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Abstract: Triple-shape polymers can memorize two independent shapes during a controlled recovery
process. This work reports the 4D printing of electro-active triple-shape composites based on thermo-
plastic blends. Composite blends comprising polyester urethane (PEU), polylactic acid (PLA), and
multiwall carbon nanotubes (MWCNTs) as conductive fillers were prepared by conventional melt
processing methods. Morphological analysis of the composites revealed a phase separated morphol-
ogy with aggregates of MWCNTs uniformly dispersed in the blend. Thermal analysis showed two
different transition temperatures based on the melting point of the crystallizable switching domain
of the PEU (Tm~50 ± 1 ◦C) and the glass transition temperature of amorphous PLA (Tg~61 ± 1 ◦C).
The composites were suitable for 3D printing by fused filament fabrication (FFF). 3D models based
on single or multiple materials were printed to demonstrate and quantify the triple-shape effect. The
resulting parts were subjected to resistive heating by passing electric current at different voltages.
The printed demonstrators were programmed by a thermo-mechanical programming procedure and
the triple-shape effect was realized by increasing the voltage in a stepwise fashion. The 3D printing
of such electroactive composites paves the way for more complex shapes with defined geometries
and novel methods for triggering shape memory, with potential applications in space, robotics, and
actuation technologies.

Keywords: 4D printing; additive manufacturing; triple-shape effect; electro-active composites; shape-
memory polymers

1. Introduction

Additive manufacturing, also known as three-dimensional printing (3DP), has become
a topic of considerable interest in recent years due to its ability to realize complex structures
at high resolution, which allows design flexibility and prototyping freedom [1–3]. The
3DP of smart materials with dynamically tunable shapes coupled with time as the fourth
dimension is now referred to as “4D printing” (4DP). Within the family of smart materials,
shape-memory polymers (SMPs), with their capability to change shapes upon exposure
to various external stimuli such as heat, light, ultrasound, magnetic fields, or chemical
substances, are the most investigated 4D-printed materials [4–9].

Thermo-sensitive SMPs (trSMPs), with their tailorable elastic properties and transition
temperatures, have immense potential in the aerospace, biomedical, electronic and textile
industries [10–13]. Most trSMPs reported to date display a dual-shape effect, changing from
one shape to a second shape. At the molecular level, these polymers have crystallites or
oriented polymeric chains that act as shape-switching domains associated with a transition
temperature. In addition, these polymers contain physical or chemical crosslinks that
are responsible for the stability of the permanent shape [14,15]. By introducing multiple
types of switching domains with different transition temperatures (Ttrans) into one polymer
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system, it is possible to observe a triple- or a multi-shape effect [16–22]. The first triple-shape
effect was reported in multiphase polymer networks with two types of switching domains,
either both crystalline or one crystalline and one amorphous [23]. Furthermore, by using
polymer systems with a broad transition temperature or multiple transition temperatures,
it was possible to enable a quadruple or quintuple shape-memory effect (SME) [24,25].
Additionally, incorporating functional fillers such as magnetic nanoparticles (MNPs) into
triple-shape polymer (TSP) networks, a magnetically controlled triple-shape effect (TSE)
was reported [26,27]. These magnetic nanocomposites could be inductively heated by
exposure to an alternating magnetic field (AMF), thus enabling a remote-control triple-
shape effect. Nevertheless, the processing of network architectures with covalent crosslinks
is challenging, limiting the technical use of these composites. Furthermore, the requirement
of a power generator and an inductive coil further limits the application potential of
magnetically triggered systems. One alternative to inductive heating is Joule heating of
electrically conductive composites by passing electric currents, which offers significant
advantages over other remote heating methods, such as easy operation, long-range control,
and fast response [28]. Carbon-based fillers such as carbon powder, carbon nanotubes, or
carbon fibers are incorporated into SMP matrices to enable electric heating. Depending on
the type, concentration and level of dispersion, these fillers have the capacity to change the
mechanical properties of the composites and provide electrically induced remote heating
capabilities [19]. The applicability of electric heating has been investigated for various
high-tech applications such as morphing aircraft [29,30], self-deploying structures [31],
and intelligent textiles [32]. However, most of these studies have focused on dual-shape
effect systems, where the SMP composites were electrically triggered to transition from
one shape to another [28]. Electric actuation of TSPs is rare, with few reports published on
this topic [19,33]. Nevertheless, control of the two shapes was not possible, and sequential
recovery of the two shapes was carried out by the application of a single voltage.

