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Abstract: The viscoelastic relaxation spectrum provides deep insights into the complex behavior of
polymers. The spectrum is not directly measurable and must be recovered from oscillatory shear or
relaxation stress data. The paper deals with the problem of recovery of the relaxation spectrum of
linear viscoelastic materials from discrete-time noise-corrupted measurements of relaxation modulus
obtained in the stress relaxation test. A class of robust algorithms of approximation of the continuous
spectrum of relaxation frequencies by finite series of orthonormal functions is proposed. A quadratic
identification index, which refers to the measured relaxation modulus, is adopted. Since the prob-
lem of relaxation spectrum identification is an ill-posed inverse problem, Tikhonov regularization
combined with generalized cross-validation is used to guarantee the stability of the scheme. It is
proved that the accuracy of the spectrum approximation depends both on measurement noises
and the regularization parameter and on the proper selection of the basis functions. The series
expansions using the Laguerre, Legendre, Hermite and Chebyshev functions were studied in this
paper as examples. The numerical realization of the scheme by the singular value decomposition
technique is discussed and the resulting computer algorithm is outlined. Numerical calculations on
model data and relaxation spectrum of polydisperse polymer are presented. Analytical analysis and
numerical studies proved that by choosing an appropriate model through selection of orthonormal
basis functions from the proposed class of models and using a developed algorithm of least-square
regularized identification, it is possible to determine the relaxation spectrum model for a wide class
of viscoelastic materials. The model is smoothed and robust on measurement noises; small model
approximation errors are obtained. The identification scheme can be easily implemented in available
computing environments.

Keywords: viscoelasticity; relaxation spectrum; linear relaxation modulus; identification algorithm;
orthonormal functions; Tikhonov regularization; singular value decomposition

1. Introduction

Viscoelasticity denotes the joint property of elasticity and viscosity and, hence, de-
scribes materials with both fluid and solid properties at the same time. Viscoelastic relax-
ation or retardation spectra are commonly used to describe, analyze, compare and improve
the mechanical properties of polymers [1–5]. The spectra are vital for constitutive models
and for the insight into the properties of a viscoelastic material, since, from the relaxation
or retardation spectrum, other material functions used to describe rheological properties of
various polymers can be uniquely determined [6–9]. However, the spectra are not directly
accessible by measurement. The relaxation and retardation spectra can be recovered from
oscillatory shear data and from the time measurements of the relaxation modulus or creep
compliance obtained in standard stress relaxation or retardation experiments [1,2,7]. Many
different methods have been proposed during the last five decades for relaxation spectrum
computation using data from dynamic modulus tests. Baumgaertel and Winter [10] ap-
plied a nonlinear regression for identification of discrete relaxation and retardation time
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spectra based on dynamic data, in which the number of relaxation times adjusts during the
iterative calculations to avoid ill-posedness and to improve the model fit; regularization
is not applied here. Honerkamp and Weese [11,12], for relaxation spectrum identification,
combined nonlinear regression with Tikhonov regularization and proposed a specific vis-
coelastic model described by the two-mode log-normal function. Malkin [13] approximated
a continuous relaxation spectrum using three constants: the maximum relaxation time,
slope in the logarithmic scale and form factor. Malkin et al. [14] derived a method of con-
tinuous relaxation spectrum calculations using the Mellin integral transform. An approach
proposed by Stadler and Bailly [15] is based on the relaxation spectrum approximation by
a piecewise cubic Hermite spline. In turn, Davies and Goulding [16] approximated the
relaxation spectrum by a sum of scaling kernel functions located at appropriately chosen
points. The algorithm for the relaxation time spectrum approximation by power series
was developed by Cho [17]. Anderssen et al. [1] proposed a derivative-based algorithm
for continuous spectrum recovery, being also appropriate for the experimental situation
where the oscillatory shear data are only available for a finite range of frequencies. These
works, but also many others, using different models, approaches, algorithms and compu-
tational techniques, have opened new directions of research on discrete and continuous
relaxation spectra identification based on dynamic moduli data, which are still being
conducted [2,18–21].

However, a classical manner of studying viscoelasticity is also through a two-phase
stress relaxation test, where time-dependent shear stress is studied for the step increase
in strain [4,6,7]. There are only a few papers, e.g., [22–28], that deal with the spectrum
determination from time measurements of the relaxation modulus; additionally, only some
of them are addressed to polymers. Therefore, the computationally efficient algorithms to
determine the relaxation spectrum applied to time measurements of the relaxation modulus
are still desirable. The objective of the present paper was to develop a class of models and
an identification algorithm for the continuous relaxation spectrum determination based
on discrete-time measurements of the relaxation modulus, which, taking into account the
ill-posedness of the original problem of the spectrum recovery, will provide: (a) good
approximation of the relaxation spectrum and modulus; (b) smoothness of the spectrum
fluctuations, even for noise-corrupted measurements; (c) noise robustness; (d) applicability
to a wide range of viscoelastic materials due to the choice of respective model from the
considered set of models; (e) ease of implementation of the models and identification
algorithm in available computing packages. Thus, the goal of this work was the synthesis
of the respective models and general identification scheme, and the analysis of their
properties. Approximation errors, convergence, noise robustness, smoothness and the
applicability ranges were studied analytically. Further, the numerical verification of the
models and algorithm for exemplary theoretical relaxation spectrum, and their applicability
to spectrum of real material, polydisperse polymer, was the purpose of this work.

The approach proposed is based on the approximation of the spectrum by a finite
linear combination of the basis orthonormal functions. A quadratic identification index,
related to the data of the relaxation modulus, is adopted as a measure of the model quality.
As a result, the primary infinite dimensional dynamic inverse problem of the continuous
relaxation spectrum identification is reduced to the static linear-quadratic programming
task. Next, Tikhonov regularization is used to guarantee the well-posed solution. Thus, the
approach proposed integrates the technique of an expansion of a function into a series in
an orthogonal basis with the least-squares regularized identification [29].

It is demonstrated that due to the choice of appropriate special functions as the basis
functions for the unknown relaxation spectrum model, the components in the relaxation
modulus model are given by compact analytical or recursive formulas. The technique
of expanding an unknown viscoelastic function into a series of orthogonal functions or
polynomials has already been used to describe various rheological models of polymers,
especially in the time domain. For example, Aleksandrov et al. [30] applied Laguerre
polynomials to describe experimentally obtained polyethylene deformation in the creep
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under diffusion in a liquid environment. Cao et al. [31] used orthogonal expansion based on
shifted Legendre polynomials to solve a fractional-order viscoelastic model of polymethyl
methacrylate. Abbaszadeh and Dehghan [32] employed a new class of basis based upon
the Legendre polynomials to solve a two-dimensional viscoelastic equation. Kim et al. [33]
used Chebyshev polynomials for direct conversion of creep data to dynamic moduli.

The idea of using a series of orthogonal functions has also been used to approximate
the relaxation spectrum. Lee et al. [34] used the Chebyshev polynomials of the first kind to
approximate dynamic moduli data. Stankiewicz [27,28,35] applied orthogonal functions
for relaxation spectrum recovery from the stress relaxation data, but these articles use a
different definition of the relaxation modulus, according to which the modulus is directly
given by the Laplace integral of the spectrum. In this paper, it is shown, for the dominant
literature definition of the relaxation spectrum, that the application of the concept of
expanding the unknown relaxation spectrum into a series of orthonormal basis functions
combined with the least-squares regularized identification allows one to determine the
smoothed model of the relaxation spectrum, robust on the measurement noises, with small
approximation errors of the relaxation spectrum and modulus. The selection of appropriate
orthonormal basis functions, the selection of their time-scale factor and the determination of
the optimal regularization parameter using standard generalized cross-validation technique
enables the application of the proposed approach to a wide class of viscoelastic materials.

2. Materials and Methods
2.1. Relaxation Spectrum

The uniaxial, nonaging and isothermal stress–strain equation for a linear viscoelastic
material can be represented by a Boltzmann superposition integral [7]:

σ(t) =
∫ t

−∞
G(t− λ)

.
ε(λ)dλ, (1)

where σ(t) and ε(t) denote the stress and strain at the time t and G(t) is the linear relaxation
modulus. Modulus G(t) is given by [1,7,36,37]:

G(t) =
∫ ∞

0

H(τ)

τ
e−t/τdτ, (2)

or equivalently by

G(t) =
∫ ∞

0

H(v)
v

e−tvdv (3)

where H(τ) and H(v) characterize the distributions of relaxation times τ and relaxation
frequencies v, respectively. The continuous relaxation spectraH(τ) and H(v), related by
H(v) = H

(
1
v

)
, are generalizations of the discrete Maxwell spectrum [1,7] to a continuous

function of the relaxation times τ and frequencies v. Although other definitions of the
relaxation spectrum are used in the literature, for example, in [5,13,28,38], the definition
introduced by Equation (2) dominates. The main symbols are summarized in Nomenclature,
Appendix C.

The problem of relaxation spectrum determination is the practical problem of re-
constructing the solution of the Fredholm integral equation of the first kind (2) or (3) from
discrete-time measured data. Time measurements of the relaxation modulus data are
considered in this paper. This problem is known to be severely Hadamard ill-posed [39,40].
In particular, small changes in the measured relaxation modulus can lead to arbitrarily
large changes in the determined relaxation spectrum. In remedy, some reduction of the set
of admissible solutions or appropriate regularization of the original problem can be used.
Here, both techniques are used simultaneously.
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2.2. Models

The modified spectrum is introduced:

HM(v) =
H(v)

v
, (4)

where the upper index of HM(v) means ‘modified’. Then, (3) can be rewritten as

G(t) =
∫ ∞

0
HM(v)e−tvdv, (5)

i.e., the modulus is directly the Laplace integral of the spectrum HM(v).
Assume that HM(v) ∈ L2(0, ∞), where L2(0, ∞) is the space of real-valued square-

integrable functions on the interval (0, ∞). The respective sufficient conditions are given by
Theorem 3 in [41]. Assume that the set of the linearly independent orthonormal functions
{h0(v), h1(v), h2(v), . . .} form a basis of the space L2(0, ∞). Thus, the modified relaxation
spectrum can be expressed as

HM(v) = ∑∞
k=0 gkhk(v), (6)

where the Fourier coefficients are [42]

gk =
∫ ∞

0
HM(v)hk(v)dv.

For practical reasons and in order to reduce the set of admissible solutions, it is
convenient to replace the infinite summation in Equation (6) with a finite one of K terms,
i.e., to approximate the relaxation spectrum HM(v) by a model of the form

HM
K (v) = ∑K−1

k=0 gkhk(v), (7)

where the lower index of HM
K (v) is the number K of model summands. Then, using (5), the

respective model of the relaxation modulus is described by:

GK(t) =
∫ ∞

0
HM

K (v)e−tvdv = ∑K−1
k=0 gkφk(t), (8)

where the functions
φk(t) =

∫ ∞

0
hk(v)e−tvdv. (9)

Note, that function φk(t) is Laplace transform of hk(v) for real argument t, i.e.,

L[hk(v)] = φk(t),

with the notation L[ f (v)] used for Laplace transform. For basis functions, hk(v) applied in
the developed algorithms, the components φk(t) of the relaxation modulus model GK(t) are
given by analytical or recursive formulas. This avoids quadrature errors occurring in the
numerical calculation of the integrals (9). The following special functions are considered
as basis functions: Laguerre, Legendre, Chebyshev and Hermite. The respective basis
functions hk(v) and φk(t) are described in Sections 3.3–3.6. All basis functions depend on
one parameter—time-scaling factor α.

2.3. Identification Problem

Identification consists of selecting, within the given class of models defined by (7), (8)
such a model, which ensures the best fit to the measurement results. Suppose a certain
identification experiment (stress relaxation test [4,6,7]) performed on the specimen of the
material under investigation resulted in a set of measurements of the relaxation modulus
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{
−
G(ti) = G(ti) + z(ti)} at the sampling instants ti ≥ 0, i = 1, . . . , N, where z(ti) is additive

measurement noise. It is assumed that the number of measurements N ≥ K. As a measure
of model (8) accuracy, the square index is taken

QN(gK) = ∑N
i=1

[−
G(ti)− GK(ti)

]2

, (10)

where gK =
[
g0 · · · gK−1

]T is a K-element vector of unknown coefficients of the models
(7) and (8). Using the vector-matrix notation

ΦN,K =

φ0(t1) · · · φK−1(t1)
...

