. The influence
of the concentration of monomer and catalyst, gas medium (N2, CO, H2, air, vacuum),
temperature (30–50 ◦C), additives (H2O, EtOH, DMSO, Et3N, hydroquinone, CCl4, Ph3N,),
polymerization time (1–18 h) was studied for yield (up to 86%), Mw (up to 55,700) and
Mw/Mn (1.42–8.21). It should be noted that the addition of CCl4 and Ph3N to the re-
action medium, as well as polymerization in the CO medium, completely blocked the
polymerization process. Carrying out the reaction in pyridine for 6 h at concentrations of
[Cat] = 0.01 mol/L and [M] = 1.5 mol/L led to the appearance of an insoluble fraction (at
45 ◦C) or even to a loss of solubility (at 50 ◦C). The trans-polymer had branched macro-
molecules, which was confirmed by the ratio Hol+ar/Heth = 8/1. The polymer had typical
C≡CH group signals in the IR spectra: the νC≡CH band at 3293 cm−1 and the νC≡C band
at 2106 cm−1.

The same soluble branched trans-poly-p-DEB synthesized using (π–C5H5)(PPh3)Ni
(C ≡ CC6H4C ≡ CH) according to the method [104,105] was used in [106] in the study
of its iodine doping. The doping mechanism of poly-p-DEB has been investigated using
UV-vis, FT-IR, FIR, Raman, XPS, and ESR spectroscopies. In the EPR spectra, a signal with a
g-factor close to the g value of the free electron was observed. The concentration of unpaired
spins slightly increased in the doped poly-p-DEB. However, it was less than expected: not
every ligand molecule formed one poly-p-DEB radical cation. The authors believed that
the formation of sufficiently stable I−5 particles occurred during doping. After doping with
iodine, the conductivity of poly-p-DEB increased exponentially depending on the doping
concentration by several orders of magnitude and reached a value of 10−4 S·cm−1 (Figure 21).
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The processes of curing soluble homopolymers of p-DEB, m-DEB, and their copolymer,
as well as the ongoing structural changes in the polymers, were compared using DSC and
FTIR analysis [107]. Poly-p-DEB had a higher curing rate than poly-m-DEB. The authors
reported that a “nickel catalyst” was used for polymerization, which, according to the authors,
contributed to the formation of a highly branched poly-p-DEB having cis-S-trans polyene
fragments and phenylene fragments due to the cyclotrimerization reaction. However, Figure 4
of this article shows only cis-polyene without aromatic fragments (Figure 22).
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The fact of the formation of cis-polyenes is surprising and of interest, since the widely used
and various Ni-containing catalysts Ni(C5H7O2)2 Ph3P, Ni(PPh3)2(C ≡ C–C6H4–C ≡ CH)2
and Ni(PPh3)2(C ≡ C–C6H5) provide the synthesis of trans-polyenes. The results of any
spectral studies of polymers are not given in the article.

In [108], this group of authors studied the rheological properties of arylacetylene prepoly-
mers, probably of the nature that were studied in the previous article [107]. The prepolymers
were a Newtonian liquid in the studied temperature range. The viscosity of the prepolymers
changed little during 90 min at 60–80 ◦C, but gradually increased at room temperature.

It was shown in [100] that in the presence of (π-C5H5)(PPh3)NiCl, polymerization
of p-DEB proceeded much worse than in the presence of a similar and described above
catalyst (π–C5H5)(PPh3)Ni(C ≡ CC6H4C ≡ CH). Under the same synthesis conditions
([cat] = 0.02 M; [M] = 1.5 M; DMSO; time: 24 h; temperature: 30 ◦C), the conversion was 6.5
and 42.8%, respectively. The branched π-conjugate polyene structure was indicated by the
ratio Hol+ar/Heth = 8/1 according to FT-IR and 1H-NMR spectroscopy.

Thus, the analysis of numerous publications devoted to the synthesis and use of the
Ni(PPh3)2(C ≡ C–C6H4–C ≡ CH)2 catalyst leads to the final conclusion that the use of this
catalyst leads to the synthesis of branched soluble trans-poly-p-DEB structure in Figure 10c.

The influence of ligands on the activity of palladium catalytic complexes was con-
sidered in [99,109]. In the presence of Pd(PPh3)2(C ≡ C–C6H4–C ≡ CH)2 and Pd(PPh3)2
(C ≡ C–CH2OH)2 complexes, the conversion of p-DEB was 79.9 and 58.2%, respectively,
at 60 ◦C for 18 h in pyridine. The synthesized poly-p-DEBs had values of Mw = 18,000 and
15,000, respectively, as well as wide Mw/Mn = 3.8 and 3.3. At the same time, the substi-
tution of the PPh3 ligand for PBu3 in these complexes led to a complete loss of activity of
both catalytic complexes (conversion of 0% even in 88 h). The authors associated this with
higher basicity and the interconnected donor capacity of PBu3, which increases the electron
density of the metal–carbon bond and reduces the reactivity of this bond. According to the
results of FT-IR, 1H, and 13C NMR spectroscopy, the polymers had a branched structure, as
in the case of similar nickel-based complexes.

Nonlinear optical properties were studied in [110] using soluble poly-p-DEB synthe-
sized using the Pd(PPh3)2(C ≡ C–C6H4–C ≡ CH)2 complex with a conversion of 80%,
probably in pyridine. Poly-p-DEB had Mw = 4670, Mw/Mn = 3.77 and had a heat resistance
of up to 420 ◦C. The authors indicated the trans-polyene structure of the branched polymer
in the figure but did not provide any evidence for this. Apparently, this statement is true,
and the structure of the polymer corresponds to the structure of the polymer synthesized
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as in [109]. The polymer was characterized by a nonlinear optical susceptibility of the third
order χ(3)=6.7·10−13 esu and a second-order hyperpolarizability having γ = 1.8·10−31 esu
in the non-resonant region.

The effect of phosphine and alkynyl ligands bound to metal atoms on the polymerization
of p-DEB was studied in [111] on the example of PdL2 (C≡CR) catalytic complexes, where
(L = PPh3, PBu3; R = p-C6H4C≡CH, C6H5, H, CH2OH, CH2OCOCH3, CH2OCOC6H5,
CH2OCOC6H4OH-o) resistant to air and moisture. During 15–18 h at a temperature of 60 ◦C,
the yield of soluble poly-p-DEB reached 56–84% in the presence of palladium complexes
containing the PPh3 ligand. Complexes containing the PBu3 ligand were inactive (polymer
yield 0%), as in the case of the Ni analog [109]. Complexes containing polar alkynyl ligands
were more active than corresponding complexes containing nonpolar ligands. The catalytic
activity of complexes containing nonpolar alkynyl ligands increased with an increase in the
degree of alkynyl ligand conjugation. The polymers had values of Mw = 1.1–1.8·104 and a
wide molecular mass distribution Mw/Mn = 2.6–3.8. The authors did not discuss the features
of the intramolecular structure of poly-p-DEB, but the polymer chains should be branched
since the synthesis was carried out in accordance with [109,110].

The catalytic activity of numerous transition metals of the VIII group in the form of
chloride and acetylide complexes ML2(C≡CC6H5)2 and ML2Cl2 (M = Co, Ni, Pd, and Pt;
L = PPh3 and PBu3) was compared in [109]. Polymerization of p-DEB was carried out in
a medium of various solvents (dioxane/toluene, HNEt2/toluene, DMSO, pyridine), at a
temperature of 25–60 ◦C for 3–24 h. Poly-p-DEB was synthesized with a conversion of
51–90%, Mw = 1.2–2.6·104 and Mw/Mn = 1.8–3.2. On the whole, the catalytic activity of
the complexes increased in the order Pt < Pd < Ni < Co. It was found that the complexes
Pt(PPh3)2Cl2, Pd(PBu3)2Cl2, Pt(PBu3)2Cl2, Pt(PPh3)2(C≡CC6H5)2, Pd(PBu3)2(C≡CC6H5)2,
Pt(PBu3)2(C≡CC6H5)2 had no catalytic activity. The structure was determined using IR,
1H, and 13C-NMR spectra. The ratio of olefin and aromatic protons to ethynyl protons was
Hol+ar/Heth = 8/1. This indicated the branched nature of polymer chains. The type of
transition metals did not affect the structure of trans-polyene branched polymers with side
groups p-C6H5C≡CH. In the example of the IR spectrum of poly-p-DEB synthesized in
the presence of Co(PBu3)2(C ≡ C–C6H5)2 given in the article, in addition to the band at
3293 cm−1 (νC≡CH), there was a band at 2106 cm−1 (νC≡C).

