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Abstract: Sodium borohydride (SBH) hydrolysis in the presence of cheap and efficient catalysts
has been proposed as a safe and efficient method for generating clean hydrogen energy for use in
portable applications. In this work, we synthesized bimetallic NiPd nanoparticles (NPs) supported
on poly(vinylidene fluoride-co-hexafluoropropylene) nanofibers (PVDF-HFP NFs) via the electrospin-
ning approach and reported an in-situ reduction procedure of the NPs being prepared by alloying
Ni and Pd with varying Pd percentages. The physicochemical characterization provided evidence
for the development of a NiPd@PVDF-HFP NFs membrane. The bimetallic hybrid NF membranes
exhibited higher H2 production as compared to Ni@PVDF-HFP and Pd@PVDF-HFP counterparts.
This may be due to the synergistic effect of binary components. The bimetallic Ni1−xPdx(x = 0, 0.05,
0.1, 0.15, 0.2, 0.25, 0.3)@PVDF-HFP nanofiber membranes exhibit composition-dependent catalysis,
in which Ni75Pd25@PVDF-HFP NF membranes demonstrate the best catalytic activity. The full H2

generation volumes (118 mL) were obtained at a temperature of 298 K and times 16, 22, 34 and
42 min for 250, 200, 150, and 100 mg dosages of Ni75Pd25@PVDF-HFP, respectively, in the presence of
1 mmol SBH. Hydrolysis utilizing Ni75Pd25@PVDF-HFP was shown to be first order with respect to
Ni75Pd25@PVDF-HFP amount and zero order with respect to the [NaBH4] in a kinetics study. The
reaction time of H2 production was reduced as the reaction temperature increased, with 118 mL of
H2 being produced in 14, 20, 32 and 42 min at 328, 318, 308 and 298 K, respectively. The values of the
three thermodynamic parameters, activation energy, enthalpy, and entropy, were determined toward
being 31.43 kJ mol−1, 28.82 kJ mol−1, and 0.057 kJ mol−1 K−1, respectively. It is simple to separate
and reuse the synthesized membrane, which facilitates their implementation in H2 energy systems.

Keywords: electrospinning; NiPd; membranes; H2; NaBH4

1. Introduction

Hydrogen (H2) is one of the promising renewable energy sources because of its various
benefits, including zero emissions and a high energy density [1]. Nonetheless, a significant
barrier thwarts its widespread use: the current limitations on safe and efficient hydrogen
transportation and storage methods. The most common ways for storing and transporting
hydrogen is in the form of high-pressure gas or liquid hydrogen [2,3]. However, these
procedures need sophisticated equipment, due to which there has been a recent surge
in research interest in synthesizing chemical hydrogen-storage materials that can safely
and effectively store H2, such as ammonia borane (NH3BH3) [4–6], magnesium-based
composite hydrides (MgH2) [7,8], and sodium borohydride (SBH, NaBH4) [9–11]. In the
same context, SBH has also been studied extensively owing to its high hydrogen-storage
capacity, controlled hydrogen release, and the high purity of produced H2 [6,7]. With a
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large hydrogen-storage capacity, 1 mol SBH hydrolyzes to 4 mol of H2 with 2 moles being
produced from SBH and the other 2 moles from water, as shown in the below equation:

NaBH4 + 2H2O
catalyst−−−−→ 4H2 + NaBO2 (1)