. . .
...

φ0(tN) · · · φK−1(tN)

,
−
GN =


−
G(t1)

...
−
G(tN)

 (11)

the identification index (10) can be rewritten in compact form as

QN(gK) =

∥∥∥∥−GN −ΦN,KgK

∥∥∥∥2

2
, (12)

where ‖·‖2 denotes the square norm in the real Euclidean space RN . Thus, the optimal
identification of relaxation spectrum in the class of functions defined by (7) and (8) consists
of solving, with respect to the model parameter gK, the following least-squares problem:

min
gK∈RK

∥∥∥∥−GN −ΦN,KgK

∥∥∥∥2

2
. (13)

The matrix ΦN,K is usually ill-conditioned. Thus, the optimization problem (13) is still,
like the original problem of solving Fredholm’s equation of the 1st kind (3), incorrectly
posed in the sense of Hadamard. Consequently, the solution of (13) is not unique, i.e.,
there exist many optimal model parameters minimizing the identification index QN(gK)
(12). However, even the normal (with the lowest Euclidean norm) solution of (13) is non-

continuous and unbounded function of the measurement vector
−
GN . This means that when

the data are noisy, even small changes in
−
GN would lead to arbitrarily large artefacts in

any optimal model parameter. To deal with the ill posedness, the Tikhonov regularization
method is used, as presented below.

2.4. Regularization

Regularization aims to replace the ill-posed problem with a nearby well-posed prob-
lem. Tikhonov regularization [43] strives to stabilize the computation of the least-squares
solution by minimizing a modified square functional of the form:

min
gK∈RK

∥∥∥∥−GN −ΦN,KgK

∥∥∥∥2

2
+ λ‖gK‖

2
2, (14)

where λ > 0 is a regularization parameter. The above problem is well-posed; that is, the
solution always exists, is unique, and continuously depends on both the matrix ΦN,K and

on the measurement data
−
GN . The parameter vector minimizing (14) is given by:

−
g

λ

K =
(

ΦT
N,KΦN,K + λIK,K

)−1
ΦT

N,K

−
GN , (15)

where IK,K is K dimensional identity matrix.
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The choice of regularization parameter λ is crucial to identify the best model parame-
ters. Here, we apply the generalized cross-validation GCV [39,44], which does not depend
on a priori knowledge about the noise variance. The GCV technique relies on choosing, as a
regularization parameter, λ, which minimizes the GCV functional defined by [44]

VGCV(λ) = ‖$(λ)‖2
2/tr[Ξ(λ)]2, (16)

where the matrix

Ξ(λ) = IN,N −ΦN,K

(
ΦT

N,KΦN,K + λIK,K

)−1
ΦT

N,K,

and

$(λ) = Ξ(λ)
−
GN =

−
GN −ΦN,K

−
g

λ

K,

are the residual vector for the regularized solution (15); tr[Ξ(λ)] denotes the trace of Ξ(λ).
The problem of choosing the optimal regularization parameter

λGCV = min
{

λ : λ = arg min
λ≥0

VGCV(λ)

}
. (17)

has a unique solution and the resulting parameter
−
g

λGCV

K differs the least from the nor-
mal solution of problem (14) that we would obtain for the ideal (not noise corrupted)
measurements of the relaxation modulus [44].

2.5. Algebraic Background

Formula (15) is generally unsuitable for computational purposes. The singular value
decomposition (SVD, [45]) technique will be used. Let SVD of the N × K dimensional
matrix ΦN,K take the form [45]:

ΦN,K = UΣVT , (18)

where Σ = diag(σ1, . . . , σr, 0, . . . , 0)εRN,K is diagonal matrix containing the non-zero sin-
gular values σ1, . . . , σr of the matrix ΦN,K [45], matrices V ∈ RK,K and U ∈ RN,N are
orthogonal and r = rank(ΦN,K) < N. Taking advantage of the diagonal structure of Σ and
the matrices V and U orthogonality, it may be simply proved that the regularized optimal

parameter
−
g

λ

K (15) is given by
−
g

λ

K = VΛλUT
−
GN , (19)

where K× N diagonal matrix Λλ is as follows:

Λλ = diag
(

σ1/
(

σ2
1 + λ

)
, . . . , σr/

(
σ2

r + λ
)

, 0, . . . , 0
)

. (20)

Using SVD (18) and introducing N dimensional vector Y = UT
−
GN , the GCV function

(16) can be expressed by a convenient analytical formula

VGCV(λ) =

[
∑r

i=1
λ2y2

i(
σ2

i + λ
)2 + ∑N

i=r+1 y2
i

]
/

[
N − r + ∑r

i=1
λ(

σ2
i + λ

)]2

, (21)

as a function of the singular values σi and elements yi of the vector Y. The function
VGCV(λ) is differentiable for any λ; thus, an arbitrary gradient optimization method can be
implemented to solve the GCV minimization task (17).

3. Results and Discussion

In this section, a general scheme of the relaxation spectrum identification is given. The
most important results for the evaluation of the effectiveness of the algorithm and models
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are presented, concerning the smoothing of the models, their accuracy for ideal and noisy
measurements of the relaxation modulus and the linear convergence to the model that
we would obtain for the noise-free measurements. Next, examples of orthonormal basis
functions hk(v) and corresponding functions φk(t) are given.

3.1. Identification Algorithm

The determination of the model of relaxation spectrum involves the following steps.

1. Perform the experiment (stress relaxation test [4,7,46,47]) and record the measure-

ments
−
G(ti), i = 1, . . . , N, of the relaxation modulus at times ti ≥ 0.

2. Choose the time-scaling factor α and the number K of model components comparing,
for different values of α, a few first functions from the sequence {φk(t)} with the

experiment results {
−
G(ti)}.

3. Compute the matrix ΦN,K (11) and next determine SVD (18).
4. Determine GCV function VGCV(λ) (21), and next compute the optimal regularization

parameter λGCV minimizing VGCV(λ), i.e., solving the optimization task (17).

5. Compute the regularized solution
−
g

λ

K according to (19) for λ = λGCV .

6. For λ = λGCV , using
−
g

λ

K computed above, determine the modified spectrum of

relaxation frequencies
−
H

M

K (v) according to:

−
H

M

K (v) = ∑K−1
k=0

−
g

λ

k hk(v). (22)

7. Determine the spectrum of relaxation frequencies
−
HK(v) according to

−
HK(v) =

−
H

M

K (v)v = ∑K−1
k=0

−
g

λ

k hk(v)v. (23)

Two Remarks

1. Only the SVD of the matrix, ΦN,K, of computational complexity O
(

NK2) [45] is a
space- and time-consuming task of the scheme. However, the SVD must be computed
only once and is accessible in the form of optimized numerical procedures in most
commonly used computational packets.

2. The matrix ΦN,K depends on the choice of the basis functions as well as the measure-
ment points ti; however, it does not depend on the relaxation modulus measurements
−
G(ti). Thus, when the identification scheme is applied for successive samples of the
same material, step 3 should not be repeated while the same time instants ti are kept
and the same model parameters α and K are selected in step 2.

3.2. Analysis

In the context of the ill-posed inverse problem, for which the model quality index
refers to the measured relaxation modulus but not directly to the unknown relaxation
spectrum H(v) and the modified spectrum HM(v) (4), we cannot estimate the error∥∥∥∥∥−HM

K (v)− HM(v)

∥∥∥∥∥ directly. As a reference point for the determined model
−
H

M

K (v) (22), we

will consider several characteristics, as follows:

(a) The model of the relaxation spectrum that we would obtain on the basis of ideal
(undisturbed) measurements of the relaxation modulus:

∼
H

M

K (v) = ∑K−1
k=0

∼
g

λ

k hk(v), (24)
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where
∼
g

λ

K is the vector of regularized solution of (14)

∼
g

λ

K =
(

ΦT
N,KΦN,K + λIK,K

)−1
ΦT

N,KGN , (25)

for noise-free measurements of relaxation modulus GN =
[
G(t1) · · · G(tN)

]T ; c.f.,
Equation (11)

(b) The model of the relaxation spectrum that we obtain on the basis of the normal

solution
−
g

N

K = Φ†
N,K

−
GN of the linear-quadratic problem (13) for noise measurements

of the relaxation modulus:

−
H

N

K (v) = ∑K−1
k=0

−
g

N

k hk(v), (26)

where Φ†
N,K is the Moore–Penrose pseudoinverse [48] of matrix ΦN,K, and

−
g

N

k is the ele-

ments of the vector
−
g

N

K

(c) The model of the relaxation spectrum that we would obtain on the basis of the

normal solution
∼
g

N
K = Φ†

N,KGN of the linear-quadratic problem (13) for noise-free
measurements of the relaxation modulus:

∼
H

N

K (v) = ∑K−1
k=0

∼
g

N
k hk(v). (27)

Most of the results are formulated in terms of algebraic tools of the algorithm, i.e.,
SVD decomposition (18) of the matrix ΦN,K. Such an analysis enables a deeper insight into
the properties of the algorithm and the resulting model. It shows not only the influence of
the regularization parameter and measurement errors, but also the impact and significance
of the selection of the basis functions, including their parameters and measurement points
ti, on which the singular values σi of the matrix ΦN,K depend.

3.2.1. Smoothness

The purpose of Tikhonov regularization relies on stabilization of the resulting vector
−
g

λ

K. Due to the orthonormality of the basis functions hk(v) in the Hilbert space L2(0, ∞),

for an arbitrary
−
H

M

K (v) of the form (22), the following equality holds∥∥∥∥∥−HM

K (v)

∥∥∥∥∥
2

2

= ∑K−1
k=0 ∑K−1

j=0
−
g

λ

k
−
g

λ

j

∫ ∞

0
hk(v)hj(v)dv = ∑K−1

k=0

[
−
g

λ

k

]2

=

∥∥∥∥−gλ

K

∥∥∥∥2

2
, (28)

where ‖·‖2 means the square norm, both in the real Euclidean space as well as in L2(0, ∞).

Therefore, the smoothness of the optimal solution
−
g

λ

K of discrete problem (14) guarantees
that the fluctuations in the respective spectrum of relaxation, in particular the resulting

spectrum of relaxation
−
H

M

K (v) (22), are also bounded. In view of the above, due to orthonor-

mality of the elements the basis system {hk(v)}, the function
−
H

M

K (v) is the approximation
of the real modified spectrum HM(v) in the class of functions HM

K (v) (7), optimal in the
sense of the square identification index QN(gK) (10) of the bounded norm.

For any regularized
−
g

λ

K (19), bearing in mind the definition of the vector Y = UT
−
GN

and orthogonality of V, we have
∥∥∥∥−gλ

K

∥∥∥∥2

2
= YTΛT

λVTVΛλY = YTΛT
λΛλY. Thus, due to the
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diagonal structure of Λλ (20) and based on (28), the model smoothing efficiency can be
evaluated by the following relation:∥∥∥∥∥−HM

K (v)

∥∥∥∥∥
2

2

= ∑r
i=1

σ2
i y2

i(
σ2

i + λ
)2 < ∑r

i=1
y2

i
σ2

i
=

∥∥∥∥∥−HN

K (v)

∥∥∥∥∥
2

2

, (29)

which holds for an arbitrary regularization parameter λ > 0, where the spectrum
−
H

N

K (v)
is given by (26). The last equality in (29) holds, since for ΦN,K (18), the Moore–Penrose
pseudoinverse is Φ†

N,K = VΣ†UT , where K× N matrix Σ† = diag(1/σ1, . . . , 1/σr, 0, . . . , 0).
Keeping in mind (26) and (28), the above result can be derived directly from the following
inequality, proved in [28]:

∥∥∥∥−gλ

K

∥∥∥∥2

2
= ∑r

i=1

−
y

2

i(
−
σi + λ

)2 < ∑r
i=1

−
y

2

i
−
σ

2

i

=

∥∥∥∥−gN

K

∥∥∥∥2

2
,

where
−
σ1, . . . ,

−
σr are the non-zero singular values of the matrix ΦT

N,KΦN,K and
−
y i are

elements of the K dimensional vector
−
Y = VTΦT

N,K

−
GN = ΣTY, since

−
σi = σ2

i and
−
y i = σiyi.