Insoluble cross-linked polycyclotrimers (Figure 23) were obtained with quantitative yield
by polycyclotrimerization of p-DEB catalyzed by Co2(CO)8 in anhydrous 1,4-dioxane in an
argon atmosphere. The reaction was carried out initially at room temperature with further
heating at 125 ◦C for 1 h [112]. In accordance with the above polymerization scheme (Figure 23),
C≡CH bonds disappeared. For this reason, the characteristic vibration band≡C–H at 3300 cm−1

disappeared for poly-p-DEB. The brown polymer showed no signs of decomposition up to
360 ◦C and had a BET surface of about 1000 m2g−1, and a pore size of≈0.83 nm.
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Homopolymerization of p-DEB was carried out on a complex catalyst [Co2(CO)6]2
·(PhC ≡ C–C ≡ C–Ph) in benzene, toluene, or N-MP with a conversion of 8–100% [113,114].
At the ratio [M]0/[I]0 = 62, insoluble, brown, paramagnetic polymers were formed between
5 and 120 min. At short polymerization times τ (up to 40 min in boiling benzene), a finely
dispersed gel appeared, which was suspended in the reaction system. With an increase in the
reaction time, an insoluble product was already formed in the reaction system. An interesting
observation was made: polymerization occurred at a high rate exclusively during the boiling
of the reaction mixture. If the reaction was carried out at a temperature below the boiling
point of the solvent, then the conversion Y was very small (Table 1). If the reaction mixture
was sealed into ampoules and heated to the boiling point of benzene, then boiling did not
occur due to temperature depression due to an increase in pressure in the ampoule. At the
same time, there was no polymerization. From these results, it followed that only boiling can
ensure the reaction on this catalyst, apparently due to any cavitation phenomena.

Table 1. Influence of polymerization conditions by DEB conversion.

Sample Solvent T, ◦C τ, min Y, %

PDEBC-2 Benzene 82 10 59
PDEBC-4 Toluene 110 10 72
PDEBC-5 Toluene 82 120 8

According to FT-IR, 1H and 13C-NMR spectra, poly-p-DEB was a polyene with lateral
ethynylphenyl substituents, some of which reacted to form a 3D homopolymer grid.

Extremely scarce and contradictory information is given in [115] on the synthesis
of insoluble poly-p-DEB in the presence of Nb catalysts. Probably, the polymerization
conditions were the same as for the polymerization of α,ω-alkadiynes studied in this article:
NbCl5 catalyst; [M]0/[I]0 = 50/1; solvents benzene (toluene); 55–65 ◦C; N2 atmosphere;
polymerization time was 5 h.

Very limited information on the polymerization of p-DEB in the presence of CpCo(CO)2
complexes under the action of UV radiation or TaCl5/Ph4Sn is available in [21]. The authors
reported that polymerization was fast. The resulting polymer products were completely
insoluble due to the presence of crosslinking reactions, which indicated the appearance of
branching directly during the polymerization process.

The polymerization of p-DEB in the presence of TaCl5/Ph4Sn is considered in more
detail in [116]. The reaction was carried out at an initial ratio of [M]0 = 0.6 mol L−1, [TaCl5]0
= 0.015 mol L−1, [Ph4Sn]0 = 0.015 mol L−1 in benzene at room temperature for 24 h. The
conversion rate was 97%. Solid yellow-orange polycyclotrimers did not dissolve in THF,
CH2Cl2, CHCl3, and benzene and had a crosslinked structure. The 13C-CP/MAS NMR
and IR spectra demonstrated an insignificant number of unreacted groups in the polymer
–C≡CH. Signals in the area of 70–85 ppm and bands at 3290 cm−1 (νC≡CH) and 2100 cm−1

(νC≡C) were recorded, respectively. The authors believed that the crosslinking of polymer
chains occurred due to the formation of 1,3,5- and 1,2,4-trisubstituted aromatic linkers
(Figure 24) since the formation of such trimers occurs during cyclotrimerization of acetylene
derivatives in the presence of TaCl5 [117,118].

This version was confirmed by the authors [116] by the pattern of substitution of aro-
matic rings from IR in the region of 600–900 cm−1, as well as in the region of 1660–2000 cm−1

(overtones and bands of combined tones). N2 isotherms demonstrated that adsorp-
tion/desorption hysteresis occurs already at low equilibrium pressures. The CO2 isotherms
demonstrated that the time allotted for measurement affects both the maximum adsorption
capacity and the hysteresis during desorption. For poly-p-DEB, the values of the micro-
pore volume VMI = 0.472 cm3 g−1, SBET = 1299 m2 g−1, the maximum sorption capacity
(the highest amounts of nitrogen and hydrogen adsorbed), for H2 and CO2, respectively,
a(H2)= 1.26%wt. (100 kPa, 77 ◦K) and a(CO2)= 10.8%wt. (100 kPa, 273 ◦K).
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In a very short publication [119], it was reported about a vigorous exothermic poly-
merization of p-DEB in the presence of PR3 (R = Me2NO, Et, Ph, Bu,) with the formation
of a black insoluble substance with a conversion of up to 90%. The authors noted that
the conversion was always high “at any Monomer/Phosphine ratios, even with catalytic
amounts of the phosphorus component”. Of the experimental conditions, the authors cited
only time (5–30 min) and temperature (90 ◦C or 130 ◦C in one experiment). In the presence
of dimethylbenzylamine, the conversion was only 30% during 60 min at 130 ◦C. The au-
thors suggested the zwitterionic nature of the initiation of the polymerization process, as it
occurs in the presence of amines and phosphines [120].

The preparation of poly-p-DEB by electroinitiated anionic polymerization in an inert
atmosphere at 10 ◦C in polar solvents was described in [121]. The current intensity was
changed in the range of 0–70 mA. The efficiency of electrolytes decreased in the series (C4H9)4
Cl > (CH3)4NClO4 > (C2H5)4NClO4. The soluble fraction conversion was up to 30%. It
was found that polymerization proceeded with good results in N,N-dimethylformamide
and especially in N,N-dimethylacetamide. Separated oligomers were obtained in methylene
chloride. In acetonitrile, the electrolyte decomposed at any current; the characteristic color of
the polymer did not appear, which indicated the absence of polymerization. According to the
authors, electropolymerization began with a direct reduction of the monomer on the electrode
surface. Then the reaction proceeded according to the classical anionic mechanism:

M + e− → M− 2M− → −M−M−

The authors pointed out that only one ethynyl group of the monomer participates in
the reaction, which, according to the authors, “indicates the presence of a large number
of unreacted triple bonds in accordance with absorption at 3250–3260 cm−1 in the IR
spectra”. However, they did not provide any direct evidence for the synthesis of a linear
polymer, including an assessment of the results using the 1H-NMR spectra they obtained.
Nevertheless, it is most probable that branched poly-p-DEB with a reduced number of
–C≡CH groups was obtained in this work, since at the end of the article, it is indicated
that “the second ethynyl group of the monomer molecule is transformed to a lesser extent,
obeying the same principle of reduction on the electrode surface”. This is confirmed by the
fact that an insoluble fraction is present in the synthesized polymers, which are sequentially
formed from branched polymer molecules.

In an early work [122], p-DEB was polymerized in CH3NH2 in ampoules ([DEB]/
[CH3NH2] = 1/5 mol) at 260 ◦C. In 1 or 5 h, an insoluble polymer was obtained with a
conversion rate of 87 and 94%, respectively. There are no spectral studies of polymers
in the article. Nevertheless, according to the authors, poly-p-DEB polyene chains have
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two types of side substituents (including phenylene fragments) in accordance with the
polymerization scheme (Figure 25).
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In our opinion, in this case, most likely, zwitter-ionic polymerization took place with
the initial formation of a linear polyene polymer. In this case, CH3NH2 amine played
the role of not only a solvent but also a classical zwitter-ion initiator. Subsequently, due
to the extremely high temperature, a regular crosslinking of the chains occurred due to
the opening of triple bonds in the –C≡CH groups. A similar process of pyrolysis of DEB
polymers was later described in numerous publications. As a result, the proposed structure
of an insoluble polymer having phenylene fragments seems implausible. Probably, such a
structure (Figure 25) is formally borrowed from the publications of these authors, who at
that time studied catalytic cyclotrimerizing complexes [(RO)3P]3–4·CoX (where R = AlkC≤6,
Hal = Cl, Br, I) in articles [67,74]. Most likely, the polymer structure can be represented by
the formula shown in Figure 15.

At [123] carried out soft chemical functionalization of the silicon surface using p-DEB in
the dark at room temperature. In this case, only individual p-DEB molecules are fixed on the
silicon surface without the formation of polymers or even oligomers. The subsequent click
reaction with azidomethylferrocene made it possible to create a ferrocenyl-modified coating.

2.5. Synthesis of Linear Unbranched Poly-DEB

Thus, as a rule, only branched and/or insoluble poly-p-DEB was synthesized by various
groups of researchers by direct polymerization of p-DEB. It seemed that direct chemical
(including electrochemical) synthesis of linear, unbranched poly-p-DEB by selective polymer-
ization of the p-DEB monomer at only one C≡C bond was impossible. For this reason, it may
not be possible to synthesize clusters along a one-dimensional poly-conjugated chain.

However, in 1981, we reported the synthesis by our research group of a linear soluble
polymer p-DEB in a solution of hexamethylphosphoramide (HMPT) in the presence of an
anionic initiator [124,125]. Later, in [33,126], the features of the intramolecular structure of
this polymer were examined in more detail using IR, 1H- and 13C-NMR spectroscopy, and
HPLC methods. The effect of p-DEB polymerization conditions on the yield and properties
of poly-p-DEB is shown in Table 2 [33].