Self-hydrolysis of NaBH4 is exceedingly slow. Therefore, effective catalysts are needed
to speed up the hydrolysis of NaBH4 and release hydrogen at a faster rate [12]. Precious-
metal catalysts, such as Ru [12,13], Pt [14], and Pd [15–19], have the greatest catalytic
performance in SBH hydrolysis. However, the applications of these catalysts are limited
because they are rare and expensive [4,20]. Thus, transition-metal-based catalysts have been
explored instead because they are cheap and available in abundance. Therefore, there has
been a growing scientific interest in the development of catalysts based on abundant metals
such as those based on Co [1], Ni [21,22], and Cu [23–25], which have been developed for
SBH hydrolysis. However, they have shown only a moderate catalytic activity and poor
long-term stability. To overcome these problems, an approach has been proposed which
can simultaneously provide good catalytic performance and reduced cost by using the
following two strategies: (1) producing highly active composite metal by exploiting the
interaction of electronic and lattice effects in alloy catalysts [16,26–28], and (2) increasing
the specific surface area and the number of active sites that could be accomplished by
modifying the geometric features of catalysts [27,29]. Furthermore, it is difficult to activate
water molecules with a single transition metal, and its catalytic activity is often lower than
that of precious metal catalysts, making it less effective in splitting O-H bonds [26,29]. A
combination of a transition metal and a precious metal is an excellent option for water
splitting. Several nano-bimetallic catalysts have been developed which demonstrated
improved catalytic activity in the dehydrogenation of SBH [30–35]. The catalysts have
been prepared either by pyrolysis or the chemical reduction process [31–35]. However,
poor particle-size distribution is a common problem with these catalysts because of the
aggregation that occurs during preparation. Using catalysts improves the metal-specific
surface area and catalytic stability/activity while retaining the metals in nanoscale. This
might be a suitable strategy for enhancing the activities of the metals and decreasing the
tendency towards the severe agglomeration of the metal particles during catalysis, without
reducing the efficiency [36,37]. In addition, since the carrier can be readily separated, the
catalyst may be recycled for further use. As a result, selecting an appropriate support is
critical for enhancing catalytic performance and reuse efficiency. Consequently, a variety of
support matrix materials, such as polymers [36–41], zeolite [42–46], nano-carbon [47–49],
TiO2 [4,21,50,51], and Al2O3 [52–57] have been used to act as preservatives or as a sus-
taining matrix for the metal NPs in H2 generation from materials. Under varied reaction
conditions, a polymer support containing metal NPs can demonstrate a synergistic influ-
ence on useful functionality, solvent tolerance, and lifetime [26]. The large specific surface
area of fiber-shaped materials makes them well-suited for filtering and recycling applica-
tions [16]. The aim of this study is to prepare Ni1−xPdx (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, and
0.30)-PVDF-HFP NF membranes as a bimetallic catalyst for the dehydrogenation of SBH.
Electrospinning was used to create the membranes, and then they were reduced chemically
to obtain the final metallic catalyst. Electrospun catalysts containing bimetallic Ni1−xPdx
NPs supported by a PVDF-HFP membrane were successfully fabricated, as evidenced by
their characterization. Superior catalytic performance in H2 production from SBH was
shown by the synthesized NFs. Catalytic activity was more for the prepared bimetallic
Ni75Pd25. In addition, after seven cycles of reuse, this combination retained its stability.
These hybrid catalytic-membrane NFs catalysts are promising candidates for hydrogen
production because of their unique, efficient, and recyclable features.
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2. Experimental Details
2.1. Materials

All of the chemicals used in this study were acquired from Aldrich Co., St. Louis,
MO, USA: sodium borohydride (NaBH4, SBH, 98%), palladium (II) acetate (PdAc, 99.9%),
N, N-dimethylformamide (DMF, 99.8%), acetone (99.5%), nickel (II) acetate tetrahydrate
(NiAc, 98%), and PVDF-HFP (MW = 65,000 g/mol).

2.2. Experimental Work

Initially, a 15% PVDF-HFP solution was made by dissolving polymer powder in DMF
and acetone in a ratio of 4:1. After that, a distinct composition of PdAc and NiAc was
obtained by adding varying amounts of Pd salt into an aqueous solution of Ni salt in order
to produce Ni1−xPdx (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, and 0.30). The mixtures were stirred for
five hours to assure that Pd salt was completely dissolved. In separate glass bottles, the
different solutions, each with its own distinct composition, were mixed with PVDF-HFP.
The solutions were stirred at a temperature of 50 ◦C for 5 h to obtain homogenous sol-gels.
To produce hybrid NF membranes, each sol-gel was loaded onto a lab scale electrospinner
using a disposable plastic syringe. Copper wire that was immersed along the syringe from
the back to front was connected to positive electrode of high-voltage power supply. At the
same time, the negative electrode was connected with a rotating drum made of stainless
steel and covered with aluminum foil. High voltage of 18 kV was applied in the 18 cm
gap between the syringe and drum. After that, the sol-gel in the syringe was completely
injected. The collected electrospun NF mats were wrapped in the aluminum foil, detached
and dried overnight at a temperature of 30 ◦C under vacuum.