The first equality in (29) illustrates the mechanism of stabilization. The following
rule holds: the greater the regularization parameter λ is, the more highly bounded the

fluctuations of the spectrum
−
H

M

K (v) are. Thus, due to orthogonality of the basis functions,

the regularization parameter controls the smoothness, not only of the parameter
−
g

λ

K but

also of the model
−
H

M

K (v). The non-zero singular values of the matrix ΦN,K and the vector

of measurement data
−
GN also affect the smoothness of the spectrum model.

3.2.2. Convergence

Relaxation spectrum
−
H

M

K (v) (22) is only an approximation of that spectrum, which
can be obtained in the class of models (7) by direct minimization (without regularization)
of the quadratic index QN(gK) (12) for noise-free measurements, i.e., the approximation of

the function
∼
H

N

K (v) (27). Since

−
g

λ

K −
∼
g

N
K = V

(
Λλ − Σ†

)
U

T−
GN + VΣ†UTzN ,

where zN =
[
z(t1) · · · z(tN)

]T is vector of measurement noises, based on (28); the

diagonal structure of
(

Λλ − Σ†
)

and using the Schwarz inequality [49], the following
bound of the relaxation spectrum approximation error can be derived:∥∥∥∥∥−HM

K (v)−
∼
H

N

K (v)

∥∥∥∥∥
2

=

∥∥∥∥−gλ

K −
∼
g

N
K

∥∥∥∥
2
≤∑r

i=1
λ|yi|

σi
(
σ2

i + λ
) + 1

σ2
r
‖zN‖2. (30)

The inequality (30) yields that the accuracy of the spectrum approximation depends
both on the measurement noises and the regularization parameter and on the singular
values σ1, . . . , σr of the matrix ΦN,K, which, in turn, depend on the selection of the ba-

sis orthogonal functions hk(v). Using (30), the regularized vector
−
g

λ

K converges to the

noise-free normal solution
∼
g

N
K linearly with respect to the norm ‖zN‖2, as λ→ 0 and

‖zN‖2 → 0 , simultaneously. Therefore, the upper bound in (30) guarantees that the spec-



Polymers 2023, 15, 958 10 of 35

trum
−
H

M

K (v) tends to
∼
H

N

K (v) in each point v, at which they are both continuous, as λ→ 0
and ‖zN‖2 → 0 , simultaneously.

3.2.3. Noise Robustness

The influence of disturbances in the measurements of the relaxation modulus on the

regularized solution
−
g

λ

K was analyzed in detail in a two-part paper [27,50]. From Property
2 in [50], the following inequalities result:∥∥∥∥∥−HM

K (v)−
∼
H

M

K (v)

∥∥∥∥∥
2

=

∥∥∥∥−gλ

K −
∼
g

λ

K

∥∥∥∥
2
≤ max

1≤i≤r

σi(
σ2

i + λ
)‖zN‖2 ≤

σ1

(σ2
r + λ)

‖zN‖2.

Thus, the regularized vector
−
g

λ

K converges to the noise-free regularized solution
∼
g

λ

K

(25), and the relaxation spectrum
−
H

M

K (v) tends to the noise-free spectrum
∼
H

M

K (v) (24) in
each point v, where they are both continuous, linearly with respect to the norm ‖zN‖2, as
‖zN‖2 → 0 . From the above estimations, it is also evident that the accuracy of the spectrum

approximation measured by

∥∥∥∥∥−HM

K (v)−
∼
H

M

K (v)

∥∥∥∥∥
2

depends both on the measurement noises

and the regularization parameter λ and on the singular values of the matrix ΦN,K.

3.3. Legendre Model

Let us assume a basis function

hk(v) =
√

2α(2k + 1)e−αvPk

(
1− 2e−2αv

)
, k = 0, 1, 2, . . ., (31)

with the time-scaling factor α, where Pk(x) is Legendre polynomials [51–53] defined by
Rodrigue’s formula

Pk(x) =
1

2kk!
dk

dxk

(
x2 − 1

)k
, k = 0, 1, 2, . . ..

The polynomials Pk(x) form a complete set of orthonormal basis in the interval [−1, 1]
with the weight (2k + 1)/2 [51,53]. Thus, using the substitution x = 1− 2e−2αv, it is easy
to observe that the functions hk(v) defined by (31) form a complete orthonormal basis in
L2(0, ∞) [49]. The relaxation modulus basis functions φk(t) (9) are as follows:

φk(t) =
√

2α(2k + 1)
∏k−1

i=0 [(2i + 1)α− t]

∏k
i=0[(2i + 1)α + t]

, k = 0, 1, 2, . . ., (32)

where the product ∏
p
i=0 xi is equal to 1 when p < 0. The proof by induction is presented in

Appendix A.1. The above formula can be equivalently expressed in recurrent form as

φk+1(t) = φk(t)
√

2k + 3[(2k + 1)α− t]√
2k + 1[(2k + 3)α + t]

, k = 0, 1, 2, . . .,

starting with

φ0(t) =
√

2α

α + t
.

Five first basis functions hk(v) are shown in Figure 1a,b for two different values of the
time-scaling factor α. Figure 1c,d show the related φk(t) functions. From the last figure, it is
seen that the basis functions for the relaxation modulus model are in good agreement with
the real relaxation modulus obtained in the experiment.
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Figure 1. Basis functions hk(v) (31) and φk(t) (32) of the Legendre model for two time-scaling factors
α: (a) hk(v), α = 0.05[s]; (b) hk(v), α = 0.5[s]; (c) φk(t), α = 0.05[s]; (d) φk(t), α = 0.5[s]; k = 0, 1, 2, 3, 4.

3.4. Laguerre Model

The Laguerre polynomials can be defined via Rodrigue’s formula [51,54]:

Lk(v) =
eαv

k!
dk

dvk

(
vke−αv

)
, k = 0, 1, 2, . . . (33)

where α > 0 is a time-scaling factor [55]. The continuous Laguerre function is the product of
the Laguerre polynomial and the square root of the exponential weight function αe−αv [56],
i.e.,

hk(v) =
√

αe−αv/2Lk(v), k = 0, 1, 2, . . . (34)

The Laguerre functions form a complete orthonormal basis in L2(0, ∞) [51,56]. In
Appendix A.2, the following formula is derived for the modulus basis functions:

φk(t) =
√

α
(
t− α

2
)k(

t + α
2
)k+1 , k = 0, 1, 2, . . .. (35)

The above formula is given by Wang and Cluett [55], but as there are several definitions
of the Laguerre functions in the literature, and, as a result, several formulas of the Laplace
transforms, for example, in [57], the derivation of (35) is given in Appendix A.2 to avoid
doubts.

A few first basis functions hk(v) are shown in Figure 2a,b for two different values of
the time-scaling factor α; the corresponding functions φk(t) are plotted in Figure 2c,d.
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Figure 2. Basis functions hk(v) (34) and φk(t) (35) of the Laguerre model for two time-scaling factors:
(a) hk(v), α = 1[s]; (b) hk(v), α = 10[s]; (c) φk(t), α = 1[s]; (d) φk(t), α = 10[s]; k = 0, 1, 2, 3, 4.

3.5. Chebyshev Model

The Chebyshev polynomials of the first kind defined by the recursion relation [58,59]:

Tk(x) = 2xTk−1(x)− Tk−2(x), k = 2, 3, . . ., (36)

starting with
T0(x) = 1, T1(x) = x, (37)

are orthogonal in the interval [−1, 1] with the weight function
(
1− x2)−1/2 [58]. Specifi-

cally, ∫ 1

−1

Tk(x)Tm(x)√
1− x2

dx =


0 k 6= m
π
2 k = m = 1, 2, . . .
π k = m = 0

Thus, using the substitution x =
(
1− 2e−2αv), it is easy to demonstrate that the set of

functions

hk(v) = 2
√

α

π

(
e2αv − 1

)−1/4
Tk

(
1− 2e−2αv

)
, k = 1, 2, . . . , (38)

with the first function defined as

h0(v) =

√
2α

π

(
e2αv − 1

)−1/4
, (39)
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form an orthonormal basis in the space L2(0, ∞). Here, as previously, α is a positive time-
scaling factor. The relaxation modulus basis functions φk(t) (9) are described by a useful
recursive formula

φk(t) = 2φk−1(t)− φk−2(t)− 4φk−1(t + 2α), k = 3, 4, . . ., (40)

and for k = 0, 1, 2 are given by:

φ0(t) =
1√
2πα

Γ
( 3

4
)
Γ
(

t
2α + 1

4

)
Γ
( t

2α + 1
) , (41)

φ1(t) =
(α− t)
2α
√

πα

Γ
( 3

4
)
Γ
(

t
2α + 1

4

)
Γ
( t

2α + 2
) , (42)

φ2(t) =
(
2α2 + t2 − 6αt

)
4α2
√

πα

Γ
( 3

4
)
Γ
(

t
2α + 1

4

)
Γ
( t

2α + 3
) , (43)

where Γ(n) is the Euler’s gamma function [60]. The proof is given in Appendix A.3, where
two alternative formulas (A11) and (A12) for φ1(t) and φ2(t), respectively, are also derived.
A few first basis functions hk(v) are shown in Figure 3a,b for two values of the factor α; the
corresponding functions φk(t) are plotted in Figure 3c,d. An earlier version of the model
was presented in the paper [61].
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Figure 3. Basis functions hk(v) (38), (39) and φk(t) (40)–(43) of the Chebyshev model for two time-
scaling factors: (a) hk(v), α = 0.1[s]; (b) hk(v), α = 1[s]; (c) φk(t), α = 0.1[s]; (d) φk(t), α = 1[s];
k = 0, 1, 2, 3, 4.
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3.6. Hermite Model

The Hermite functions defined as [52,62,63]

hk(v) =
√

α√
2kk! 4
√

π
e−(αv)2/2Hk(αv), k = 0, 1, . . . , (44)

where α > 0 is time-scaling factor and Hk(x) are the Hermite polynomials, which satisfy
recursion formula [52]:

Hk(x) = 2xHk−1(x)− 2(k− 1)Hk−2(x), k = 2, 3, . . . , (45)

with the initial
H0(x) = 1, H1(x) = 2x, (46)

constitute an orthonormal system in the space L2(−∞, ∞) [52,63]. The relaxation modulus
basis functions φk(t) (9) are described by the recursive formula:

φk(t) =
1√

2k−2k!α 4
√

π
Hk−1(0) +

√
k− 1

k
φk−2(t)−

√
2√

kα
tφk−1(t), k = 2, 3, . . . (47)

and for k = 0, 1 are given by

φ0(t) =
4
√

π√
2α

et2/(2α2)er f c
(

t√
2α

)
, (48)

and

φ1(t) =
√

2√
α 4
√

π
−
√

2
α

tφ0(t), (49)

where the complementary error function er f c(x) is defined by [64]:

er f c(x) =
2√
π

∫ ∞

x
e−z2

dz. (50)

The derivation of the above formulas is given in Appendix A.4. The initial values Hk(0) of
Hermite polynomials are specified by [52]:

H2k(0) = (−1)k(2k)!/k! and H2k+1(0) = 0. (51)

A few first basis functions hk(v) are shown in Figure 4a,b for two factors α. The related
functions φk(t) are plotted in Figure 4c,d. The function φ0(t), and, in consequence of the
recursive Formula (47), all functions φk(t), depend on the exponential multiplier et2/(2α2)

rapidly moving towards infinity. The following asymptotic properties were proved in
Appendix A.5 for any α > 0:

lim
t→∞

φ
k
(t) = 0, k = 0, 1, 2, . . ., (52)

lim
t→∞

tφ
k
(t) =

α√
2kαk! 4

√
π

Hk(0) k = 0, 1, 2, . . .. (53)

However, in numerical computations, the limited values of φk(t) can be guaranteed only
for t ≤ tupp, where tupp depends on the maximal real number accessible in the computing
environment. For example, in Matlab, the largest finite floating-point number in IEEE
double precision realmax =

(
2− 2−52)·21023 ∼= 1.7977·10308. Thus, in view of (48), the

range of numerical applicability of the Hermite model in the time domain, determined by
the inequality

et2/(2α2) ≤ realmax,
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is as follows

t ≤ tupp =
√

2α2ln(realmax) = α
√

2ln(realmax) ∼= 37.6771α. (54)
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Smoothness

Since the basis functions hk(v) of the Hermite model presented above form an or-
thonormal basis of the space L2(−∞, ∞) of square integrable functions on (−∞, ∞), for
Hermite model estimation (28) can be replaced by∥∥∥∥∥−HM

K (v)

∥∥∥∥∥
2

2

=
∫ ∞

0

[
−
H

M

M(v)

]2

dv ≤
∫ ∞

−∞

[
−
H

M

M(v)

]2

dv = ∑K−1
k=0

[
−
g

λ

k

]2

=

∥∥∥∥−gλ

K

∥∥∥∥2

2
.