It was found that the polymerization of p-DEB in HMPT produces a completely
soluble linear unbranched polymer. The ratio Hol+ar/Heth = 5/1 was found in its 1H-NMR
spectrum. This corresponded to the presence of one ethynyl group in each elementary link
of the macromolecule. The increase in polymerization time did not lead to a significant
increase in polymer yield. However, at the same time, the number of C=C bonds in the
polymer decreased (an increase in the ratio of Hol+ar/Heth = 5.3/1). Decreasing the solvent
polarity resulted in only weakly branched polymers. For polymers with a deficiency of
–C≡CH groups, chain transfer to the monomer occurred during polymerization (Figure 26),
which explained this deficiency.
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Table 2. Poly-DEB polymerization conditions, yield, and properties (initiator n-BuLi; 55 ◦C;
[M]0/[I]0 = 15; [M]0 = 0.7 mol/L) [33].

Solvent Reaction Time τ, min
PDEB Yield, %

Mn/n a Hol+ar/Heth
b

Soluble Fraction Insoluble Fraction

HMPA 3 47 - 1300/10.3 5/1
HMPA 20 48 - 1340/10.6 5/1
HMPA 40 49 - 1370/10.9 5.3/1
DMSO 1 5 - 1800/14 7/1
DMSO 20 58 23 3160/25 7/1
DMSO 60 63 26 3730/29.6 8/1

a The ratio of the number of average molecular weight to the number of links in the chain; b the ratio of the sum
of the integral intensities of the signals of aromatic and olefinic protons to the integral intensity of the signal of the
protons of ethynyl groups.
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Figure 26. The scheme of chain transfer reaction to p-DEB. Reprinted from Ref. [33].

In [31–33], the principal possibility of modifying synthesized poly-p-DEB was demon-
strated by the interaction of groups –C≡CH with reagents containing heteroatoms: Co2(CO)8,
B10H14, CuCl. As a result, poly-p-DEB derivatives having copper, boron, and cobalt in some
links were synthesized and analyzed (Figure 1). This approach demonstrated the fundamental
possibility of creating various clusters along the main polyene polymer chain. In addition,
synthesized anionic poly-p-DEB has been used to create and modify various materials.

Poly-p-DEB, as well as other phenyl-containing polyacetylenes, was used in the creation
of colored, dense, homogeneous, photo-resistive skin layers with a thickness of 0.1–10 microns
by vacuum spraying these polymers. The resulting layers had both negative and positive
photo-resistive properties, depending on the method of their processing [127,128]. It was
found that the short-term irradiation of the layers with UV light in a vacuum through a
photomask led to the appearance of a latent image due to the intermolecular crosslinking
of polymers in the irradiated areas. After the layers were heated in a vacuum at an optimal
temperature of 200–350 ◦C, the non-irradiated uncrosslinked part of the polymers evaporated.
As a result, a visible contrast image appeared. On the contrary, the long-term irradiation of the
sprayed films with UV light through a photomask in the air led to the disappearance of the
areas of the sprayed layers in the places that the light hit and to the appearance of a contrasting
positive image. This process was explained by the authors [127,128] by the formation of ozone
from air oxygen under the action of UV rays and the subsequent course of the oxidation
reaction of unsaturated bonds of sprayed polymers by ozone. In this case, in accordance with
the values of the rate constants of the interaction of ozone with organic compounds [129]
(Table 3), an ozone attack on the C=C bonds of polyene chains is most probable. Only this
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reaction of the destruction of polyene chromophores forming the sprayed layers will lead to
the appearance of a visible image.

In [33,130–132], a significant increase in the thermal oxidation stability of meshes
made of three industrial oligoesteracrylates with poly-p-DEB additives was demonstrated.
At the same time, the reduction in mass loss of crosslinked compositions with poly-p-
DEB was most significant at the highest temperatures. For example, the crosslinked
TGM–3 (CH2=C(CH3)–C(O)–(OCH2CH2)3–O–C(O)–C(CH3)=CH2) had 75% mass loss at
380 ◦C. The addition of 20% poly-p-DEB to the uncured resin made it possible to increase
the maximum temperature of loss of 75% of the mass at 560 ◦C. On the contrary, the
addition of polyphenylacetylene (a structural analog of poly-p-DEB, which does not have
groups –C≡CH) had no effect on the heat resistance of the crosslinked oligoesteracrylate.
Such compositions have also been investigated as anaerobic sealants in nut-bolt threaded
connections. After curing the compositions, the average torque was measured while
unscrewing the nut in one turn. For cured TGM-3 without additives, this value for operating
temperatures of 20, 200, and 300 ◦C was 3, 0.12, and 0 kg·m−1, respectively. The addition of
20% poly-p-DEB to the initial polyester increased the torque of the cured compositions to
the values of 3, 0.87, and 0.12 kg·m−1.

A significant increase in the oxygen resistance of industrial-oriented carbon fibers
modified with poly-p-DEB was found [33,133,134]. To do this, the fibers were impregnated
with a solution of a composition of poly-p-DEB (5%) and a carborane-containing polymer
(5%) in THF. The samples were dried in air and pyrolyzed in N2 medium at 500–2400 ◦C.
The smallest weight loss and decrease in oxygen uptake were observed for samples treated
at 1500 ◦C. The authors explained this effect by the formation of BN on the carbon fiber
surface as a result of the interaction of the nitrogen medium with the carborane core
decaying during heating, as well as the additional effect of migration into the fibers of
boron, which is an effective catalyst for graphitization.

In a patent published later [135], it was proposed to use carbenes (Figure 27a) of
various metals (Mo, W) for polymerization of p-DEB in a nitrogen atmosphere, wherein
M is tungsten and molybdenum, R5 is a C1–10 alkoxy group or a C6–10 aryl group, and R6
is a C1–10 alkyl group, a C3–10 cycloalkyl group, a C6–10 aryl group, or a hydrogen atom.
At the same time, it is proposed to use these catalysts for the polymerization of an almost
unlimited number of diethynylbenzenes of the general structure in Figure 27b, where R1,
R2, R3, and R4, each independently, is a hydrogen atom, C1–10 alkyl group, C6–10 cycloalkyl
group, aryl group or halogen atom, and the ethynyl group is either in the meta-position or
para-position to another ethynyl group. As a result, according to the authors, ref. [135] only
a linear polymer of the structure in Figure 27c should be obtained, although the section
“SUMMARY OF THE INVENTION” reports the occurrence of a gel with a conversion of
more than 50%.
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The synthesis of the DEB homopolymer using tungsten and molybdenum in specific
catalytic systems was described only in four patent examples. The authors produced a
polymer with a conversion rate of 4–6% and Mw = 3400–25,000. Only in the case of the use of
methoxyphenylcarbenpentacarbonyl tungsten, the conversion reached 40%. An integral 1H-
NMR spectrum was given for this polymer, on the basis of which the authors believe that the
polymer has a linear structure as in Figure 27c. However, our analysis of the given 1H-NMR
spectrum showed that there is a ratio of Hol+ar/Heth = 4.6/1 instead of 5/1 for a linear
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structure. The lack of aromatic protons indicated that the spectrum probably belonged
to a polymer synthesized from a diethynylbenzene derivative containing a substituent
(or substitutes) in the benzene ring instead of hydrogen. Interestingly, according to the
authors, this spectrum also characterized the structure of other p-DEB polymers, regardless
of the use of other types of catalysts. Moreover, this spectrum was attributed to poly-p-DEB
synthesized in the presence of n-Bu4Ti/Et3Al (1/4 mol) with a yield of 5% and having
Mw = 20,000. The polymerization of p-DEB in the presence of WCl6 and n-Bu4Ti/Et3Al
was characterized by a very small conversion and was accompanied by the formation of an
insoluble gel. These features indicate a high probability of branching in the polymer already
at the beginning of polymerization, followed by the formation of a polymer mesh. Indeed,
the formation of insoluble p-DEB polymers in the presence of Ziegler-Natta catalysts was
observed much earlier [66,68,69]. Thus, the sum of the above facts makes us question
the proposed linear structure of the polymers of p-DEB synthesized in [135]. Poly-p-
DEB polymers synthesized in [135] have been proposed to be used in composite resins in
combination with oligomers that contain two or more –C≡CH terminal groups [136].

Table 3. PolyDEB polymerization conditions, yield, and properties (catalyst CoCl2·2PBu3) [137].

Samples Time, h Yield, % Solubility in THF a ¯
Mw

¯
Mw/

¯
Mn Hol+ar/Heth

1 2 30.1 ~100 10,200 2.67 5/1
2 5 53.6 90 11,500 2.85 -
3 10 73.6 80 13,300 3.20 5.1/1
4 15 75.7 80 17,500 3.31 5.6/1

a At room temperature.