2.3. Chemical Reduction of Electrospun Nanofiber Mats

Pieces of NiPd@PVDF-HFP, each having a distinct composition, were placed in each
specific beaker that contained 100 mL of methanol solution. The weight of each of the
NiPd@PVDF-HFP pieces with different compositions was same. They were agitated for
30 min at room temperature. Then, NaBH4 was added gradually while stirring, and the
mixture was mixed at room temperature until all of the bubbles had vanished. Particularly,
the metal ions/NaBH4 molar ratio was set at 1:5 in order to achieve a complete reduction
process. When the membranes were affixed to NaBH4, they immediately changed to black.
After being removed from the NaBH4 solution, the membranes were rinsed with deionized
water and dried in an oven set at 50 ◦C.

2.4. Characterization

The as-prepared catalysts were analyzed using techniques mentioned in our report [58].

2.5. NaBH4 Hydrolysis Using Prepared Catalysts

NiPd@PVDF-HFP NF-membrane catalysts containing varying ratios of Ni to Pd were
loaded in a reactor consisting of two-neck flask. The flask was then tightly sealed before
placing it into a thermostatically controlled water bath set at 25 ◦C. The reaction of catalytic
hydrolysis was carried out at a temperature of 25 ◦C with 50 mL of 1 mmol SBH and 100 mg
of catalyst. The solution was mixed by stirring at 1000 rpm. Hydrogen-gas production was
calculated using the water-displacement approach. This allowed calculation of volume of
gas. The evolution of gas occurred instantaneously, and the progress of the reaction was
governed by the volume of H2 evolved, which can be measured by the displaced H2O from
the burette at periodic durations of time of 120 s. The linear relationship of the volume
of hydrogen with the function of time was obtained for the first 40 min, to determine
the rate of hydrogen production (k). Additionally, the activation energy needed for the
reaction was determined by measuring the volume of H2 produced at several temperatures
ranging from 25 to 55 ◦C with 1 mmol SBH, and 100 mg catalyst. The test was also carried
out at a constant temperature of 25 ◦C with varying amounts of catalysts (100, 150, 200,
and 250 mg), as well as varying concentrations of SBH (1, 2, 3 and 4 mmol). During the
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recycling process, the lifetime of the newly developed membranes was also tested. This
procedure was carried out for all the cycles with the same catalytic NFs membrane, so that
the effectiveness of the catalyst could be measured. The temperature in the reactor was
kept constant at 25 ◦C during each cycle, and 1 mmol of NaBH4 was injected into the flask
in every cycle.

3. Results and Discussion
3.1. Hybrid-Membrane Characterization

PVDF-HFP membranes have recently been developed for a wide range of uses [59–65].
SEM images of nanofibrous PVDF-HFP membranes demonstrated the formation of an
efficient nanofibrous structure which was free from beads (Figure 1A). It is well-established
that the electrospinning process results in the synthesis of nanoporous-structure NFs. Dur-
ing electrospinning, solvents, most notably acetone, quickly evaporate, leaving nanopores
in the electrospun NFs. The formation of metal crystals would get off to a good start
with this nanoporous structure. PVDF-HFP membranes have hydrophobic properties,
which make it easy for metal ions to deposit on the surface of the membrane. This is
due to the fact that metal salts include water. This hypothesis has two implications: first,
it lessens the crystallinity of the polymer; second, it increases the absorbed amount of
solution, which could make the surface of the catalyst more accessible to SBH [59]. The
use of metal salts for producing nanoscale polymeric NFs has many advantages, including
increased electrical properties and gelatinization of the polymer solution, as well as the
development of the maximum length of a jet across its axis [66]. This is confirmed by the re-
duction of NFs size with the addition of metal precursors, which can be clearly observed in
Figure 1B–F. SBH reduces Ni and Pd ions in methanol medium to form bimetallic NiPd on
the membrane surface. Figure 1B–D,F display SEM images of electrospun Ni@PVDF-HFP,
Ni95Pd5@PVDF-HFP, Ni90Pd10@PVDF-HFP, Ni85Pd15@PVDF-HFP, Ni75Pd25@PVDF-HFP
NFs membrane, respectively. It is evident from the images that the synthesized NFs have
remarkable nanofibrous architecture with no beads. In addition, the PVDF-HFP NF mats
are developed on the nanopores present on its surface; reduced Ni and Pd ions could cover
the PVDF-HFP surface.