Therefore, for the Hermite model, the algorithm may (but does not have to) provide a

stronger limitation of the fluctuation in the determined relaxation spectrum
−
H

M

K (v) than
for the other models.

3.7. Choice of the Basis Functions

In the models proposed above, the parameter α > 0 is the time-scaling factor. The
following rule holds: the lower the parameter α is, the shorter the relaxation times are, i.e.,
the greater the relaxation frequencies are. The above is illustrated by Figures 1–4. Through
the optimal choice of the scaling factor, the best fit of the model to the experimental data
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can be achieved. However, in practice, a simple rough rule for choosing the factor α, based
on the comparison of a few first functions from the sequence {φk(t)} for different values of

α with the experimentally obtained function
−
G(ti), is quite enough. In the same manner, the

number K of the series GK(t) (8) elements can be initially evaluated. This rough selection
strategy of the model parameters was used in the examples presented below. Thus, the
choice of the number K and the parameter α must be carried out a posteriori, after the
preliminary experiment data analysis.

The ranges of applicability of the four classes of models described above in the relax-
ation times t domain and the relaxation frequencies v domain for different values of α are
summarized in Table A1 in Appendix A.6. It was assumed that the range of applicability
for times is determined by the value of time t, for which the first K = 11 basis functions
φk(t) no longer permanently exceed, i.e., for any θ > t, ε = 0.5% of its maximum value.
Specifically,

tapp = max
0≤k≤K−1

min
t>0
{t : |φk(θ)| ≤ 0.005·φkmax for any θ ≥ t}, (55)

where
φkmax = max

t≥0
|φk(t)|.

Similarly, the range of applicability for the relaxation frequencies was defined on the
basis of the variability in the basis functions hk(v). Here,

vapp = max
0≤k≤K−1

min
v>0
{v : |hk(ϑ)| ≤ 0.005·hkmax for any ϑ ≥ v}, (56)

with hkmax defined by
hkmax = max

v≥0
|hk(v)|.

In view of the problems described above concerning the numerical determination
of the basis functions only for t ≤ tupp, with tupp defined in (54), for the Hermite model,
ε = 0.0212 was assumed.

3.8. Example 1

Consider viscoelastic material of relaxation spectrum described by Gauss-like distri-
bution [11]

H(v) = ve−(v−2)2/3, (57)

The corresponding modified spectrum HM(v) (4) is:

HM(v) =
H(v)

v
= e−(v−2)2/3. (58)

and, therefore, using (5), the ‘real’ relaxation modulus is

G(t) =
∫ ∞

0
e−(v−2)2/3e−tvdv =

√
3π

2
e

3
4 t2−2ter f c

(
3t− 4
2
√

3

)
(59)

where er f c is defined by (50). In the experiment, N = 1000 sampling instants ti were
generated with the constant period in the time interval T = [0, 32] seconds selected in view
of the course of the modulus G(t) (59). Additive measurement noises z(ti) were selected in-
dependently by random choice with uniform distribution on the interval [−0.005, 0.005]Pa,
i.e., maximally 6.1% of the mean value of G(t) in the interval T defined as the average
value of the integral of G(t) over T , which is equal to 0.0820Pa. The time-scaling factors
α are selected by comparison for different values of α a few first functions φk(t) with the

experiment results
−
G(ti). Only for the Chebyshev model, the rough selection of α required

several attempts; for the remaining classes of models, it was enough to review the data
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from Table A1. The basis functions hk(v) and φk(t) were simulated in Matlab R2022a
using special functions erfc, legendreP, chebyshevT, and hermiteH. For the singular value
decomposition procedure, svd was applied. For K = 6, 8, 9, 10,11, and sometimes also for
K = 12, the regularization parameters λGCV were determined and are given in Table 1.

Next, the vectors of optimal model parameters
−
g

λ

K =
−
g

λGCV

K (19) were computed and are
given in Table A2 in Appendix B. Only for the Laguerre models, some elements of the
vectors of optimal parameters are negative; for the remaining classes of models, all the

parameter vectors
−
g

λGCV

K are positive. The optimal modified spectra of relaxation frequen-

cies
−
H

M

K (v) (22) and the ‘real’ spectrum HM(v) (58) are plotted in Figure 5 for selected

values of K, while in Figure 6, the spectra
−
HK(v) (23) and H(v) (57) are presented. The

optimal models of the relaxation modulus GK(t) computed for gK =
−
g

λGCV

K according to (8)

are plotted in Figure A1 in Appendix B, where the measurements
−
G(ti) are also marked.

Since the optimal models GK(t) (8) fitted the data extremely well, as indicated especially

by the mean-square model errors QN

(
−
g

λGCV

K

)
/N, which vary between 0.80·10−5Pa2 and

0.117·10−4Pa2, models GK(t) for different K practically coincide with the measurement

points and with each other (see Figure A1). The norms
∥∥∥∥−gλ

K

∥∥∥∥
2

and

∥∥∥∥∥−HM

K (v)

∥∥∥∥∥
2

, as the mea-

sures of the solution smoothness, and the identification index QN

(
−
g

λGCV

K

)
(10), being a

measure of the errors of the relaxation modulus models, are also given in Table 1. For the
‘real’ modified spectrum HM(v) (58), the norm

∥∥HM(v)
∥∥

2 = 1.4656Pa·s1/2. The distance

between the ‘real’ spectrum HM(v) (58) and their models
−
H

M

K (v) (22) was estimated by
integral square error, defined as:

ERR2 =

∥∥∥∥∥−HM

K (v)− HM(v)

∥∥∥∥∥
2

2

=
∫ ∞

0

[
−
H

M

K (v)− HM(v)

]2

dv, (60)

and is given in the last column of Table 1.

3.9. Example 2

Consider the spectrum of relaxation times introduced by Baumgaertel, Schausberger
and Winter [36,37],

H(τ) =

{
β1

(
τ

τc

)ρ1

+ β2

(
τ

τc

)ρ2
}

e−
τ

τmax ,

which is known to be effective in describing polydisperse polymer melts [17,34], with
the parameters [34]: β1 = 6.276·104Pa, β2 = 1.27·105Pa, τc = 2.481s, τmax = 2.564·104s,
ρ1 = 0.25 and ρ2 = −0.5. The related spectra of relaxation frequencies H(v) = H

(
1
v

)
and

HM(v) (4) are well posed for v > 0. The modified spectrum is described by

HM(v) =
H(v)

v
=

1
v

{
β1

(
1

vτc

)ρ1

+ β2

(
1

vτc

)ρ2
}

e−
1

vτmax (61)

and depicted in Figure 7; the corresponding ‘real’ relaxation modulus G(t) is defined by
(5). In the experiment, N = 1000 time instants ti were sampled according to the square
rule ti = ∆t(i− 1)2 + 60 s, with parameter ∆t = T/(N − 1)2, where T = 107s, in the
time interval T = [0, T] is selected in view of the course of the modulus G(t). Due to
the numerical problems described above related to determining the basis functions φk(t),
Equations (47)–(49), for the Hermite model the experiment was simulated in a shorter
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time interval T = 106s using the same sampling formula. Additive measurement noises
z(ti) were selected independently by random choice with uniform distribution on the
interval [−0.0005, 0.0005]MPa. Here, for the selection of parameter α, which guarantees a
satisfactory accuracy of the modulus approximation, several or even a dozen or so attempts
were necessary. This means that it will be advisable to further extend the algorithm by
the level of optimal selection of the time-scaling factors. For K = 6, 8, 10,12,14, and also
for K = 16, the regularization parameters λGCV were determined and are given in Table 2.
Only for the Laguerre and Legendre models, the accuracy of the modulus approximation

measured by QN

(
−
g

λGCV

K

)
, Equation (10), is comparable to that obtained in Example 1.

Thus, the vectors of optimal model parameters
−
g

λ

K =
−
g

λGCV

K (19) for Legendre and Laguerre
models are given in Table A3 in Appendix B; for the remaining models, they were omitted.

The optimal spectra
−
H

M

K (v) (22) and the ‘real’ spectrum HM(v) (58) are plotted in Figure 7
for Laguerre and Legendre models; a logarithmic scale is used for the frequencies v and
a linear scale for the spectrum. For Legendre and Laguerre models, the optimal models

GK(t) computed for gK =
−
g

λGCV

K are plotted in Figure 8, where the measurements
−
G(ti) are

also marked and logarithmic scale is applied for time axis. The norms
∥∥∥∥−gλ

K

∥∥∥∥
2
,

∥∥∥∥∥−HM

K (v)

∥∥∥∥∥
2

and the identification index QN

(
−
g

λGCV

K

)
are given in Table 2. For the ‘real’ modified

spectrum HM(v) (58), the norm
∥∥HM(v)

∥∥
2 = 56.9809MPa·s1/2. The distance between the

‘real’ spectrum HM(v) (58) and its models
−
H

M

K (v) (22) was estimated by the integral square
errors ERR, defined in (60) and given in Table 2, only for Legendre and Laguerre models.
For the Chebyshev and Hermite models, a satisfactory quality of approximation was not
obtained, despite the research carried out for a wide range of α values. The best found α and

related identification indices QN

(
−
g

λGCV

K

)
are given in Table 2, but other indices are omitted.

The optimal Legendre and Laguerre models GK(t) (8) were well fitted to the experimental

data, see Figure 8a,b, as also indicated by the mean-square model errors QN

(
−
g

λGCV

K

)
/N,

which vary in a range from 5.27·10−7MPa2 to 3.26·10−6MPa2. For the Chebyshev and
Hermite models, even increasing the number of model summands K does not improve
the poor approximation of the relaxation modulus data (see Figure 8c,d and the values

of QN

(
−
g

λGCV

K

)
from Table 2). In particular, the course of the GK(t) model from Figure 8c

shows that it is not too few components of the model but the properties of the Chebyshev
model that make it ineffective for approximating the relaxation spectrum HM(v) (61).

Table 1. The parameters of the optimal models in Example 1: time-scale factors α, numbers of model
summands K, regularization parameter λGCV and the approximation error indices: identification

index QN

(
−
g

λGCV

K

)
, Equation (10), the errors ERR (60) of the relaxation spectrum models.

Model K α [s] λGCV [-] QN

(
-
g

λGCV
K

)
[Pa2] ‖ -

g
λ

K‖2 [Pa·s1/2] ‖
-

H
M

K (v)‖2 [Pa·s1/2]
ERR

[Pa·s1/2]

Legendre model

6 1 0.03378 0.0088 1.5518 1.5518 2.0782
8 1 0.03239 0.0083 1.4833 1.4833 2.0643
9 1 0.03186 0.0084 1.4657 1.4657 2.0597
10 1 0.03139 0.0087 1.4537 1.4537 2.0559
11 1 0.03098 0.0089 1.4452 1.4452 2.0529
12 1 0.03062 0.0091 1.4391 1.4391 2.0505

Laguerre model

6 6 0.03259 0.0084 1.4929 1.4929 1.9914
8 6 0.02744 0.0093 1.4222 1.4222 2.0414
9 6 0.02560 0.0092 1.4240 1.4240 2.0435
10 6 0.0239 0.0089 1.4262 1.4262 2.0448
11 6 0.02256 0.0088 1.4253 1.4253 2.0444
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Table 1. Cont.