Much later, complexes based on cobalt salts were used in [137]. In the presence of a
freshly prepared complex of CoHal2·2PBu3 (Hal = Cl, Br; [M]/[Cat] = 100, mol) at 25 ◦C, in
Et2NH medium, during 10 h in an N2 atmosphere poly-p-DEB were obtained with yields
up to 73.1 and 66.5%, values Mw = 5100 and 5800, Mn = 2200 and 3900, Mw

Mn
= 2.32 and 1.49,

respectively, for the Cl- and Br-derivatives. Solubility in THF was 80%. This indicated
the emergence of 3D meshes formed from intermediate-branched polymers during poly-
merization. In the presence of CoHal2·2PPh3, only traces of the polymer were observed.
Polymerization did not take place in the presence of CoCl2·2H2O. It was shown that with
increasing polymerization time, the yield of poly-p-DEB (the catalyst CoCl2·2PBu3), its
values Mw and Mw/Mn increased, while the solubility of polymers in THF decreased. The
latter indicated the formation of a grid of intermediate-branched polymers formed during
polymerization. Indeed, in the 1H-NMR spectra of polymers with Mw = 10,000, 13,000,
and 18,000 (CoCl2·2PBu3; 2, 10, 15 h, respectively) the ratio of the signal intensities of
Hol+ar/Heth was 5/1, 5.1/1 and 5.6/1, respectively. At the beginning of polymerization,
poly-p-DEB had a linear structure, turning into a weakly branched structure at a time of up
to 10 h. A highly branched structure appeared at a time of more than 10 h. At the same
time, the solubility of the polymer deteriorated naturally due to an increase in the number
of cross-links (Table 3). That is, the initial linear structure gradually became branched with
polymerization time, similar to how it was previously observed in [33,124,125]. The results
of 1H-NMR spectroscopy presented by the authors [137] convincingly prove the possibility
of synthesizing linear non-branched poly-p-DEB in the presence of CoCl2·2PBu3 with a
short synthesis time. Although, at the same time, there is a need to explain the reason for
the existence of a large value of Mw/Mn in a sample that was synthesized for 2 h.

For this polymer, the third-order nonlinear optical properties of the samples in THF
and toluene were measured using the method of direct degenerate four-wave mixing
with or without a pump beam was studied in [138]. The pump beam was used to excite
molecules to excited states. The second-order molecular hyperpolarizability of the ground
state γg = 10−31 esu and the excited state γe = 10−29 esu. The authors believed that they
were working with a linear poly-p-DEB, which has one free ethynyl group in each link.
Unfortunately, they did not prove the intramolecular structure of the poly-p-DEB they
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proposed. They did not even indicate the duration of polymerization, which should
significantly affect the structure of poly-p-DEB in accordance with [137].

Using tetrahydrofuran solutions of poly-p-DEB as an example, the effects of phase
modulation during self-diffraction in nonlinear optical media were studied in [139]. Some
interesting results predicted by the theory have been observed. For example, the scattering
intensity of a sample with a lower concentration may be greater than that of a sample with
a higher concentration at a suitably high pumping intensity. The article does not specify a
catalyst. The structure of the polymer under study is not given, and there are no references
to the literary source according to which the polymer under study was synthesized. The
first two co-authors in this paper were also the first co-authors of an article published later
in 1998 [138] in which the CoCl2·2PBu3 complex was used as a catalyst. Probably, in the
article [139], a polymer synthesized using this complex was used.

2.6. Intramolecular Structure of Substituted Polyacetylenes

Thus, in poly-p-DEB molecules, there are reactive substitutes –PhC≡CH, which can
make it possible to modify the synthesized polymer with various heteroatoms. However,
the possibility of modification reactions depends on the steric accessibility of C≡C or
≡C–H bonds, and this, in turn, depends on the isomerism of any substituted polyacetylene,
including poly-p-DEB.

The isomeric composition of polyacetylenes is influenced by the type of polymerization
catalyst used. For example, the microstructure of a polymer obtained from HC≡C–C6H4–
C≡C–Si–i–Pr3 in the presence of [Rh(cod)(OCH3)]2 was attributed by the authors [140]
to the cis-transoid type (NMR: 94% cis) with “head-to-tail” attachments. When MoCl5
was used, the content of cis-structures decreased to 70% [141]. Thermal polymerization
in the 4-methoxyphenyl-ethynyl ketone mass resulted mainly in a polymer with a rare
type of attachment “head to head-tail to tail” (HH-TT). The traditional HT connection
was in smaller quantity [142]. In the case of electrically initiated polymerization [121],
the authors only pointed out the existence of both cis- and trans-conformations of double
bonds of the main polymer chain. A high content of cis-isomers was observed [143] in
fluorophenylacetylene polymers synthesized in the presence of [Rh(cod)(OCH3)]2. On
the contrary, the use of WOCl4·2Ph4Sn resulted in a mixture of cis-trans isomers. The use
of monophosphine-ligated Pd complexes [144] made it possible to obtain cis polymers of
disubstituted acetylenes.

The need to evaluate the intramolecular structure of substituted polyenes consists of
the correct interpretation of the results of studies of the properties of specific synthesized
poly-p-DEB polymers. For example, the authors [141] pointed out the discrepancy between
the content of cis-units and π-conjugation determined by NMR and UV spectroscopy in a
polymer obtained from HC≡CC6H4C≡C–Si–(i–Pr3). They explained this by the presence
of conjugation defects in macromolecules. One of the reasons could be the presence of
cis-transoid units attached according to the HH-TT principle. The second reason could be
the presence of saturation points in polymer chains, probably in the form of groups –CH2–.
However, using the example of polyphenylacetylene, the authors considered only a limited
number of possible structures (Figure 28), which in reality should be more.

Thus, the type of catalyst (initiator), as well as the type of monomer, affect the in-
tramolecular structure of substituted polyacetylenes. In turn, for synthesized poly-p-DEB,
it is necessary to have well-defined information about the conformation in order to interpret
the research results and to ensure the possibility of creating clusters along the polymer
chain. In this case, the properties of the cluster can be controlled by the quantities, size, and
nature of the heteroelement (modifier), introduced into the polymer. In the presence of real
steric accessibility of phenyl and ethynyl fragments, it is possible in principle to synthesize
various metal-containing polymers: macromolecular acetylenides, carboranes, and ethynyl-
and arencarbonyl π-complexes. Such modified polymer systems should be expected to
have qualitatively new properties. However, any kind of disturbances in the polymer chain
will lead to the disappearance of the possibility of a synthesis of such clusters. In addition,
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knowledge of the steric features of poly-p-DEB is also necessary to clarify the possibility of
conducting reactions of 1,3-dipolar cycloaddition or Sonogashira-Hagihara, as mentioned
above. Although it may not be necessary to carry out a modification reaction in each unit
of the polymer when creating some materials.
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Figure 28. Steric hindrances in PPA chains: planar projections of PPA chains formed in the metathesis
polymerization: (a) HT trans-transoid chain; (b) HH-TT trans-transoid chain; (c) HT cis-transoid chain;
(d) HH-TT cis-transoid chain. Reprinted with permission from [141]. Copyright 1999, American
Chemical Society.

2.7. Features of the Intramolecular Structure of Poly-p-DEB

In this section, all theoretically possible types of conformations and configurations of
poly-p-DEB (cis-trans isomers, head-to-tail attachments, or head-to-head attachments) are
considered. Linear poly-p-DEB molecules are rigid rods, for which the concept of segmental
mobility is not applicable. Therefore, there are severe restrictions on the steric availability
of phenyl and ethynyl fragments in the central units of macromolecules. At the same time,
the following groups and bonds are always accessible sterically in the terminal units of
the polymer: –Ph–, –C≡C–, ≡C–H. Selective disclosure of only one C=C bond in the DEB
should lead to the realization of the polyene structure of the main chain. Theoretically, it is
possible to form four types of cis- and trans-conformers with respect to the C=C bond, as
well as cis- or trans-isomers with respect to the C-C bond. In addition, different types of
attachment of HT or HH-TT units are possible for each conformer (Figure 29).
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In order to clarify the steric features of poly-p-DEB, we collected and studied its
Stuart-Briegleb molecular models. To obtain reliable results, the polymer chain was com-
posed of 10–12 monomeric links. Analysis of the collected Stuart-Briegleb models [32,33]
demonstrated the results:

• formation of cis-S-transoid in structure 8 is not possible;
• the trans-S-cisoid in structure 10b cannot be realized when connecting the head-head-
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Ti(acac)3 (where n = 1, 2, 3), Al(i–Bu)3/TiCl4, Al(i–Bu)3/Ti(acac)3 at 0 or 30 ◦C d for
1 or 4 h was studied in [145]. As a result, benzene-soluble brown heat-resistant poly-
mers with a conversion rate of 8–93% and with a molecular weight Mw = 2090–3500
were synthesized. In the case of AlEt3/TiCl4 and AlEt2Cl/TiCl4 complexes, an insoluble
fraction (8.3–56%) appeared simultaneously. The polymer synthesized in the presence
of Al(i–Bu)3/TiCl4 was completely insoluble. Using 1H-NMR and IR spectra, it was
found that there are 32–48% residual ethynyl groups in soluble polymers. Acetylacetonate
complexes Co(acac)3, Fe(acac)3, Ni(acac)2, Cr(acac)3 with AlEt3 proved to be ineffective
as catalysts. A small catalytic activity was demonstrated by AlEt3-VO(acac)2. Cationic
polymerization in the presence of TiCl4 made it possible to synthesize a polymer with a
molecular weight Mw = 2500 or 2900 in a time of 3–5 h; the conversion reached only 6.4%.
Cationic initiators BF3OEt2, AlCl3, and AlEtCl2 were less effective. Polymerization was
more effective in the presence of AlEt2Cl (19% in 10 min). The use of a radical initiator of
AIBN made it possible to synthesize poly-o-DEB with a conversion rate of only 2.4% in 7 h.
In this polymer, 70% of the second ethynyl group remained unreacted. The authors [145]
explained the appearance of solubility in hexane of polymers obtained with cationic and
radical initiators by different structures of these polymers. Taking into account the results
of spectral studies and the construction of molecular models, several types of fragments of
poly-o-DEB molecular chains were proposed (Figure 30).
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The thermal curing reaction of o-DEB was studied in [62]. The monomer was consid-
ered for comparison with other ethynylbenzenes (see the section liquid-phase polymerization
of p-DEB without the use of catalysts).
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In early works [146,147], the thermal polymerization of o-DEB and two of its deriva-
tives obtained by substituting acidic protons ≡CH for the Ph group (R=H, R’=Ph, and
R=R’=Ph) was studied. The o-DEB, when heated in a sealed test tube at 140 ◦C, formed
an insoluble brown polymer over a period of 24 h. The authors believed that poly(1,4-
naphthylene) was synthesized in accordance with the scheme in Figure 31 (R=R’=H).