The EDX of Ni75Pd25@PVDF-HFP membrane NFs is revealed in Figure 2. It is evi-
dent that the chemical makeup of the product comprises of carbon, fluorine, nickel, and
palladium elements. The percentage weight of the elements is shown in the inset of Figure 2.

The composition can be clearly observed to be lower than its initial precursors. This
may be possibly due to the leaching of a small amount of metal NPs during the reduction
and washing processes. The mapping of elements of Ni75Pd25@PVDF-HFP is displayed in
Figure 3. The presence of carbon, fluorine, nickel and palladium is evident from Figure 3B–E.
Figure 3A shows that Ni and Pd NPs are widely dispersed over the PVDF-HFP membrane.

The XRD pattern of the Ni75Pd25@PVDF-HFP NFs membrane is displayed in Figure 4.
The XRD graph reveals three major diffraction patterns at 2
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of 18.4◦, 20.3◦, and 36.01◦,
which match with the (100), (020), and (021) crystal indices of PVDF-HFP, respectively [67].
However, XRD shows no planes of Ni or Pd NPs because either Pd and Ni NPs are too
small or amorphous Ni-Pd formed [26,68–70].

The electronic interaction between Pd and Ni is crucial for the catalytic activity of the
NiPd. The electron transfer from Ni to Pd in the NiPd@PVDF-HFP membrane NFs may be
due to the difference in the electronegativity of Pd (2.20) and Ni (1.92). We employed XPS
analysis to examine this aspect [27]. On the full scan XPS spectra, prominent O 1s, C 1s,
and F 1s peaks were found at 532.4, 285.08, and 688.9 eV, respectively (see Figure 5A). It
is difficult to avoid the presence of thin oxide oxygen due to the exposure of the sample
to air and during XPS preparation. Thus, Singh et al., in their study, removed the oxygen
film using Ar sputtering before XPS analysis of a Ni/Pd alloy [71]. Figure 5B is an XPS
spectra of Pd for the Ni75Pd25@PVDF-HFP NFs membrane, and it exhibits two peaks at
337.9 and 343.14 eV, both of which are ascribed to metallic Pd since they correspond to the
3d5/2 and 3d3/2 electron-binding energies of Pd, respectively [27]. This demonstrates that
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most of the Pd in the activated catalyst was reduced during the preparation process. The
Ni 2p3/2 and Ni 2p1/2 electron-binding energies were also observed at 853.7 and 872.6 eV,
respectively (see Figure 5C); these are also attributed to metallic Ni [71]. Furthermore,
Ni shows a high binding energy, which is a result of increasing Pd binding energy and
the Ni decreasing electron density [29]. Higher binding energies for Pd [3d5/2] in the
bimetallic Ni75Pd25@PVDF-HFP NFs membrane compared to the monometallic Pd sample
are consistent with alloy formation [71]. This change indicates that an electron is being
transferred from Ni to Pd, increasing the electron density around Pd atoms, which has
been demonstrated to improve H2 adsorption and enhance the production of metal-H
species, accelerating the SBH dehydrogenation [27]. In other words, Ni and Pd atoms
in the Ni75Pd25@PVDF-HFP NFs membrane catalyst could enhance charge transfer and
balancing during the splitting of O-H bonds and B-H bonds in the adsorbed H2O and SBH,
respectively, to produce H2 [29,72,73].
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Ni90Pd10@PVDF-HFP (D), Ni85Pd15@PVDF-HFP (E), and Ni75Pd25@PVDF-HFP NFs membrane (F).
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3.2. Catalysis Studies

To hydrolyze the substrate effectively, the SBH must quickly penetrate through the
support, and the BH4

− should have access to the NPs’ metal surface. The PVDF-HFP mem-
brane would improve the dispersibility of the NiPd NPs catalyst in H2O. The Ni1−xPdx
(x = 0–0.3)@PVDF-HFP NF membranes that were synthesized are able to serve as cata-
lysts for the generation of H2 from SBH. It is feasible to expect that both Pd and Ni are
active phases in the as-prepared NF membranes, as they catalyzed the hydrolysis reaction
of SBH [26].