Model K α [s] λGCV [-] QN

(
-
g

λGCV
K

)
[Pa2] ‖ -

g
λ

K‖2 [Pa·s1/2] ‖
-

H
M

K (v)‖2 [Pa·s1/2]
ERR

[Pa·s1/2]

Chebyshev
model

6 1.5 0.03103 0.00992 1.5215 1.5215 2.1119
8 1.5 0.03077 0.00981 1.4677 1.4677 2.0811
9 1.5 0.03062 0.0101 1.4543 1.4543 2.0668
10 1.6 0.03165 0.0089 1.4875 1.4875 2.0864
11 1.6 0.03148 0.0091 1.47492 1.4749 2.0775
12 1.6 0.03126 0.009246 1.4651 1.4651 2.0713

Hermite model

6 1 0.00625 0.0117 1.6405 1.6029 2.0529
8 1 0.00588 0.0081 1.5077 1.4891 2.0674
9 1 0.00599 0.0080 1.4731 1.4639 2.0592
10 1 0.00599 0.0080 1.4611 1.4569 2.0607
11 1 0.00566 0.0080 1.4600 1.4561 2.0654
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Table 2. The parameters of the optimal models in Example 2: time-scale factors α, numbers of model

summands K, regularization parameter λGCV , optimal model parameters
−
g

λGCV

K , approximation

error indices: identification index QN

(
−
g

λGCV

K

)
, Equation (10), the errors ERR (60) of the relaxation

spectrum models.

Model K α [s] λGCV [-]
QN

(
−
g

λGCV
K

)
[MPa2]

‖−g
λ

K‖2
[MPa·s1/2]

‖
−
H

M

K (v)‖2
[MPa·s1/2]

ERR[
MPa·s1/2

]

Legendre model

6 950 2.72 × 10−6 0.003261 62.717 62.717 80.604
8 620 4.968 × 10−6 0.00135 58.9351 58.9351 79.7444
10 500 6.372 × 10−6 0.0007138 57.4422 57.4422 79.7170
12 400 7.754 × 10−6 0.000557 56.8251 56.8251 79.7917
14 300 9.226 × 10−6 0.000575 56.6390 56.6390 79.8353

Laguerre model

8 8500 2.524 × 10−6 0.002722 63.0250 63.0250 82.4674
10 8000 3.668 × 10−6 0.001494 59.7092 59.7092 81.0828
12 7500 4.840 × 10−6 0.0009379 58.3032 58.3032 80.6344
14 8000 5.294 × 10−6 0.000711 57.3277 57.3277 80.3069
16 6000 7.498 × 10−6 0.000699 57.39886 57.39886 80.4441
18 6500 7.686 × 10−6 0.000527 56.7967 56.7967 80.1877

Chebyshev
model

6 31,000 6.0 × 10−7 0.8259 289.32 289.32
8 31,500 6.0 × 10−7 0.7115 346.30 346.30
10 32,000 5.0 × 10−7 0.6504 376.6564 376.66
12 33,000 5.0 × 10−7 0.6344 379.0402 379.04
14 33,000 5.0 × 10−7 0.6029 375.3072 375.31
16 34,500 5.0 × 10−7 0.6136 382.0129 382.01

Hermite model

6 27,000 1.8 × 10−6 3.0971 390.24 387.13
8 26,800 1.6 × 10−6 2.1911 452.31 445.67
10 26,750 1.6 × 10−6 1.9010 440.42 436.32
12 26,700 1.8 × 10−6 1.8148 389.93 378.76
14 26,600 0.999 × 10−6 2.9235 472.33 467.32
16 26,600 0.994 × 10−6 2.7767 467.45 461.56

3.10. Remarks

The example orthogonal basis functions for relaxation spectrum models have been
assumed as the products of exponentials and Legendre, Laguerre, Chebyshev and Hermite
polynomials. For Legendre and Laguerre models, the basis functions φk(t) of the relaxation
modulus are rational functions; for the Chebyshev model, they are determined by the
quotient of the Euler’s gamma functions, which is a generalization of the factorial of a
non-negative integer for the no-integer argument, while, for the Hermite model, these
functions are based on the complementary error function. From Figures 1c,d and 2c,d, it is
evident that the basis functions φk(t) for the relaxation modulus of Legendre and Laguerre
models are in good agreement with the real relaxation modulus obtained in the experiment.
However, Figures 3c,d and 4c,d show that, for the Chebyshev and Hermite models, so good
agreement is not achieved for individual functions φk(t). Hence, a significantly worse fit
of the Chebyshev and Hermite models to the measurement data for the spectrum from
Example 2, which has a much wider range of relaxation frequencies, results.

Both examples show that, generally, increasing the number of model summands
improves the model quality, provided that the assumed series can provide a good approxi-
mation of the relaxation modulus. If a given series of special functions is not suitable for
approximation of the relaxation modulus for a given material, then, as shown by the re-
search conducted for the Chebyshev and Hermite models in the second example, increasing
the number of series components does not improve the quality of the model.
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is evident that the basis functions 𝜙௞(𝑡) for the relaxation modulus of Legendre and La-
guerre models are in good agreement with the real relaxation modulus obtained in the 
experiment. However, Figures 3c,d and 4c,d show that, for the Chebyshev and Hermite 
models, so good agreement is not achieved for individual functions 𝜙௞(𝑡). Hence, a sig-
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ing the number of series components does not improve the quality of the model. 
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combines the technique of an expansion of a function into a series in an orthonormal basis 
with the least-squares regularized identification, was derived. It was demonstrated that 
due to the choice of an appropriate special functions (Legendre, Laguerre, Chebyshev, 
Hermite) as the basis functions for the relaxation spectrum model, the basis functions of 
the relaxation modulus model are given by compact analytical or recursive formulas. Due 
to the choice of orthonormal basis, the smoothness of the vector of the optimal model 
parameters implies equivalent smoothness of the fluctuations in the model of the relaxa-
tion spectrum. 

The proposed approach based on the expansion of the relaxation spectrum into a 
function series can be applied for arbitrary basis functions. The proven convergence and 
noise robustness properties of the optimal models will be retained, but the smoothing of 
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Figure 8. The measurements of the relaxation modulus G(t) corresponding to the relaxation spec-
trum HM(v) (61) (red points) from Example 2 and the optimal approximated models GK(t) (8):
(a) Legendre, (b) Laguerre, (c) Chebyshev, (d) Hermite.

4. Conclusions

In this paper, a class of algorithms for the relaxation spectrum identification, which
combines the technique of an expansion of a function into a series in an orthonormal basis
with the least-squares regularized identification, was derived. It was demonstrated that
due to the choice of an appropriate special functions (Legendre, Laguerre, Chebyshev,
Hermite) as the basis functions for the relaxation spectrum model, the basis functions of
the relaxation modulus model are given by compact analytical or recursive formulas. Due
to the choice of orthonormal basis, the smoothness of the vector of the optimal model
parameters implies equivalent smoothness of the fluctuations in the model of the relaxation
spectrum.

The proposed approach based on the expansion of the relaxation spectrum into a
function series can be applied for arbitrary basis functions. The proven convergence and
noise robustness properties of the optimal models will be retained, but the smoothing of the
spectrum model will require separate analysis. As part of further research, the algorithm
can be extended with a superior level of optimal selection of the time-scaling factor, so
as to obtain a better fit to the measurement data. The presented scheme of the relaxation
spectrum identification can be easily modified for the retardation spectrum recovery from
the creep compliance measurements obtained in the standard creep test.
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Nomenclature

G(t) linear relaxation modulus, Equation (1), Pa
G(ti) relaxation modulus obtained in stress relaxation test, i = 1, . . . , N, Pa
−
G(ti) noise corrupted measurement of the modulus G(ti), i = 1, . . . , N, Pa
GK(t) relaxation modulus model corresponding to HM

K (v), Equation (8), Pa
−
GN N dimensional vector of the measurements

−
G(ti), Equation (11)

GN N dimensional vector of noise-free measurements G(ti)

gk parameters of the model HM
K (v), k = 0, 1, . . . K− 1, Equation (7), Pa·s1/2

gK vector of parameters gk of the models HM
K (v) (7) and GK(t) (8)

−
g

λ

K solution of regularized task (14) given for regularization parameter λ by (15)
or (19)

∼
g

λ

K solution of regularized task (14) for ideal measurements, Equation (25)
−
g

λGCV

K vector of optimal model parameters determined by GCV method
−
g

N

K ,
∼
g

N
K normal solutions of least-squares problem (13) for noise and noise-free

measurements of the relaxation modulus
H(v) continuous spectrum of relaxation frequencies v, Equation (3), Pa
HM(v) modified relaxation spectrum, Equation (4), Pa·s
HM

K (v) model of the modified relaxation spectrum HM(v), Equation (7), Pa·s
−
H

M

K (v) model of modified spectrum HM(v) for ‘regularized′ parameter
−
g

λ

K
, Equation (22), Pa·s

−
HK(v) model of spectrum H(v) for ‘regularized′ parameter

−
g

λ

K , Equation (23), Pa
∼
H

M

K (v) model of HM(v) obtained for ideal measurements, Equation (24), Pa·s
−
H

N

K (v),
∼
H

N

K (v) models of HM(v) obtained for the normal solutions
−
g

N

K ,
∼
g

N
K described by

Equations(26) and (27), Pa
hk(v) basis functions of the model HM

K (v), k = 0, 1, . . . K− 1, Equation (7), Pa·s
IK,K K dimensional identity matrix
K number of model HM

K (v) summands, Equation (7), –
N number of measurements in the stress relaxation test, –
QN(gK) square identification index defined by (10), Pa2

r number of non-zero singular values of ΦN,K , –
ti sampling instants used in the stress relaxation test, i = 1, . . . , N, s
T time interval from which the sampling instants ti were generated
V, U orthogonal matrices of singular value decomposition of ΦN,K , Equation (18)
VGCV(λ) the GCV functional defined by (16) and expressed by (21)

Y N dimensional vector Y = UT
−
GN

z(ti) additive noise of relaxation modulus measurement, i = 1, . . . , N, Pa
zN N dimensional vector of measurement noises z(ti), i = 1, . . . , N, Pa
α time-scaling factor of the basis functions hk(v), s
λ regularization parameter introduced in the optimization task (14), –
λGCV optimal regularization parameter determined by GCV method, Equation (17)
Λλ K× N diagonal matrix defined by (20)
σi the non-zero singular values of ΦN,K , i = 1, 2, . . . , r, Equation (18)
Σ N × K diagonal matrix of singular values σ1, . . . , σr of ΦN,K , Equation (18)
ΦN,K N × K matrix defined by (11) basis for least-squares task (13)
Φ†

N,K the Moore− Penrose pseudoinverse of matrix ΦN,K
φk(t) basis functions defined by (9) of the model GK(t), Equation (8), s−1/2

ERR integral square error of HM(v) approximation, Equation (60), Pa·s1/2
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Appendix A

Appendix A.1 Derivation of the Formula (32)

Mathematical induction will be used. In the proof, the following recurrence represen-
tation of the Legendre polynomials [52,53]:

Pk(x) =
2k− 1

k
xPk−1(x)− k− 1

k
Pk−2(x), k = 2, 3, . . ., (A1)

is used, where the two first polynomials are as follows

P0(x) = 1, (A2)

and
P1(x) = x. (A3)

In the base case of the proof by induction, for k = 0 and k = 1, Formula (32) follows
immediately from definition (9) and properties (A2), (A3). For k = 0, by (9) (31) and (A2)
the basis function φk(t):

φ0(t) =
∫ ∞

0

√
2αe−αve−tvdv =

√
2α

1
t + α

=

√
2α

∏0
i=0[(2i + 1)α + t]

,

while for k = 1, applying (A3), we obtain:

φ1(t) =
√

6α

t + α
− 2
√

6α

t + 3α
=
√

2α(2 + 1)
∏0

i=0[(2i + 1)α− t]

∏1
i=0[(2i + 1)α + t]

.

For k ≥ 2, in the induction step, combining definitions (9) and (31), we have:

φk(t) =
∫ ∞

0

√
2α(2k + 1)e−αvPk

(
1− 2e−2αv

)
e−tvdv, (A4)

where, substituting Pk(x) given by recurrence Equation (A1) and having in mind (A4), we
obtain:

φk(t) = 2k−1
k

√
2α(2k+1)√
2α(2k−1)

φk−1(t)−
2(2k−1)

k

√
2α(2k+1)√
2α(2k−1)

φk−1(t + 2α)−

k−1
k

√
2α(2k+1)√
2α(2k−3)

φk−2(t).

Via the induction hypothesis, φk−2(t) and φk−1(t) are given by (32); thus, the basis
function φk(t) can be rewritten as:

φk(t) =√
2α(2k+1)

k [(2k− 1)∏k−2
i=0 [(2i+1)α−t]

∏k−1
i=0 [(2i+1)α+t]

− 2(2k− 1)∏k−2
i=0 [(2i+1)α−t−2α]

∏k−1
i=0 [(2i+1)α+t+2α]

−(k− 1)∏k−3
i=0 [(2i+1)α−t]

∏k−2
i=0 [(2i+1)α+t]

].