Polymers 2023, 15, x FOR PEER REVIEW 35 of 54 
 

 

The thermal curing reaction of o-DEB was studied in [62]. The monomer was consid-
ered for comparison with other ethynylbenzenes (see the section liquid-phase polymeriza-
tion of p-DEB without the use of catalysts). 

In early works [146,147], the thermal polymerization of o-DEB and two of its deriva-
tives obtained by substituting acidic protons ≡CH for the Ph group (R=H, R’=Ph, and 
R=R’=Ph) was studied. The o-DEB, when heated in a sealed test tube at 140 °C, formed an 
insoluble brown polymer over a period of 24 h. The authors believed that poly(1,4-naph-
thylene) was synthesized in accordance with the scheme in Figure 31 (R=R’=H). 

 
Figure 31. Scheme of thermal polymerization of o-DEB in accordance with [146,147]. Reprinted 
with permission from [146,147]. Copyright 1997, Elsevier. 

However, the use of various physicochemical methods to study the intramolecular 
structure of the thermal polymer o-DEB and low molecular models (IR spectroscopy, 
MALDI-TOF MS, solid-state NMR spectroscopy, UV-vis reflectance spectroscopy, and py-
rolysis GC-MS data) allowed the authors [148] to review the results published earlier in 
[146,147]. In accordance with the results obtained, the authors believed that the polymer 
could not have a poly(1,4-naphthylene) structure. It has a more complex structure imple-
mented in accordance with the proposed Bergman cyclopolymerization scheme (Figure 
32). 

 
Figure 32. Scheme of thermal polymerization of o-DEB. Reprinted with permission [148]. Copy-
right 2003, American Chemical Society. 

The metathesis catalyst systems (MoCl , WCl , MoCl /(n − Bu) Sn, WCl6/(n−Bu)4Sn, WCl /EtAlCl , MoCl /EtAlCl ) proved to be very effective in the polymerization of o-DEB 
[149]. At [M0] = 0.5 or 1.0 mol/L, [M0]/[Cat] = 25 or 50 mol, at a temperature of 60 °C during 
24 h, the yield of dark red, insoluble in methanol polymers was 82–97%. Using the MoCl  
catalyst as an example, under the same experimental conditions, the authors studied the 
effect of the solvent on the polymer yield. Interestingly, there was a high polymer yield in 
chlorobenzene, chloroform, and toluene, but only traces of polymers were found in THF, 
1,4-dioxane, and DMF. The polymers had poor solubility in chloroform and THF. Appar-
ently, this can be explained by the presence of insoluble fractions in polymer samples. The 
authors reported that the I2-doped polymers had a conductivity at room temperature of 
about 10−6 S·cm−1. In their opinion, the polymers had a structure with indenylene frag-
ments (Figure 33). 

Figure 31. Scheme of thermal polymerization of o-DEB in accordance with [146,147]. Reprinted with
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However, the use of various physicochemical methods to study the intramolecu-
lar structure of the thermal polymer o-DEB and low molecular models (IR spectroscopy,
MALDI-TOF MS, solid-state NMR spectroscopy, UV-vis reflectance spectroscopy, and
pyrolysis GC-MS data) allowed the authors [148] to review the results published earlier
in [146,147]. In accordance with the results obtained, the authors believed that the polymer
could not have a poly(1,4-naphthylene) structure. It has a more complex structure imple-
mented in accordance with the proposed Bergman cyclopolymerization scheme (Figure 32).
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The metathesis catalyst systems (MoCl5, WCl6, MoCl5/(n–Bu)4Sn, WCl6/(n−Bu)4Sn,
WCl6/EtAlCl2, MoCl5/EtAlCl2) proved to be very effective in the polymerization of o-
DEB [149]. At [M0] = 0.5 or 1.0 mol/L, [M0]/[Cat] = 25 or 50 mol, at a temperature of 60 ◦C
during 24 h, the yield of dark red, insoluble in methanol polymers was 82–97%. Using the
MoCl5 catalyst as an example, under the same experimental conditions, the authors studied
the effect of the solvent on the polymer yield. Interestingly, there was a high polymer
yield in chlorobenzene, chloroform, and toluene, but only traces of polymers were found
in THF, 1,4-dioxane, and DMF. The polymers had poor solubility in chloroform and THF.
Apparently, this can be explained by the presence of insoluble fractions in polymer samples.
The authors reported that the I2-doped polymers had a conductivity at room temperature
of about 10−6 S·cm−1. In their opinion, the polymers had a structure with indenylene
fragments (Figure 33).
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When using a catalyst [Rh(nbd)Cl]2/Et3N (component ratio [Rh(nbd)Cl]2/Et3N = 1/10
or 1/4, [M0] = 0.5 mol/L, [M0]/[Cat] = 100 or 50 mol, time 24 h, atmosphere Ar, solvents
THF or toluene) at a temperature of 30–80 ◦C, yellowish-brown insoluble poly-o-DEBs were
synthesized and had an 18–73% yield [17]. These polymers had indene–type fragments and
contained 50–73% of unreacted –C≡C–H groups. On the other hand, the use of TaCl5/Ph4Sn
(component ratio TaCl5/Ph4Sn = 1/2, [M0] = 0.5 mol/L, [M0]/[Cat] = 25 or 50 mol, 24 h, Ar,
toluene, 80 ◦C) allowed to obtain an insoluble poly-o-DEB with a different structure with a
yield of 79–91%. It was a highly crosslinked mesh of tri–substituted benzene that did not
contain the –C≡C–H group. The use of various methods for studying (1H and 13C-NMR, IR-,
UV–vis spectroscopy, GPC, TGA, pyrolysis GC-MS) allowed the authors [17] to propose two
different structures of synthesized polymers, respectively (Figure 34).
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The review [150] describes the cyclopolymerization processes of various bis-o-diynylarenes,
including some of the above-discussed articles on o-DEB. Examples of the use of bis-o-diynylarenes
polymers are given. Thus, o-DEB polymers had a complex intramolecular structure, including
indenylene fragments, and were insoluble in the overwhelming majority of cases.

4. Synthesis, Structural Features and Properties of m-Diethynylbenzene Polymers

As early as 1988, it was discovered that the distillation of m-DEB at high temperatures
provides an exothermic reaction and leads to an explosion [151].

Apparently, in [152] there is the first report on the targeted homopolymerization of
m-DEB. As a result, an insoluble polymer was obtained, but the authors did not specify a
catalyst and did not provide any polymerization conditions. A probable catalyst could be a
catalyst from the group [(RO)3P]n·CoHal, (where R = AlkC≤6, Hal = Cl, Br, I), since this group
of authors had previously synthesized other polymers using such catalysts [66,67,74,75].

In [12], it was proposed to use m-DEB, as well as other mono- and disubstituted
acetylene-substituted aromatic compounds (1-ethynylpyrene, 1-ethynylnaphthalene, 3-
ethynylphenanthrene, 4,4′-diethynyldiphenylmethane, and 4,4′-diethynylbiphenyl), for
the synthesis of matrix resins necessary for the manufacture of carbon/carbon composites.
After curing and pyrolysis, the char yield reached values up to 95%.

The authors of the patent [135] proposed polymerizing m-DEB using as a catalyst a
substance obtained by the interaction of WCl6 with phenylacetylene in a nitrogen medium
in a toluene solution for 30 min at room temperature. The subsequent polymerization reac-
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tion of m-DEB (nitrogen, toluene, 30 ◦C, 3 h) gave a polymer with Mw = 23,000 according
to GPC data. The linear structure of polymer chains followed from the 1H-NMR spectrum
(Hol+ar/Heth = 5/1). However, this fact is doubtful, since, according to the authors [135],
p-DEB polymers synthesized using five different catalysts have the same spectrum. In
addition, polymerization of p-DEB in the presence of WCl6 gave the gel after 30 min. This
indicated that the appearance of branching in the still soluble polymer chains was already
at the early stages of the process due to the reaction of free groups –C≡C–H. In turn, this
should have led to an increase in the Hol+ar/Heth value.

The Ni(acac)2·2Ph3P catalyst was used in [153] for the polymerization of m-DEB in
methyl isobutyl ketone at 85 ◦C. The polymer had Mn = 2490 and contained 10.1%wt. of
terminal acetylene groups. The intramolecular structure was not discussed.