The catalytic activity of bimetallic catalysts may be improved due to the alloy effect.
Catalysts with varying Ni/Pd ratios were used to investigate the effect of Pd concentration
on catalytic activity (see Figure 6). Each reaction was performed in an aqueous solution of
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SBH and catalyst, with strong agitation, at a temperature of 298 K. The time vs. volume
of H2 produced graphs during the hydrolytic dehydrogenation of SBH in the presence
of catalysts with various bimetallic compositions and their counterparts are displayed in
Figure 6. The baseline hydrolysis that was carried out using PVDF-HFP NFs demonstrated
that the support matrix was inactive because the volume of hydrogen gas produced did not
significantly exceed that of the background reaction. It can be inferred from Figure 6 that
Pd@PVDF-HFP NFs achieved a relatively higher catalytic activity compared to Ni@PVDF-
HFP NFs. The more quickly the hydrolysis is completed, the more active the catalyst will
be. Accordingly, the catalytic activity of the bimetallic catalysts is significantly higher than
that of their counterparts, which was due to the synergistic effect between the two met-
als [72,74,75]. Additionally, previous research on Pd/Ni-alloy catalysts in hydrogenation
processes revealed that bimetallics with specific molar ratios of Ni/Pd exhibited greater
activity than either Pd or Ni monometallic catalysts [26,76,77]. Dopant metals are thought
to exert their stimulating effects by increasing the catalyst particles’ active surface area
and facilitating electronic interaction between two active metals [78]. Among all the ex-
amined NiPd@PVDF-HFP NFs membranes, the Ni75Pd25@PVDF-HFP NFs membranes
demonstrate the maximum catalytic activity with a completion time of 42 min for 1 mmol
SBH. Maximum hydrogen production yields, as determined by the hydrolysis of SBH
(1 mmol) utilizing the PVDF-HFP NFs catalysts with varying Pd/Ni ratios, are shown in
Table 1 along with the respective H2 generation rates (k). The rate at which H2 is produced
does, in fact, increase with the amount of Ni75Pd25@PVDF-HFP NFs. The activity of the
catalyst drops down as Pd concentration is increased. It has been observed that the activity
of a catalyst can be increased up to 150% with Pd as compared to the activity achieved
with a Ni catalyst. This likely occurs as a result of the synergistic effect between the Ni
and Pd [26,71]. The interactions between metal NPs, oxides, and support would make
the process of charge transfer easier and expose an increased number of catalytic activa-
tion sites [79,80]. Singh et al. demonstrated that the mixture of Ni and Pd nanoparticles
(Ni/Pd = 60:40) exhibit poor H2 generation activity from hydrous hydrazine [71]. These
results indicate that electronic alteration of the catalyst surface and bimetallic phase active
sites is essential to generate hydrogen from hydrous hydrazine hydrolysis. Monometallic
and alloy catalysts interact differently with reactant molecules [71,81]. Heterometallic
bonds with strong metal–metal contacts may improve catalytic efficiency and molecular
selectivity compared to monometallic bonds by tailoring the catalyst surface’s bonding
pattern to reactant molecules and stabilizing the possible reaction intermediates [71,76,82].
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Table 1. H2 evolved yields and rates by polymer membranes used different Ni/Pd ratios at 298 K.

Ni Pd Ni95Pd5 Ni90Pd10 Ni85Pd15 Ni80Pd20 Ni75Pd25 Ni70Pd30

Volume (mL) 87 78 83 90 94 108 117 101
Yield% 72.5 65 69.2 75 78.3 90 98 84.2

Rate (mL min−1) 2.29 2.05 2.18 2.37 2.47 2.84 3.03 2.66

Further investigation into the kinetics of the hydrolytic dehydrogenation of SBH
by a Ni75Pd25@PVDF-HFP NFs membrane catalyzed process was carried out by vary-
ing the concentrations of the catalysts and SBH, as well as the reaction temperatures.
Ni75Pd25@PVDF-HFP NFs membranes of varying weights (100, 150, 200, and 250 mg)
were subjected to hydrolysis. With 100 mg catalyst, the reaction takes 42 min to produce
118 mL of H2 (see Figure 7A). The same reactions, when carried out with a higher amount
of catalyst, can experience a significantly improved reaction rate, producing hydrogen
rapidly. Thus, the reaction takes just 16 min with 250 mg of the catalyst. Table 2 displays
the yield and the final volume of hydrogen produced. Hydrogen production rates at vari-
ous catalyst concentrations were set by adjusting the initial linear regions of the plots, as
shown in Figure 7B. The dehydrogenation of SBH follows first-order kinetics with respect
to the concentration of Ni75Pd25@PVDF-HFP NFs membranes, as evident by the nearly
linear relationship between the hydrogen production rate and catalyst concentration on the
logarithmic scale with a slope of 1.08 (see Figure 7B). On the other hand, under identical
conditions, H2 can be produced spontaneously from the SBH solution, but only at a rate of
0.47 mL min−1 with a yield of just 23.7% in the absence of a catalyst. However, when the
catalyst was included, H2 production was reliable. Due to this, the catalyst significantly
accelerates the process.
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Figure 7. Effect of Ni75Pd25@PVDF-HFP NFs membrane amount on H2 production by SBH hydrolysis
(A), and H2 generation rate vs. amount of catalyst on the logarithmic scale (B). [SBH] = 1 mmol and
T = 303 K.