(A5)

Since
∏k−2

i=0 [(2i + 1)α− t− 2α]

∏k−1
i=0 [(2i + 1)α + t + 2α]

=
(−1)(t + α)∏k−3

i=0 [(2i + 1)α− t]

∏k
i=1[(2i + 1)α + t]

,

function φk(t) (A5) is given by

φk(t) =√
2α(2k+1)

k [(2k− 1)∏k−2
i=0 [(2i+1)α−t]

∏k−1
i=0 [(2i+1)α+t]

+ 2(2k− 1) (
t+α)∏k−3

i=0 [(2i+1)α−t]

∏k
i=1[(2i+1)α+t]

−(k− 1)∏k−3
i=0 [(2i+1)α−t]

∏k−2
i=0 [(2i+1)α+t]

],
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and, after algebraic manipulations, can be expressed as:

φk(t) =
√

2α(2k + 1)
∏k−2

i=0 [(2i + 1)α− t]

∏k−1
i=0 [(2i + 1)α + t]

[(2k− 1)α− t]
[(2k + 1)α + t]

.

Hence, the direct Formula (32) follows immediately.

Appendix A.2 Derivation of Formula (35)

To derive the basis function φk(t) (35), we start with the alternative formula of the
Laguerre polynomials Lk(v) (33) given by [65]:

Lk(v) = ∑k
j=0

(
k

k− j

)
(−αv)j

j!
, k = 0, 1, 2, . . . (A6)

An easy consequence of (A6) is

hk(v) =
√

α∑k
j=0

(
k

k− j

)
(−α)j

j!
vje−αv/2, k = 0, 1, 2, . . .

where, using the well-known formula for the Laplace transform

L
[
vje−αv/2

]
=

j!(
t + α

2
)j+1 , j = 0, 1, 2, . . .,

the basis functions φk(t) defined by (9) are given by

φk(t) =
√

α∑k
j=0

(
k

k− j

)
(−α)j(

t + α
2
)j+1

for k = 0, 1, 2, . . .. Hence, by binomial theorem, we have

φk(t) =
√

α(
t + α

2
)k+1 ∑k

j=0

(
k

k− j

)
(−α)j

(
t +

α

2

)k−j
=

√
α(

t + α
2
)k+1

(
t− α

2

)k
,

where Formula (35) follows. This formula is known in [55] and coincides with that given
in [66].

Appendix A.3 Derivation of Formulas (40)–(43)

Suppose α > 0. Let us first derive Formulas (41), (42). For k = 0 by (39) and (9),
we have

φ0(t) =
∫ ∞

0
h0(v)e−tvdv =

√
2α

π

∫ ∞

0

(
e2αv − 1

)−1/4
e−tvdv, (A7)

which, after substitution e−2αv = u, is equivalent to

φ0(t) =
1√
2απ

∫ 1

0

(
1
u
− 1
)− 1

4
u

t
2α−1du =

1√
2απ

∫ 1

0
(1− u)−

1
4 u

t
2α−

3
4 du,

whereby, due to the well-known Euler–Poisson integral [60]:∫ 1

0
(1− u)n−1um−1du =

Γ(n)Γ(m)

Γ(n + m)
,

we immediately obtain (41).
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For k = 1, by (38) and (9) for the polynomial T1(x) = x, the integral φ1(t) is given by

φ1(t) = 2
√

α

π

∫ ∞

0

(
e2αv − 1

)−1/4(
1− 2e−2αv

)
e
−tv

dv, (A8)

and, keeping in mind the last expression in (A7), can be rewritten as

φ1(t) =
√

2φ0(t)− 2
√

2φ0(t + 2α).

Then, from Equation (41), we obtain

φ1(t) =
1√
πα

Γ
(

3
4

)
Γ
(

t
2α + 1

4

)
Γ
( t

2α + 1
) − 2

1√
πα

Γ
(

3
4

)
Γ
(

t+2α
2α + 1

4

)
Γ
(

t+2α
2α + 1

) =
Γ
(

3
4

)
√

πα

Γ
(

t
2α + 1

4

)
Γ
( t

2α + 1
) − 2

Γ
(

t
2α + 1

4 + 1
)

Γ
( t

2α + 2
)

, (A9)

Using the well-known property of the Gamma function [60]:

Γ(x + 1) = xΓ(x), (A10)

Equation (A9), after algebraic manipulations, can be expressed as

φ1(t) =
(α− t)√

πα(t + 2α)

Γ
( 3

4
)
Γ
(

t
2α + 1

4

)
Γ
( t

2α + 1
) , (A11)

or in equivalent form as Formula (42).
For k = 2, by (36), (37) and (9), we have

φ2(t) = 2
√

α

π

∫ ∞

0

(
e2αv − 1

)−1/4[
2
(

1− 2e−2αv
)

T1

(
1− 2e−2αv

)
− 1
]
e−tvdv,

which, keeping in mind (A8) and (A7), can be rewritten as follows

φ2(t) = 2φ1(t)− 4φ1(t + 2α)−
√

2φ0(t),

and where, by (41), (A11) and (A10), after algebraic manipulations, we obtain

φ2(t) =
(
2α2 + t2 − 6αt

)
√

πα(t + 2α)(t + 4α)

Γ
( 3

4
)
Γ
(

t
2α + 1

4

)
Γ
( t

2α + 1
) , (A12)

or, equivalently, Equation (43).
Now, it remains to show that (40) holds for any k ≥ 3. Recalling the identity (36) and

using (38) for k ≥ 3, we have

hk(v) = 2
(
1− 2e−2αv)hk−1(v)− hk−2(v)
= 2hk−1(v)− hk−2(v)− 4e−2αvhk−1(v)

where, bearing in mind definition (9), we obtain (40), which concludes the proof.

Appendix A.4 Derivation of Formulas (47)–(49)

Let us first derive the formulas (48) and (49). Since H0(x) = 1, for k = 0, by applying
in the integral φ0(t) the substitution u = (αv + t/α)/

√
2, we have:

φ0(t) =
√

α
4
√

π

∫ ∞

0
e−(αv)2/2e−tvdv =

√
2√

α 4
√

π
et2/(2α2)

∫ ∞

t/(
√

2α)
e−u2

du, (A13)

where, by definition (50) of the complementary error function, Formula (48) is immediately
obtained.
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For k = 1, the polynomial H1(αv) = 2αv; then, the integral φ1(t) is as follows

φ1(t) =
√

2αα
4
√

π

∫ ∞

0
ve−(αv)2/2e−tvdv.

Comparing the first integral in Formula (A13) and the integral φ1(t), it is easy to notice that

φ1(t) = −
√

2αφ′0(t). (A14)

Since by (50), we have

der f c
(

t/
(√

2α
))

dt
= −

√
2

α
√

π
e−t2/(2α2), (A15)

Equations (A14) and (48) yield

φ1(t) = −
4
√

π√
α

[
t
α

et2/(2α2)er f c
(

t√
2α

)
−
√

2√
π

et2/(2α2)e−t2/(2α2)

]
,

where the next formula follows

φ1(t) =
4
√

π√
α

[√
2√
π
− t

α
et2/(2α2)er f c

(
t√
2α

)]
, (A16)

and, in view of (48), Formula (49) results.
The proof of the recursive Equation (47) is based on (45), which, by definitions (44)

and (9) for k ≥ 2, yields

φk(t) =
2α
√

α√
2kk! 4√π

∫ ∞
0 ve−(αv)2/2Hk−1(αv)e−tvdv

− 2(k−1)
√

α√
2kk! 4√π

∫ ∞
0 e−(αv)2/2Hk−2(αv)e−tvdv.

(A17)

By the integration by parts, the first integral in (A17) is as follows

Ik(t) =
∫ ∞

0 ve−(αv)2/2Hk−1(αv)e−tvdv = − 1
α2 e−(αv)2/2Hk−1(αv)e−tv

∣∣∣∞
0
+

1
α

∫ ∞
0 e−(αv)2/2H′k−1(αv)e−tvdv− t

α2

∫ ∞
0 e−(αv)2/2Hk−1(αv)e−tvdv,

which, bearing in mind that

lim
v→∞

[
e−(αv)2/2Hk−1(αv)e−tv

]
= 0,

and taking into account the known property of Hermite polynomials [52]:

H′k(x) = 2kHk−1(x)

and definitional Formulas (44), (9), can be expressed as

Ik(t) =
1
α2 Hk−1(0) +

2(k− 1)
√

2k−2(k− 2)! 4
√

π

α
√

α
φk−2(t)−

√
2k−1(k− 1)! 4

√
π

α2
√

α
tφk−1(t),
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which, combined with (A17), finally yields

φk(t) =
2α
√

α√
2kk! 4√π

[ 1
α2 Hk−1(0) +

2(k−1)
√

2k−2(k−2)! 4√π

α
√

α
φk−2(t)−

√
2k−1(k−1)! 4√π

α2√α
tφk−1(t)]−

2(k−1)
√

α√
2kk! 4√π

√
2k−2(k−2)! 4√π√

α
φk−2(t),

where, after algebraic manipulations, Formula (47) follows.

Appendix A.5 Proof of Formulas (52) and (53)

Mathematical induction will be used again. In the base step, we prove (52) and (53),
successively, for k = 0, k = 1 and k = 2. By (48), we have

φ0(t) =
4
√

π√
2α

et2/(2α2)er f c
(

t√
2α

)
=

4
√

π√
2α

er f c
(

t/
(√

2α
))

e−t2/(2α2)
, (A18)

where both the numerator and denominator of the expression on the right hand side of
(A18) become zero when t→ ∞ . Thus, using the L’Hospital’s rule, and taking into account
(A15), we obtain

lim
t→∞

φ0(t) =
4
√

π√
2α

lim
t→∞

−
√

2
α
√

π
e−t2/(2α2)

− t
α2 e−t2/(2α2)

=
4
√

π√
2α

lim
t→∞

√
2α√
πt

= 0.

Analogically,

lim
t→∞

tφ0(t) =
4
√

π√
2α

lim
t→∞

er f c
(

t/
(√

2α
))

1
t e
−t2/(2α2)

=
4
√

π√
2α

lim
t→∞

√
2

α
√

π

1
α2 +

1
t2

=
4
√

π√
2α

√
2√
π

α =

√
α

4
√

π
, (A19)

where, since by (51) the initial condition H0(0) = 1, we have

lim
t→∞

tϕ0(t) =
√

α
4
√

π
H0(0).

Now, by (A19) and (49), we have

lim
t→∞

φ1(t) =
√

2√
α 4
√

π
−
√

2
α

√
α

4
√

π
= 0.

In order to prove (53) for k = 1, it is enough to prove that tφ1(t)→ 0 , when t→ ∞ ,
since by (51), the initial condition H1(0) = 0. On the basis of (A16), we have

lim
t→∞

tφ1(t) =
4
√

π√
α

lim
t→∞

[ √
2√
π

1
t e
−t2/(2α2) − 1

α er f c
(

t/
(√

2α
))]

e−t2/(2α2)

t2

. (A20)

Thus, using the L’Hospital’s rule and keeping in mind (A15), we obtain

lim
t→∞

tφ1(t) =
√

2√
α 4
√

π
lim
t→∞

1
1
α2 t + 2

t
= 0,

where, since based on (47) and (51), we have

φ2(t) =

√
1
2

φ0(t)−
1
α

tφ1(t), (A21)
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we immediately obtain lim
t→∞

φ2(t) = 0. By (A21) and (A19), the limit

lim
t→∞

tφ2(t) = lim
t→∞

[√
1
2

tφ0(t)−
1
α

t2φ1(t)

]
=

√
α√

2 4
√

π
− 1

α
lim
t→∞

t2φ1(t). (A22)

Based on (A16)

lim
t→∞

t2φ1(t) =
4
√

π√
α

lim
t→∞

[ √
2√
π

1
t e
−t2/(2α2) − 1

α er f c
(

t√
2α

)]
e−t2/(2α2)

t3

.