Later articles [154–156] discussed the problems of using polyarylacetylene (PAA) resin
in various carbon-carbon composites. The authors illustrated their considerations with the
example of a PAA resin synthesized by the polycyclotrimerization of m-DEB in accordance
with the scheme (see Figure 35). The authors report that the Ni content in the cured resin
was less than 0.1%wt. A specific nickel catalyst was not shown; however, the authors
probably had in mind the frequently used Ni(acac)2·2Ph3P as a catalytic system.
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It should be noted that for the production of PAA resin, various authors have proposed
using various combinations of isomers of diethynylbenzene, phenylacetylene, and other
mono- and disubstituted aromatic substances [23,157–161].

The process of thermal curing of resins with arylacetylene terminal groups was studied
in [62]. In this article, the initial monomer m-DEB was considered as a comparison with
other ethynyl-containing benzenes (see the section liquid-phase polymerization of p-DEB
without the use of catalysts).

The article [162] was devoted to the study of the features of the polymerization
of m-DEB from the point of view of optimal preparation of composite materials based
on m-DEB. The article noted that the thermal and catalytic polymerization of m-DEB
(temperature, time, and catalyst are not shown) took place with a large heat release and led
to the formation of insoluble homopolymers. The authors recommended the preliminary
preparation of a prepolymer, the subsequent curing of which occurs with less heat release
and the formation of an insoluble black polymer. The enthalpy of polymerization of m-
DEB into a crosslinked polymer decreased from ∆H = 2013 J/g to 452.6 J/g when using
a prepolymer. The structure was determined using IR spectroscopy (tablets in KBr). It is
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believed that part of the ethynyl groups forms substituted benzene; the other part gives a
grid. As a result of the reaction, phenylene, and cis-polyene fragments are formed in the
polymer structure; no trans-structure is formed.

The results of a comparative study of the thermal curing process of soluble homopoly-
mers m-DEB, p-DEB, and their copolymer by DSC and FTIR analysis are presented by this
group of authors in [107,108]. It was found that the curing activation energy is higher in
poly-m-DEB than in poly-p-DEB. The polymers were synthesized in methyl ethyl ketone
using a “nickel catalyst” (not specifically noted), which, according to the authors, provides
trimerization. However, the benzene fragments were not depicted in the figure given in the
article (Figure 22). It was reported that the absorption peaks of acetylene groups decreased
significantly during curing (200 ◦C, 2 h) and disappeared at a higher temperature (300 ◦C,
2 h). At the same time, peaks appeared, indicating the appearance of cis- structures.

In [21,163], the synthesis of the insoluble polymer m-DEB was reported, but no specific
catalyst and polymerization conditions were specified. Probably, the reaction was carried
out in toluene in an atmosphere of dry nitrogen at room temperature or at 60 ◦C using
some kind of catalyst used by the authors in this article: TaX5–Ph4Sn, (X = Cl, Br); TaBr5,
CpCo(CO)2 − hν. The authors believe that there was a process of polycyclotrimerization.

Notably, [152] reported the synthesis of insoluble poly-m-DEB. In accordance with
the IR spectra of the polymer, 1,2,4- and 1,3,5-substituted benzenes and unreacted –C≡CH
groups are present in its structure. Unfortunately, the authors did not report on the
polymerization conditions and the type of catalyst used.

Polymerization of m-DEB in the presence of [Rh(cod)ac] and [Rh(nbd)acac]
([M]0 = 0.6 mol L−1, [Cat]0 = 0.006 mol L−1, CH2Cl2, room temperature, 180 min,) gave in
2–3 min insoluble brown microporous polymers with yields of 90 and 83%, respectively [14].
For these polymers, the values SBET = 498 and 653 m2 g−1, the volume of micropores 0.151
and 0.206 cm3 g−1, as well as the values of adsorbed hydrogen a(H2, 750torr) = 49.5 and
66.9 cm3 g−1, respectively, were obtained, which indicated a slightly lower microporosity
of poly-m-DEB compared to poly-p-DEB. The polymer structure was determined using the
methods of SEC and 13C CP/MAS NMR spectroscopy (Figure 14).

The original synthesis of π-conjugated micro/macroporous polyacetylene foams based
on m-DEB is described in [16]. Initially, the π-conjugated foams were synthesized in the
presence of the [Rh(nbd)acac] complex using deionized water and surfactant Span-80. As a
result, with a yield of up to 66%, a solid brittle brown-red un-swelling (THF, CH2Cl2, CHCl3,
benzene) polymer was obtained, representing polyene main chains that are crosslinked
with 1,3-phenylene linkers (Figure 36).

The macropores walls were formed by microporous poly-m-DEB. The foam of the
micro/microporous polymer contained about 0.6 unreacted terminal ethynyl group per one
monomeric unit of the polymer skeleton. In the second stage, the foams were chemically
modified using alkyne-azide click reaction between the lateral unreacted ethynyl groups
of the polymer skeleton and D-glucose or cholesterol azides (Figures 36 and 37), followed
by thermal cross-linking at 280 ◦C. The SBET value of the polymer increased from 110 to
380 m2 g−1 for the solid phase before and after hyperlinking, respectively.

According to the authors [16] micro/macroporous polyacetylene foams have great
potential for expanding the application areas of this class of porous polymers.

The review [9] considers publications devoted to the use of rhodium catalysts in
the polymerization of acetylene compounds, including for the polymerization of all DEB
isomers. These publications are discussed above in more detail.
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The original experiment is described in [13]. The authors conducted a one-pot self-
encapsulation synthesis of a heterogeneous Pd catalyst based on m-DEB. According to the
authors, the most effective ligand is Ph3P. The reaction consisted of mixing in one vial on the
N2 medium m-DEB with the components of the catalyst Pd(OAc)2/Ph3P/methanesulfonic
acid with the ratio Pd/PPh3/DEB = 1/6/10. During the synthesis, the formation of
crosslinked polymer chains and encapsulation of the Pd catalyst occurred simultaneously
with the formation of a heterogeneous Pd catalyst in the form of a black powder of an
average size of 0.4 mm (Figure 38). Using XPS, it was found that encapsulated Pd species in
the synthesized complex were present mainly in the form of Pd(0). The catalytic efficiency
of the catalyst was evaluated in the air in the Suzuki-Miyaura, Stille, allylic arylation, and
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Mizoroki–Heck reactions. The high versatility and high catalytic activity of the Pd catalyst
were found even with difficult reagents such as aryl chlorides and heteroaryl halogenides.
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A palladium-based catalytic system (Pd(OAc)2/α,α-bis(di-t-butylphosphino)-o- xy-
lene/methanesulfonic acid) was used to polymerize m-DEB [164] in a nitrogen atmosphere
into the Schlenk flask for 18 h. Ultrasound was used to homogenize the system. The
synthesized homo- and copolymers of m-DEB were used for their carbonization by heating
to 800 ◦C in an N2 atmosphere. Poly-m-DEB, like other DEB monomers, had a very high
carbonization yield of 83%, if carbonization was carried out without any carbonizing ad-
ditives. For copolymers, the carbonization yields naturally decreased with a decrease in
the amount of m-DEB in the copolymer. These carbonizates had a small surface area and
low porosity, so their carbonization was carried out in the presence of KOH as a chemical
activation agent. As a result, more microporous coals were obtained, in which the SBET
value increased from 450 to 784 m2 g−1. The authors believe that activated carbons are
highly microporous with the presence of macropores and some mesopores having a narrow
slit-like shape. Electrochemical results have shown excellent characteristics (high specific
capacity, good stability, and low equivalent series resistance) of activated carbons. For
example, the specific capacitance increased by more than 5 times from 35 to 181 F g−1 in
the case of scanning at a speed of 25 mV s−1 with cyclic voltammetry. However, the best
results were obtained for m-DEB copolymers with phenylacetylene. The results obtained
allowed the authors [164] to recommend the use of such carbonisates as electrode materials
in supercapacitors, as well also as sorbents for H2 storage and CO2 adsorption.

Using the SBA-15 template and m-DEB, a series of ordered mesoporous carbon materials
with relatively high thermal stability was obtained [165]. The synthesis was carried out in
accordance with the scheme shown in Figure 39. Notably, m-Diethylbenzene played the
role of a carbon precursor. The samples differed in the final pyrolysis temperatures during
synthesis (800 ◦C, 1000 ◦C, and 1200 ◦C). The synthesized carbon materials had a very narrow
pore size distribution with a center of 4.3, 4.2, and 3.8 nm, respectively. In the case of the
lowest carbonation temperature of the sample, the maximum values of the total pore volume
and specific surface area (1.20 cm3·g−1 and 1044 m2·g−1, respectively) were obtained.
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The paper [166] reports the polymerization of m-DEB using iCVD, which opens up
possibilities for using polymers as dielectric insulators in electronic applications that cannot
be combined with solvent-based materials. Moreover, iCVD is a solvent-free manufacturing
method that allows poly-m-DEB layers to be deposited at a speed of 12 nm/min. The
resulting polymers have a high molecular weight with a broad distribution (1000–25,000)
and a well-defined Fourier transform infrared spectrum. The presence of a small peak at
2105 cm−1 and a monomer peak in the gel permeation chromatogram (GPC) suggests that
some monomer is included in the layers.