Table 2. Effect of Ni75Pd25@PVDF-HFP amount on the hydrolysis of NaBH4.

Catalyst (gm)

0.1 0.15 0.2 0.25

Volume (mL) 118 118 118 118
Yield% 98.3 98.3 98.3 98.3

Reaction time (min) 42 32 22 16
Rate (mL min−1) 2.81 3.69 5.36 7.38

In SBH-dependent hydrolysis, the concentration of the catalyst was maintained con-
stant at 100 mg, while the SBH concentrations were varied by 1, 2, 3, and 4 mmol. It is found
that the SBH concentration has almost no effect on the production of hydrogen at 298 K
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(see Figure 8A). We surmise that the Ni75Pd25@PVDF-HFP NFs membranes catalyzed SBH
hydrolysis following zero-order reaction kinetics with respect to the SBH concentration,
since the plot of hydrogen generation rate versus SBH concentration on a logarithmic scale
(see Figure 8B) corresponds to a line with a slope of 0.43.
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Figure 8. Effect of SBH concentration on H2 generation (A) and the value of H2 generation vs.
value of [SBH] on logarithmic scale (B). The amount of Ni75Pd25@PVDF-HFP NFs membrane
catalyst = 100 mg and T = 298 K.

To examine the effect of temperature on the reaction, 1 mmol of SBH was hydrolyzed
employing 100 mg of Ni75Pd25@PVDF-HFP membranes while the temperature was varied
from 298 K to 328 K. The plot of time versus volume of H2 produced during SBH hydrolysis
at various temperatures is depicted in Figure 9A. Increasing the reaction temperature
causes an increase in hydrogen production. An increased reaction temperature improves
the catalytic efficiency of Ni75Pd25@PVDF-HFP NFs membranes for SBH hydrolytic de-
hydrogenation. At 318 K, the reaction takes just 20 min, compared to 14 min at 328 K.
The activation parameters for the hydrolysis processes at different temperatures were
determined by fitting the data in Figure 9B,C using Arrhenius and Eyring equations. The
rate constants were calculated from the linear part of each plot in Figure 9B by evaluating
their slope. The activation energy for the dehydrogenation process was determined to be
31.43 kJ mol−1, while ∆H and ∆S were found to be 28.82 kJ mol−1 and 0.0576 kJ mol−1 K−1,
respectively. With a negative ∆S, the rate-determining step is likely to use an associative ac-
tivation mode rather than a dissociative one. Table 3 provides a comparison of the relatively
low activation energy of the Ni75Pd25@PVDF-HFP NFs membranes catalyst compared to
the values found in the literature for Ni-based catalysts and Pd-based catalysts.

Table 3. Ea of prepared NFs, and catalysts based on Pd and Ni used in H2 generation using NaBH4.

Catalytic Material Ea (kJ mol−1) Ref.

Ni 42.28 [83]
Ni 71 [84]

Raney Ni 63 [84]
Ni(0) 51.4 [76]

Ni-Ag 16.2 [31]
Pd/C powder 28 [85]

Pd-Ni-B 31.1 [26]
Pd NPs@ [KIT-6]-PEG-imid 35.7 [74]
Ni-hollow PVDF capsules 49.3 [65]

Ni-PVDF hollow fiber 55.3 [86]
([C6(mpy)2][NiCl4]2− 56.4 [87]

PVDF-[C6(mpy)2][NiCl4]2− 44.6 [88]
NiPd@PVDF-HFP 31.43 This study
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Figure 9. The impact of temperature on the reaction (A), ln (k, rate constant) vs. temperature
inverse (B), and ln KD (K/T) vs. temperature inverse (C). The amount of Ni75Pd25@PVDF-HFP NFs
membrane catalyst = 100 mg and [SBH] = 1 mmol.