Hence, similarly as in the case of (A20), using the L’Hospital’s rule and including Formula
(A15), after simple transformations, we obtain

lim
t→∞

t2φ1(t) =
4
√

π√
α

lim
t→∞

−
√

2√
πt2

−1
α2 t4−3t2

t6

=
4
√

π√
α

lim
t→∞

−
√

2√
π

−1
α2 − 3

t2

=
4
√

π√
α

√
2√
π

1
α2

=
4
√

π√
α

√
2√
π

1
α2

=
α2
√

2√
α 4
√

π
. (A23)

Next, substituting (A23) into (A22) yields

lim
t→∞

tφ2(t) =
√

α√
2 4
√

π
− 1

α

α2
√

2√
α 4
√

π
=

−α√
2
√

α 4
√

π
=

(−2)α√
22α2! 4

√
π

,

and bearing in mind that by (51) H2(0) = −2, Equation (53) is proved for k = 2.
Now, in the induction step, let us assume that Formulas (52) and (53) hold for k− 1,

k− 2 and k− 3, where k ≥ 3. We prove that they hold also for k. Consider the recursive
Formula (47). By the induction hypothesis, including (52) for k− 2 and (53) for k− 1, from
(47), we immediately have

lim
t→∞

φ
k
(t) =

1√
2k−2k!α 4

√
π

Hk−1(0)−
√

2√
kα

α√
2k−1α(k− 1)! 4

√
π

Hk−1(0) = 0.

It is only necessary to prove the correctness of Formula (53) for k. The limit lim
t→∞

tφ
k
(t)

can be rewritten equivalently as follows

lim
t→∞

tφ
k
(t) = lim

t→∞

1
t e−t2/(2α2)φk(t)

e−t2/(2α2)

t2

, (A24)

where both the numerator and denominator of the expression on the right expression of
(A24) become zero, when t→ ∞ . Using the L’Hospital’s rule, we have

lim
t→∞

tφ
k
(t) = lim

t→∞

[
1
t +

1
α2 t
]
φk(t)− φ′k(t)

1
α2 +

2
t2

. (A25)

On the basis of (47):

φ′k(t) =

√
k− 1

k
φ′k−2(t)−

√
2√

kα
φk−1(t)−

√
2√

kα
tφ′k−1(t) (A26)

To determine the derivative φ′k−2(t), note that based on (9) and (44), we have

φ′k−2(t) = −
√

α√
2k−2(k− 2)! 4

√
π

∫ ∞

0
ve−(αv)2/2Hk−2(αv)e−tvdv. (A27)
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Since by (45)

Hk−1(αv) = 2αvHk−2(αv)− 2(k− 2)Hk−3(αv) (A28)

Equation (A27) can be expreseed as

φ′k−2(t) =
−

√
α

2α
√

2k−2(k−2)! 4√π
[
∫ ∞

0 e−(αv)2/2Hk−1(αv)e−tvdv + 2(k−

2)
∫ ∞

0 e−(αv)2/2Hk−3(αv)e−tvdv]

where, in view of (9) and (44), after algebraic manipulations, the next formula results

φ′k−2(t) = −
[√

k− 1√
2α

φk−1(t) +
√

k− 2√
2α

φk−3(t)

]
. (A29)

Similarly, for k− 1, we have

φ′k−1(t) = −
[ √

k√
2α

φk(t) +
√

k− 1√
2α

φk−2(t)

]
. (A30)

Now, combining (A26), (A29) and (A30), after algebraic manipulations, yields

φ′k(t) = −
k−1√

2kα
φk−1(t)−

√
(k−1)(k−2)√

2kα
φk−3(t)−

√
2√

kα
φk−1(t)+

1
α2 tφk(t) +

√
k−1√
kα2 tφk−2(t).

(A31)

Substituting the derivative φ′k(t) (A31) into (A25), and bearing in mind that φk−3(t),
φk−1(t) and φk(t) tend to zero as t→ ∞ , we obtain

lim
t→∞

tφ
k
(t) = lim

t→∞

−
√

k−1√
kα2 tφk−2(t)
1
α2 +

2
t2

.

By induction hypothesis, (53) holds for (k− 2). Thus, we have

lim
t→∞

tφ
k
(t) =

−
√

k−1√
kα2

1
α2

α√
2k−2α(k− 2)! 4

√
π

Hk−2(0) = −
α(k− 1)√
2k−2αk! 4

√
π

Hk−2(0), (A32)

where, since by (45), the initial conditions are related by Hk(0) = −2(k− 1)Hk−2(0), the
correctness of Formula (53) for k immediately follows from (A32).

Appendix A.6 Applicability of the Models for Various Time-Scale Parameters

Table A1. Ranges of the applicability of the models for various time-scale parameters.

Model Time-Scale Factor α [s] Range 1 of Relaxation
Frequency v

[
s−1
] Range 1 of Time t [s]

Legendre model

0.001 5301 3.615
0.01 530 36.15
0.1 53 361.5
1 5.3 3614.6

10 0.53 36,144.5
100 0.05301 361,445

1000 0.005301 3,614,450
10,000 0.0005301 36,144,500
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Table A1. Cont.

Model Time-Scale Factor α [s] Range 1 of Relaxation
Frequency v

[
s−1
] Range 1 of Time t [s]

Laguerre model

0.01 5256 0.995
0.1 525.36 9.95
1 52.5359 99.5

10 5.2536 995
100 0.528 9950

1000 0.0526 99,500
10,000 0.00526 995,000
100,000 0.000526 9,950,000

Chebyshev model

0.001 10,020 0.34125
0.01 1002 3.4125
0.1 100.2 34.125
1 10.02 341.25

10 1.002 3412.5
100 0.1002 34,125

1000 0.01002 341,250
10,000 0.001002 3,412,500
100,000 0.0001002 34,125,000

Hermite model

0.001 4797.5 0.037639
0.01 479.75 0.376394
0.1 47.975 3.7639
1 4.7975 37.63944

10 0.47975 376.3944
100 0.047975 3763.944

1000 0.0047975 37,639.443
10,000 0.00047975 376,394.436
100,000 0.000047975 3,763,944.359

1 Only the upper bounds tapp (55) and vapp (56) of the respective intervals
[
0, tapp

]
and

[
0, vapp

]
are given.

Appendix B

Table A2. Optimal parameters
−
g

λGCV

K of the relaxation spectrum models from Example 1; the elements

of the vectors
−
g

λGCV

K are expressed in
[

Pa·s1/2
]
.

Model
−
g

λGCV
K

K = 6 K = 8 K = 9 K = 10 K = 11 K = 12

Legendre model

0.8222 0.8225 0.8229 0.8232 0.8235 0.8238
0.7699 0.7695 0.7705 0.7714 0.7723 0.7731
0.6138 0.5979 0.5963 0.5959 0.5963 0.5970
0.5299 0.4503 0.4347 0.4263 0.4215 0.4188
0.5448 0.3564 0.3215 0.3021 0.2889 0.2801
0.4300 0.3190 0.2887 0.2647 0.2490 0.2378

0.2807 0.2442 0.2227 0.2074 0.1966
0.2520 0.2185 0.1945 0.1781 0.1663

0.1973 0.1742 0.1578 0.1462
0.1562 0.1398 0.1280

0.1264 0.1146
0.1030

Laguerre model

0.3277 0.3265 0.3265 0.3266 0.3267
−0.5817 −0.5814 −0.5804 −0.5795 −0.5805
0.7416 0.7908 0.7897 0.7891 0.7856
−0.6558 −0.7164 −0.7193 −0.7163 −0.7109
0.7138 0.5043 0.5076 0.5013 0.5015
−0.5418 −0.36570 −0.3658 −0.3777 −0.3717

0.2063 0.2083 0.2121 0.2282
−0.0935 −0.0918 −0.1178 −0.1254

−0.0054 0.0122 0.0446
0.0517 0.0269

−0.0712

Chebyshev model

0.8227 0.8265 0.8316 0.7988 0.8023 0.7991
0.8350 0.8226 0.8139 0.7962 0.7905 0.7944
0.5313 0.5312 0.5382 0.5234 0.5287 0.5248
0.5168 0.4545 0.4362 0.4502 0.4397 0.4416
0.4625 0.3392 0.3233 0.3549 0.3426 0.3294
0.4209 0.2912 0.2623 0.3195 0.2992 0.2828

0.2444 0.2138 0.2768 0.2542 0.2403
0.2148 0.1899 0.2509 0.2317 0.2146

0.1603 0.2270 0.2047 0.1899
0.2112 0.1917 0.1752

0.1734 0.1585
0.1487
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Table A2. Cont.

Model
−
g

λGCV
K

K = 6 K = 8 K = 9 K = 10 K = 11 K = 12

Hermite model

0.5504 0.6391 0.5909 0.6044 0.6051
0.7337 0.7670 0.8046 0.8004 0.8009
0.7965 0.6140 0.6703 0.6826 0.6853
0.6881 0.5241 0.4749 0.5005 0.5075
0.4916 0.5137 0.4089 0.3846 0.3885
0.7075 0.4046 0.3715 0.2971 0.2875

0.2833 0.2769 0.2366 0.2181
0.3419 0.2239 0.2318 0.2207

0.2576 0.2218 0.2178
0.1315 0.1381

0.0236
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Figure A1. The measurements of the relaxation modulus G(t) (59) (red points) from Example 1 and
the approximated models GK(t) (8): (a) Legendre, (b) Laguerre, (c) Chebyshev, (d) Hermite.
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Table A3. Optimal parameters
−
g

λGCV

K of the relaxation spectrum models from Example 2; the elements

of the vectors
−
g

λGCV

K are expressed in
[

MPa·s1/2
]
.

Model
−
g

λGCV
K

K = 6 K = 8 K = 10 K = 12 K = 14 K = 16

Legendre model

43.80739 39.6666 37.4618 35.1566 32.2127
−29.51378 −31.6618 −32.1025 −32.1325 −31.6435

8.10418 15.9237 19.1145 21.6308 23.8515
−2.20279 −6.1369 −8.1839 −10.9840 −14.3753
−3.819709 0.0198 1.5667 3.9792 7.5618
32.529089 10.4212 5.8515 2.9019 −0.9375

−10.2725 −5.9794 −4.2456 −1.7853
19.8011 11.2957 8.1554 5.3793

−8.6168 −6.9530 −5.7798
12.6105 9.3899 7.7029

−7.0433 −6.9429
8.7841 7.9943

−6.6946
7.3213

K = 8 K = 10 K = 12 K = 14 K = 16 K = 18

Laguerre model

53.0965 53.0609 53.0093 53.0664 52.5153 52.7585
−1.4762 0.2502 1.8283 0.4988 6.3911 4.8727
6.9102 6.5809 6.4712 5.2459 8.0061 6.8685
−0.2900 −3.7059 −4.5349 −6.4194 −2.4884 −4.0192
−10.8544 −6.2248 −3.8522 −3.7269 −0.8334 −1.5307
−10.7846 −6.6303 −6.0659 −6.4034 −4.9840 −5.6574
−8.9629 −8.7827 −7.0219 −6.1421 −4.2199 −4.2360
−28.0790 −12.2858 −8.2334 −6.5918 −6.1999 −6.0076

−6.1049 −6.7165 −5.7225 −5.4599 −4.9298
−18.5624 −10.7187 −7.3355 −6.9589 −6.0759

−4.8687 −4.0801 −5.6896 −4.7692
−13.0786 −8.3498 −7.4589 −6.0712

−2.0153 −5.4359 −4.2447
−9.4015 −7.7715 −6.0352

−4.9662 −3.5890
−7.9368 −5.9731

−2.9159
−5.8840

Appendix C

Mathematical Terminology and Special Functions
er f c(x) complementary error function, Equation (50)
Hk(x) Hermite polynomials, k = 0, 1, 2, . . ., Equations (45) and (46)
Lk(x) Laguerre polynomials, k = 0, 1, 2, . . ., Equation (33)
Pk(x) Legendre polynomials, k = 0, 1, 2, . . ., Equations (A1)–(A3)
Tk(x) Chebyshev polynomials of the first kind, k = 0, 1, 2, . . ., Equations (36) and (37)

L2(0, ∞) space of real-valued square-integrable functions on the interval (0, ∞)
L[ f (v)] Laplace transform of the function f (v)

Γ(n) Euler’s gamma function
‖·‖2 square norm in the real Euclidean spaceRN and in L2(0, ∞)

min
x

f (x) find the value of x, which minimizes the function f (x)

References
1. Anderssen, R.S.; Davies, A.R.; de Hoog, F.R.; Loy, R.J. Derivative based algorithms for continuous relaxation spectrum recovery. J.