Thus, only the use of the WCl6/phenylacetylene catalytic system can allow the synthesis
of a soluble linear polymer m-DEB. However, in our opinion, this requires careful verification.

For a quick search for various methods of synthesis of DEB polymers, Table S1 in
supplementary material summarizes information on synthesis methods and structural
features of the resulting products.

5. Polymers of Polynuclear Diethynylarenes

In this section, diethynylarenes of the general formula HC≡C–R–C≡CH with various
bridges R between ethynyl groups are considered. The considered monomers have no
substituents in the aromatic fragments present in the bridges of R.

A new method for the synthesis of polyphenylenes using a catalytic reaction of poly-
tricyclopolymerization of diacetylene-containing monomers was proposed in 1970 by the
authors [66,67]. The HC≡C–Ar–C≡CH diethynylarenes’ structures were considered as
monomers (Ar = –Ph–Ph–, –Ph–Ph–Ph–, –Ph–X–Ph– where X = O, S). It is proposed to use
a catalytic system complex of the general formula [(RO)3P]n·CoHal, (where R = AlkC≤6,
n = 1–4, Hal = Cl, Br, I). Based on the IR spectra of polymers, the same polymerization
scheme for these monomers was proposed as for p-DEB (scheme in Figure 8), with the
formation of crosslinked phenylene-containing polymers.

An insoluble polymer of 4,4′-diethynyldiphenyl (DEDP) was synthesized with a 57%
conversion in the presence of the i-Bu3Al-TiCl4 complex [167]. According to the IR spectrum,
the ratio of ethynyl groups to phenyl groups in the polymer was 1/10, and fragments of 1,2,4-
and 1,3,5-substituted benzene were present in the structure of polymer chains.

DEDP polymerization was carried out in [18] in various ways. Polymerization
in the presence of [Rh(cod)Cl]2 and [Rh(cod)im] (where cod = cis,cis-cyclo-octadiene;
im = imidazole) yielded 100% and 90% insoluble brown polymers in 5 min and 12 h, respec-
tively. Polymerization in the presence of Pd(PPh3)2Cl2] and [Pd(PPh3]2(DEDP)2] yielded
only 85% and 50% of insoluble polymers in 20 and 24 h, respectively. Elemental analysis
revealed a significant oxygen content in the polymers. There were uncertainties in the
identification of signals in the IR spectra and XPS belonging to oxygen-containing groups.
The authors suggested that the presence of oxygen may be associated with adsorbed water.
In the IR spectra of polymers synthesized in the presence of complexes, bands at 3300
and 2100 cm−1 were observed, indicating the presence of groups –C≡CH. According to
the authors, this is due to the presence of –p–Ph–p–Ph–C≡CH side groups in a rarely
stitched polyDEDP. Heterogeneous doping of polymers was carried out by joint suspen-
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sion of polyDEDP with FeCl3 or I2 (1/1 wt.) in THF, followed by drying and pressing of
tablets. Doping made it possible to reduce the resistance of the polymer from ≈1012 Ω
to R ≈ 6·105 Ω and R ≈ 3·104 Ω for FeCl3 and I2, respectively. It was found that Pt(II)
complexes had practically no catalytic effect on the polymerization of the monomer.

Polymerization of DEDP [112] in the presence of Co2(CO)8 in anhydrous 1,4-dioxane
under Ar at 125 ◦C for 1 h resulted in an insoluble polymer with 100% conversion. The
absence of the C≡C–H bond vibrations at 3300 cm−1 indicated the complete depletion
of ethynyl groups in the cyclopolymerization reaction (Figure 23). The polymer did not
decompose in the air up to 360 ◦C but rather absorbed 0.22 wt. % H2 (60 kbar), had a total
pore volume of 0.712 and a micropore volume of 0.341 cm3 g−1.

Boiling DEDP in a mixture of chloroform/paraffin oil (volume ratio 1/2) resulted in
an insoluble brown polymer with a conversion rate of 90% in 2 h [18]. The IR spectrum
showed the absence of bands at 3300 and 2100 cm−1 group –C≡CH, which indicated the
implementation of a frequently crosslinked mesh in the polymer. Heterogeneous doping of
the thermal polymer reduced the resistance of the polymer from R ≈ 1012 Ω to R ≈ 6·104 Ω.

DEDP was proposed along with other diethynylarilenes to create potential thermoset-
ting prepolymers [12] necessary for the creation of carbon/carbon composite materials.

A unique experiment to create a 2D mesh on an Au (111) substrate using DEDP is
described in [19]. To do this, the DEDP molecules were thermally evaporated at 30 ◦C
onto a purified gold substrate. Polymerization of alkynes was provided by subsequent
annealing at 100 ◦C. The samples were examined using a scanning tunneling microscope
with submolecular resolution and with using the density functional theory calculation. It
was found that DEDP molecules form 2D networks on the Au (111) substrate due to a
two-stage reaction [2+2+2]-cyclization of diyne on the surface of Au (111). According to
the authors, they offer a way to create monatomic two-dimensional conjugate networks,
the structure of which can be similar to graphene.

It was found that the homopolymerization of 2,5-diethynylthiophene creates var-
ious conjugated microporous polymers in two ways (Figure 40) [20]. The use of the
[Rh(nbd)acac] complex in CH2Cl2 provided the formation of an insoluble non-swelling
poly-conjugated polymer with a conversion of 100% in 1 h at 75 ◦C. At the same time, the
main polymer chains were crosslinked by thiophene-2,5-diyl bridges (Figure 40A).
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By changing the polymerization conditions (time and temperature), the authors [20]
regulated the conversion of ethynyl groups in poly-conjugated networks and, at the same
time, the degree of crosslinking of networks, which was proved by 13C CP/MAS NMR
spectra. The use of the Co2(CO)8 complex in 1,4-dioxane provided polycyclotrimerization
of the monomer with a conversion of 100% for 1 h at 120 ◦C (Figure 40B). The 13C CP/MAS
NMR spectrum of the crosslinked polycyclotrimer revealed an almost quantitative transfor-
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mation of the ethynyl groups of 2,5-diethynylthiophene during polycyclotrimerization with
the formation of nodes of 1,2,4- and 1,3,5-substituted benzenes. The polymers synthesized
using both complexes had SET values from 559 to 836 m2·g−1, micropore volumes from 0.6
to 0.23 cm3 g−1, and total pore volumes from 0.5 to 1.1 cm3 g−1.

The appearance of color in light even at room temperature in crystals of 1,4-diethyl
naphthalene (1,4-DEN) and 1,4-diethyl-2,3-dichloronaphthalene [168] prompted the authors
of [169,170] to investigate this process. It was found that the photo polymerization of 1,4-
diethyl-2,3-dichloro-naphthalene proceeded slower compared to 1,4-DEN. The photopolymer-
ization process was studied in sufficient detail on the example of 1,4-diethynylnaphthalene,
for which several crystalline modifications of α, β, and γ with different reactivity were ob-
tained. For the production of large quantities of polymers (poly-1,4-DEN), a suspension of the
monomer and its deuterated derivatives was previously created in water or in mixtures of
methanol and water. The suspensions were irradiated with UV light and then a synthesized
soluble polymer with a conversion of 5–7% and a molecular weight of 9000 was extracted. It
has been shown that the photoreactivity of 1,4-DEN is not due to the specific optimal packing
of the monomer in crystals, as is the case with solid-phase topochemical polymerization of
internal diacetylenes [2]. During storage, poly-1,4-DEN became insoluble. IR, resonant Raman,
1H NMR, and ESR spectra of polymers, including deuterated ones, were analyzed, and X-ray
analysis was performed. The authors reported that “the ratios of reacted and unreacted
ethynyl groups are close to one”. This allowed the authors to assert that “only one acetylene
group per monomer participates in the polymerization reaction, and there is practically no
crosslinking” [169,170]. The conclusions made by the authors admit the presence of branching
in polyene polymer chains. Such uncertainty in the interpretation of the structure is indirectly
confirmed by the fact that the Hol+ar/Heth proton ratios were not given.

Photopolymerization of the 1,4-DEN solution was carried out in cyclohexane under Ar
with the formation of polymers and dimers [170]. The measurement of the molar absorption
coefficient of the polymer proved the solubility of the polymer. Since the IR spectrum of the
polymer was similar to the spectrum of the polymer synthesized by irradiation of crystals,
this indicated a weak branching of polymer chains. The authors of [170] also reported the
fact of polymer synthesis by the UV irradiation of a 1,4-diethyl naphthalene melt.

Irradiation of 1,4-DEN crystal samples by UV light (>330 nm) at 77 ◦K had no effect,
although a radical polymerization reaction was initiated. After heating the samples to −15 ◦C
without further irradiation, their color changed in 30 s from white to bright yellow and then
to dark red, which was explained by the appearance of longer polyconjoined chains [170].

Thermal polymerization of 1,4-diethyl-2,3-dichloro-naphthalene was more effective
than 1,4-DEN (Ar medium, thermostat). The polymers were insoluble, but a slight weaken-
ing of the band at 3300 cm−1 indicated a small number of crosslinking due to the opening
of the lateral groups –C≡CH [170].