Moreover, the lifetime of the catalysts utilized in the hydrolysis of SBH was inves-
tigated by studying the reusability and recyclability of Ni75Pd25@PVDF-HFP NFs mem-
branes catalysts (Figure 10). A total of 100 mg of an Ni75Pd25@PVDF-HFP NFs membranes
catalyst was used as a catalyst to hydrolyze 1 mmol of SBH at 298 K. Once the SBH hy-
drolysis was complete, another 1 mmol of NaBH4 was loaded in the previous solution.
The Ni75Pd25@PVDF-HFP NFs membranes catalyst was used without previously being
isolated. Once the reaction was complete, the MNFs was simply withdrawn from the cat-
alytic system. A simple separation such as this has several advantages, such as prolonged
durability, and service life may be significantly increased, which is a desirable trait for prac-
tical applications. The good distribution and immobilization of the metal particles in the
MNFs 2-D structure is responsible for the high recyclability of the catalysts. H2 production
efficiency data indicates a gradual decline in H2 generation from the 1st to the 7th cycles
of the process. The Ni75Pd25@PVDF-HFP NFs membranes’ catalytic-efficiency estimates
show that after the third, fifth, and seventh runs, the catalyst maintains 85%, 83%, and 67%
of its initial activity, respectively. This may have occurred because the reaction products
precipitate out onto the membrane’s surface after being reused without any cleaning be-
tween the cycles. This prevents the metal active sites from becoming exposed, due to which
H2 generation slows down. A small decrement is observed in the catalytic performance
after the second cycle, which may be attributed to the deposition of the byproduct boron
on the Ni75Pd25@PVDF-HFP surface, and a rise in the viscosity of the solution [83–88] can
ultimately lead to fewer available active sites or blocked pores.
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The SBH hydrolysis kinetic equation catalyzed by a Ni75Pd25@PVDF-HFP NFs mem-
branes catalyst may be expressed as in Equations (2)–(4), based on the findings of the
impacts of catalyst amount, SBH concentration, and reaction temperatures.

r = −d[SBH]

dt
= k[Ni75Pd25@PVDF-HFP]1.082[SBH]0.44 (2)

k = Ae(
−Ea
RT ) → lnk = ln 13.7− 31, 430

8.314T
(3)

r = −d[SBH]

dt
= 13.7e(

−3780
T )[Ni75Pd25@PVDF-HFP]1.082[SBH]0.44 (4)

The ∆H and ∆S values can now be used to obtain ∆G using Equations (5) and (6).

ln kD = ln
kB

h
+

∆S
R
− ∆H

RT
(5)

∆G = ∆H− T∆S (6)

The determined values of ∆H and ∆S are as follows: 28.82 kJ mol−1 and 0.0576 kJ mol−1 K−1,
respectively, using the Equation (7), which is shown in Figure 9C. The following is a concise
summary of the ∆G equation:

∆G = 28.82− 0.0576 T (7)

4. Conclusions

We successfully prepared bimetallic Ni1−xPdx (x = 0, 0.05, 0.1, 0.15, 0.20, 0.25, 0.3)@PVDF-
HFP NFs membranes via two-steps: (1) electrospinning the solution which consists of metal-
lic precursors, and (2) reducing the formed membranes in situ with SBH in methanol media.
Bimetallic Ni1−xPdx (x = 0, 0.05, 0.1, 0.15, 0.20, 0.25, 0.3)@PVDF-HFP NFs membranes
exhibited high catalytic activity in comparison to their counterparts. The Ni75Pd25@PVDF-
HFP NFs generated the highest volume of H2 in a short time in comparison to the other
formulations. The kinetics study of the hydrolysis reaction using Ni75Pd25@PVDF-HFP
membranes demonstrated that the reaction is of first order with respect to the amount of
the catalyst and zeroth order with respect to SBH concentration, respectively. The obtained
value of thermodynamic parameters, namely, Ea, ∆H and ∆S values, were 31.43 kJ mol−1,
28.82 kJ mol−1 and 0.0576 kJ mol−1 K−1, respectively. The synthesized NFs are easily
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separable and reusable, which facilitates their commercialization as hydrogen-storage
materials.
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