Non-Newton. Fluid Mech. 2015, 222, 132–140. [CrossRef]
2. Chang, F.-L.; Bin, H.; Huang, W.-T.; Chen, L.; Yin, X.-C.; Cao, X.-W.; He, G.-J. Improvement of rheology and mechanical properties

of PLA/PBS blends by in-situ UV-induced reactive extrusion. Polymer 2022, 259, 125336. [CrossRef]
3. Ankiewicz, S.; Orbey, N.; Watanabe, H.; Lentzakis, H.; Dealy, J. On the use of continuous relaxation spectra to characterize model

polymers. J. Rheol. 2016, 60, 1115–1120. [CrossRef]
4. Dealy, J.M.; Read, D.J.; Larson, R.G. Structure and Rheology of Molten Polymers, 2nd ed.; Carl Hanser Verlag GmbH & Co. KG:

Munich, Germany, 2018; pp. 105–145. [CrossRef]
5. Pogreb, R.; Loew, R.; Bormashenko, E.; Whyman, G.; Multanen, V.; Shulzinger, E.; Abramovich, A.; Rozban, A.; Shulzinger, A.;

Zussman, E.; et al. Relaxation spectra of polymers and phenomena of electrical and hydrophobic recovery: Interplay between
bulk and surface properties of polymers. J. Polym. Sci. Part B Polym. Phys. 2017, 55, 198–205. [CrossRef]

6. Owens, R.G.; Phillips, T.N. Computational Rheology; World Scientific: London, UK, 2002. [CrossRef]
7. Ferry, J.D. Viscoelastic Properties of Polymers, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1980.
8. Mead, D.W. Numerical interconversion of linear viscoelastic material functions. J. Rheol. 1994, 38, 1769–1795. [CrossRef]

http://doi.org/10.1016/j.jnnfm.2014.10.004
http://doi.org/10.1016/j.polymer.2022.125336
http://doi.org/10.1122/1.4960334
http://doi.org/10.3139/9781569906125.004
http://doi.org/10.1002/polb.24260
http://doi.org/10.1142/p160
http://doi.org/10.1122/1.550526


Polymers 2023, 15, 958 34 of 35

9. Hajikarimi, P.; Moghadas Nejad, F. Chapter 6-Interconversion of constitutive viscoelastic functions. In Applications of Viscoelasticity;
Hajikarimi, P., Moghadas Nejad, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 107–139. [CrossRef]

10. Baumgaertel, M.; Winter, H.H. Determination of discrete relaxation and retardation time spectra from dynamic mechanical data.
Rheol. Acta 1989, 28, 511–519. [CrossRef]

11. Honerkamp, J.; Weese, J. Determination of the relaxation spectrum by a regularization method. Macromolecules 1989, 22, 4372–4377.
[CrossRef]

12. Honerkamp, J.; Weese, J. A nonlinear regularization method for the calculation of relaxation spectra. Rheol. Acta 1993, 32, 65–73.
[CrossRef]

13. Malkin, A.Y. The use of a continuous relaxation spectrum for describing the viscoelastic properties of polymers. Polym. Sci. Ser. A
2006, 48, 39–45. [CrossRef]

14. Malkin, A.Y.; Vasilyev, G.B.; Andrianov, A.V. On continuous relaxation spectrum. Method of calculation. Polym. Sci. Ser. A 2010,
52, 1137–1141. [CrossRef]

15. Stadler, F.J.; Bailly, C. A new method for the calculation of continuous relaxation spectra from dynamic-mechanical data. Rheol.
Acta 2009, 48, 33–49. [CrossRef]

16. Davies, A.R.; Goulding, N.J. Wavelet regularization and the continuous relaxation spectrum. J. Non-Newton. Fluid Mech. 2012,
189–190, 19–30. [CrossRef]

17. Cho, K.S. Power series approximations of dynamic moduli and relaxation spectrum. J. Rheol. 2013, 57, 679–697. [CrossRef]
18. Takeh, A.; Shanbhag, S. A Computer Program to Extract the Continuous and Discrete Relaxation Spectra from Dynamic

Viscoelastic Measurements. Appl. Rheol. 2013, 23, 24628. [CrossRef]
19. Liu, H.; Luo, R.; Lv, H. Establishing continuous relaxation spectrum based on complex modulus tests to construct relaxation

modulus master curves in compliance with linear viscoelastic theory. Constr. Build. Mater. 2018, 165, 372–384. [CrossRef]
20. Luo, L.; Xi, R.; Ma, Q.; Tu, C.; Ibrahim Shah, Y. An improved method to establish continuous relaxation spectrum of asphalt

materials. Constr. Build. Mater. 2022, 354, 129182. [CrossRef]
21. Poudel, S.; Shanbhag, S. Efficient test to evaluate the consistency of elastic and viscous moduli with Kramers–Kronig relations.

Korea-Aust. Rheol. J. 2022, 10, 2202. [CrossRef]
22. Alfrey, T.; Doty, P. The Methods of Specifying the Properties of Viscoelastic Materials. J. Appl. Phys. 1945, 16, 700–713. [CrossRef]
23. Bažant, Z.P.; Yunping, X. Continuous Retardation Spectrum for Solidification Theory of Concrete Creep. J. Eng. Mech. 1995, 121,

281–288. [CrossRef]
24. ter Haar, D. An easy approximate method of determining the relaxation spectrum of a viscoelastic materials. J. Polym. Sci. 1951, 6,

247–250. [CrossRef]
25. Goangseup, Z.; Bažant, Z.P. Continuous Relaxation Spectrum for Concrete Creep and its Incorporation into Microplane Model

M4. J. Eng. Mech. 2002, 128, 1331–1336. [CrossRef]
26. Kurenuma, Y.; Nakano, T. Analysis of stress relaxation on the basis of isolated relaxation spectrum for wet wood. J. Mater. Sci.

2012, 47, 4673–4679. [CrossRef]
27. Stankiewicz, A. Identification of the relaxation spectrum of viscoelastic materials under strong noise measurement data. Part I.

Problem and example. MOTROL. Comm. Mot. Energetics Agric. 2013, 15, 119–126.
28. Stankiewicz, A. Identification of the relaxation and retardation spectra of plant viscoelastic materials using Chebyshev functions.

Part II. Analysis. Teka Comm. Mot. Energetics Agric. 2010, 10, 372–378.
29. Pillonetto, G.; Chen, T.; Chiuso, A.; De Nicolao, G.; Ljung, L. Regularized System Identification: Learning Dynamic Models from Data,

1st ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2022. [CrossRef]
30. Aleksandrov, A.; Lekova, S.; Milenova, M. Generalized model of viscoelastic deformation. Int. J. Pure Appl. Math. 2022, 81,

635–646. Available online: https://ijpam.eu/contents/2012-81-4/11/index.html (accessed on 17 December 2022).
31. Cao, J.; Chen, Y.; Wang, Y.; Cheng, G.; Barrière, T. Shifted Legendre polynomials algorithm used for the dynamic analysis of

PMMA viscoelastic beam with an improved fractional model. Chaos Solitons Fractals 2020, 141, 110342. [CrossRef]
32. Abbaszadeh, M.; Dehghan, M. The proper orthogonal decomposition modal spectral element method for two-dimensional

viscoelastic equation. Thin-Walled Struct. 2021, 161, 107429. [CrossRef]
33. Kim, S.; Lee, J.; Cho, K.S. Direct conversion of creep data to dynamic moduli using point-wise method. Korea-Aust. Rheol. J. 2021,

33, 105–112. [CrossRef]
34. Lee, S.H.; Bae, J.-E.; Cho, K.S. Determination of continuous relaxation spectrum based on the Fuoss-Kirkwood relation and

logarithmic orthogonal power-series approximation. Korea-Aust. Rheol. J. 2017, 29, 115–127. [CrossRef]
35. Stankiewicz, A. On determination of the relaxation spectrum of viscoelastic materials from discrete-time stress relaxation data.

Teka Comm. Mot. Energetics Agric. 2012, 12, 217–222.
36. Baumgaertel, M.; Schausberger, A.; Winter, H.H. The relaxation of polymers with linear flexible chains of uniform length. Rheol.

Acta 1990, 29, 400–408. [CrossRef]
37. Baumgaertel, M.; Winter, H.H. Interrelation between continuous and discrete relaxation time spectra. J. Non-Newton. Fluid Mech.

1992, 44, 15–36. [CrossRef]
38. Povolo, F.; Hermida, É.B. Influence of Intensity of Relaxation on Interconversion between Normalized Distribution Functions.

Polym. J. 1992, 24, 1–13. [CrossRef]

http://doi.org/10.1016/B978-0-12-821210-3.00005-X
http://doi.org/10.1007/BF01332922
http://doi.org/10.1021/ma00201a036
http://doi.org/10.1007/BF00396678
http://doi.org/10.1134/S0965545X06010068
http://doi.org/10.1134/S0965545X10110076
http://doi.org/10.1007/s00397-008-0303-2
http://doi.org/10.1016/j.jnnfm.2012.09.002
http://doi.org/10.1122/1.4789787
http://doi.org/10.3933/applrheol-23-24628
http://doi.org/10.1016/j.conbuildmat.2017.12.204
http://doi.org/10.1016/j.conbuildmat.2022.129182
http://doi.org/10.1007/s13367-022-00041-y
http://doi.org/10.1063/1.1707524
http://doi.org/10.1061/(ASCE)0733-9399(1995)121:2(281)
http://doi.org/10.1002/pol.1951.120060211
http://doi.org/10.1061/(ASCE)0733-9399(2002)128:12(1331)
http://doi.org/10.1007/s10853-012-6335-0
http://doi.org/10.1007/978-3-030-95860-2
https://ijpam.eu/contents/2012-81-4/11/index.html
http://doi.org/10.1016/j.chaos.2020.110342
http://doi.org/10.1016/j.tws.2020.107429
http://doi.org/10.1007/s13367-021-0009-x
http://doi.org/10.1007/s13367-017-0013-3
http://doi.org/10.1007/BF01376790
http://doi.org/10.1016/0377-0257(92)80043-W
http://doi.org/10.1295/polymj.24.1


Polymers 2023, 15, 958 35 of 35

39. Hansen, P.C. Rank-Deficient and Discrete Ill-Posed Problems; Society for Industrial and Applied Mathematics: Philadelphia, PA,
USA, 1998. [CrossRef]

40. Friedrich, C.; Honerkamp, J.; Weese, J. New ill-posed problems in rheology. Rheol. Acta 1996, 35, 186–193. [CrossRef]
41. Stankiewicz, A. On the existence and uniqueness of the relaxation spectrum of viscoelastic materials. Part II: Other existence

conditions. Teka Comm. Mot. Energetics Agric. 2010, 10, 388–395.
42. Datta, K.B.; Mohan, B.M. Orthogonal Functions in Systems and Control; World Scientific: Singapore, 1995.
43. Tikhonov, A.N.; Arsenin, V.Y. Solutions of Ill-Posed Problems; John Wiley & Sons: New York, NY, USA, 1977.
44. Wahba, G. Practical Approximate Solutions to Linear Operator Equations When the Data are Noisy. SIAM J. Numer. Anal. 1977,

14, 651–667. [CrossRef]
45. Golub, G.H.; Van Loan, C.F. Matrix Computations; Johns Hopkins University Press: Baltimore, MD, USA, 1996.
46. Pérez-Calixto, D.; Amat-Shapiro, S.; Zamarrón-Hernández, D.; Vázquez-Victorio, G.; Puech, P.-H.; Hautefeuille, M. Determination

by Relaxation Tests of the Mechanical Properties of Soft Polyacrylamide Gels Made for Mechanobiology Studies. Polymers 2021,
13, 629. [CrossRef]

47. Malkin, A.I.A.; Malkin, A.Y.; Isayev, A.I. Rheology: Concepts, Methods and Applications; ChemTec: Deerfield Beach, FL, USA, 2006.
Available online: https://books.google.pl/books?id=8rGafjhgz-UC (accessed on 17 December 2022).

48. Barata, J.C.A.; Hussein, M.S. The Moore–Penrose Pseudoinverse: A Tutorial Review of the Theory. Braz. J. Phys. 2012, 42, 146–165.
[CrossRef]

49. Szabatin, J. Podstawy Teorii Sygnałów; Wydawnictwa Komunikacji i Łączności: Warszawa, Poland, 1982. (In Polish)
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