1,8-diethinyl naphthalene (1,8-DEN) was polymerized using various transition metal-
based catalysts with a conversion of 56–97% at 70 ◦C in 24 h [171]. In the polymer (poly-1,8-
DEN) synthesized in the presence of MoCl5 or WCl6, the soluble part was only 20%. Given
the existence of an insoluble fraction, there is a high probability of branching even in soluble
polymer molecules. The polymer obtained in the presence of PdCl2 is readily soluble in
CHCl3, THF, and DMSO and had Mn = 2.8·103. The solubility of polymers synthesized in the
presence of MoCl5/EtAlCl2 (1/4 mol/mol) and WCl6/(n-Bu)4Sn (1/4 mol/mol) has not been
reported. In the 1H-NMR spectrum of poly-1,8-DEN, there was no ethynyl proton singlet.
In the IR spectrum, there were no vibrations with frequencies of 3287 and 2113 cm−1 that
were responsible for fluctuations in the C≡C–H and –C≡C– bonds of ethynyl groups. This
allowed the authors to propose a probable polymerization scheme due to the disclosure of
groups –C≡C–H without taking into account possible ramifications and without specifying
the reasons for the insolubility of some of the synthesized polymers (Figure 41).
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Unfortunately, the authors did not indicate which catalysts were used to synthesize
polymers, the spectra of which were studied and shown in the figures.

Hyperbranched crosslinked polycyclotrimers of 2,6-diethinyl naphthalene (2,6-DEN)
and 2,6-diethinylanthracene (2,6-DEA) were synthesized in the presence of the TaCl5/Ph4Sn
complex [116]. The reaction was carried out at benzene at room temperature for 24 h. As a
result, insoluble orange poly-2,6-DEN and poly-2,6-DEA were obtained with a conversion
rate of 81 and 74%, respectively. 13C-CP/MAS NMR and IR spectra demonstrated the
presence in the polymer structure of a certain number of untransformed groups –C≡C–H
and crosslinking linkers in the form of 1,2,4- or 1,3,5-substituted benzene, as in the case of
poly-p-DEB (Figure 24). The sorption capacity of these polymers was compared with the
sorption capacity of poly-p-DEB. The SBET values were 1299, 418, and 9 m2 g−1 respectively
for poly-n-DEB, poly-2,6-DEN, and poly-2,6-DEA. Naturally, the adsorption capacity for N2
decreased in the same order for these polymers in the range 51.0 > 6.6 > 0.75 (mmol N2)·g−1.

Notably, 4,4′-Diethynyldiphenylmethane has been proposed along with other di-
ethynylenes to create potential thermosetting prepolymers [12] necessary for the creation
of carbon/carbon composite materials.

A unique result was obtained in [172]. In order to reduce the fragility of the ma-
trix and increase the adhesion of the matrix to the fibers, the authors proposed a 4,4′-
diethynyldiphenyloxide monomer having a hinged oxygen atom as the basis of the matrix.
Thermal polymerization of the monomer in the melt began at a temperature of 150 ◦C.
A series of samples obtained in the range of increasing temperatures of 180–300 ◦C was
studied using a number of physicochemical NMR, IR, and DSC methods. This allowed
the authors to detect a consistent decrease in the number of acetylene protons in polymers
with a simultaneous increase in the number of vinyl hydrogen atoms. At the same time, the
number of aromatic atoms did not increase, which indicated the absence of cyclopolymer-
ization. According to the authors, the polymer structure is a substituted cis-polyene with a
possible number of branches –[C=C–(Ph–O–Ph–C≡CH)]n–. This result is the only example
of selective disclosure of only one bond –C≡C– during the thermal polymerization of a
diethynyl monomer.

A [(C2H5O)3P]4·CoBr catalyst has been proposed to obtain branched crosslinked
polyphenylene-type polymers using a polycyclotrimerization reaction of various diethyny-
larylene monomers [66]. However, only one example describes the polymerization of
4,4′-diethynyldiphenyloxide at a temperature of 75–78 ◦C for 6 h. An insoluble polymer
was obtained with a yield of 10%.

The use of the i-Bu3Al-TiCl4 complex as a catalyst made it possible to synthesize, with
a yield of 70%, only an insoluble polymer of 4,4′-diethynyldiphenyloxide having (according
to IR spectroscopy results) 1,2,4- and 1,3,5-substituted benzene in the structure [167]. At
the same time, the ratio of ethynyl groups to phenyl groups was 1/30.

In [173], another organosilicon spacer was proposed to reduce the overall stiffness of
a polymer with the general formula HC≡C–Ph–Si(CnH2n+1)2–Ph–C≡CH (n = 2, 4, 6). It
is very interesting that the authors managed to synthesize a series of hyperbranched but
soluble polysilylenephenylenes (PSP) using a TaBr5 catalyst. It was found that polymer-
ization took place only in the toluene medium and was absent in DO, THF, CH2Cl2, and
hexane. The effect of the Ph4Sn co-catalyst, the concentration of the catalyst and monomer,
the time and temperature of polymerization on the conversion, and the molecular weight
of the polymer were studied. In particular, it was possible to synthesize PSP with a con-
version of 100%, Mw = 19,700 and Mw/Mn = 2.5 under the following synthesis conditions:
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[Cat] = 10 mM, [M]0 = 0.1 M, N2 medium, room temperature, and 24 h. In the IR spectra of
polymers, an almost complete disappearance of the vibrational frequencies of the ≡C–H
and C≡CH bonds was detected with a simultaneous increase in the absorption band of the
aromatic skeleton C=C at 1594 cm−1. This proved the formation of a new number of 1,3,5-
and 1,2,4-substituted benzene rings. The combined use of 1H and 13C NMR, IR spectra, and
computer modeling allowed the authors to propose the following PSP structure (Figure 42).
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Figure 42. Scheme of polycyclotrimerization of sylilenediyne. Reprinted with permission from [173].
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The authors of [173] demonstrated that PSPs are easily photocrosslinked, thereby
producing good-resolution fluorescent photographic images.

A series of four monomers with the general formula HC≡C–R–C≡CH (R=–Ph–
C(Ph)=C(Ph)–Ph–; –Ph–O–(CH2)6–O–Ph–; –CH2–O–Ph–CH2–Ph–O–CH2–; –C(O)–Ph–O–
(CH2)6–O–Ph–C(O)–) was used to create soluble, regioregular hyperbranched polymers [174].
Polycyclotrimerization of monomers was carried out using the catalyst InCl3/2-iodophenol
in chlorobenzene at 130 ◦C under N2. At concentrations [M]0= 0.15 M, [In] = 0.011 or
0.015 M, [2-iodophenol] = 0.10 M, soluble polymers with a conversion of 50.0–94.1%,
Mw = 5400–13,500 and a Mw/Mn = 1.54–2.68 were synthesized in 2 h. In the IR spectra of
all polymers, there were no absorption bands at 3305 and 2102 cm−1, due to the stretch-
ing of ≡CH and C≡C, respectively, and characteristic of the initial monomers. The 1H-
and 13C-NMR spectra of the polymers showed that only a derivative of 1,3,5-regioregular
benzene is formed (Figure 43).
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For a quick search for various methods of synthesis of polynuclear diethynylarenes
polymers, Table S2 in supplementary material summarizes information on synthesis meth-
ods and structural features of the resulting products.

6. Conclusions

Homopolymerization of bifunctional diethynylarenes can proceed both along one and
both bonds –C≡C- with the formation of polymers of three different types of intramolecular
structure: linear, branched, and crosslinked. The type of intramolecular structure formed is
influenced by the polymerization conditions.

Solid-phase polymerization of crystalline diethynylarenes leads to polymers of various
molecular weights, including insoluble ones, with virtually no established intramolecular structure.

Gas-phase polymerization and liquid-phase polymerization of diethynylarenes with-
out the use of initiators lead to insoluble, highly crosslinked polymers. In a number of
these papers, the authors propose a possible (most likely) structure.

The use of various initiating systems in the case of liquid-phase polymerization of
diethynylarenes leads, as a rule, to the synthesis of insoluble and crosslinked products, as
well as to the synthesis of soluble and branched polymers. In this case, the type of initiating
system significantly affects the intramolecular structure of the resulting polymers. One
group of catalysts provides a synthesis of crosslinked or branched polymers of polyene
structures. Another group of catalysts promotes the formation of 1, 2, 4- and 1, 3, 5-
phenylene fragments in both branched soluble polymers and crosslinked polymers. The
latter fact is natural since the use of these catalysts makes it possible to obtain 1, 2, 4- and 1,
3, 5- substituted benzene.

A very limited number of articles describe the synthesis of soluble polymers having
a complete polyene unbranched structure. It is on the basis of these polymers that it
is possible to obtain polymer clusters or grafted copolymers using polymer-analogous
transformations or click reactions, which will make it possible to create materials of a new
type. However, for these purposes, such polymers should not have intramolecular defects
formed due to the existence of various cis-trans isomers, as well as due to the possible
addition of polymer units of the head-tail or head-head type.

In the vast majority of publications, the authors describe the complex physicochemical
properties as well as the areas of application of the corresponding polymers, taking into
account their properties and features of the intramolecular structure.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/polym15051105/s1, Table S1. Methods of synthesis of DEB polymers and
the type of their intramolecular structure. Table S2. Methods of synthesis of diethynylarenes polymers
and the type of their intramolecular structure.
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