Various 3DP techniques have been used to print single or multicomponent polymer
systems to produce 4D objects with enhanced properties and shape-memory capabili-
ties [4,34,35]. For instance, vat photopolymerization (VPP) 3D printing was used to print a
photocurable resin, enabling a thermally initiated TSE [34]. Material jetting 3DP has also
been used to print a mixture of commercially available photosensitive resins resulting in a
TSE [36]. Among different 3DP techniques, material extrusion (MEX) is the most commonly
used technique to print 4D objects due to its simple operation and troubleshooting, low cost
of equipment and raw materials, high speed, and the capability to print large parts [37,38].
Here, we have explored whether filament-based MEX (i.e., Fused Filament Fabrication
(FFF)) can print TSPs, enabling an electrically triggered TSE.

Many thermoplastic SMPs have low stiffness, leading to filament buckling during the
FFF printing process. Furthermore, in the case of reinforced composites, filler aggregation
can block the nozzle; in both cases, the printing process stops. The issue of filament
buckling can be avoided by adding fillers or blending with other polymers to improve
filament stiffness [4]. Nevertheless, an optimal amount of filler is required to achieve 3DP
by FFF and electrically triggered TSE.

We hypothesized that 4D-printable triple-shape electroactive polymers could be devel-
oped by preparing a composite with electric conductivity, multiple switching domains and
elasticity. The concept pursued was the creation of an optimal balance between different
domains and conductive filler to enable a suitable rigidity for FFF printing and electrically
activated TSE. Our strategy involves the fabrication of a multiphase composite by incor-
porating electrically conductive nanoparticles into a polymer blend with heterogenous
morphology containing two switching domains with separate Ttrans. The blending of a
commercially available thermoplastic polyester urethane (PEU) with poly(lactic acid) (PLA)
in the presence of multi-wall carbon nanotubes (MWCNTs) was carried out to fabricate such
composites. PLA is an ideal FFF material, which enables a thermally induced SME [39,40].
However, incorporating nanofillers makes PLA brittle, thus limiting its deformability [41].
Therefore, blending polyurethanes (PUs) with PLA was investigated as an effective way to
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obtain multiphase SMPs with improved strength and elasticity. The PEU selected was a
phase-segregated PEU consisting of a crystallizable soft phase based on poly(1,4-butylene
adipate) (PBA) and a 4,4′-methylenediphenyl diisocyanate (MDI)/1,4-butanediol (BD)-
based hard segment [38,42,43]. The morphology of the composites was explored by using
scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic
force microscopy (AFM). Differential scanning calorimetry (DSC) reveals the separate Ttrans
of both switching domains, further confirmed by dynamic mechanical analysis (DMA).
Composite filaments of the targeted diameter were easily extruded as monofilaments via
screw-based extrusion. Finally, the monofilament was processed in a commercial FFF 3D
printer, and smart objects with electrically triggered TSE were fabricated.

2. Materials and Methods

A polyesterurethane (PEU) with the tradename Desmopan DP 2795A known for its
shape memory capabilities, was received from Covestro Deutschland AG (Leverkusen,
Germany). Poly(lactic acid) (PLA) with the tradename Ingeo 4032D was supplied by Nature
Works LLC (Plymouth, MN, USA). The PEU and PLA pellets were dried in a vacuum oven
at 60 ◦C overnight before melt processing. Multi-walled carbon nanotubes (MWCNTs)
(Graphistrength® C100, diameter: 10–15 nm, length: 1–10 nm) [44] were procured from
Arkema (Colombes, France).

Differential scanning calorimetry (DSC) experiments were performed with a Mettler
Toledo DSC 3+ (Greifensee, Switzerland), using a heat-cool-heat cycle with constant heating
and cooling rates of 2 K·min−1 under a nitrogen atmosphere. The sample granulates
(7–10 mg) were loaded in Netzsch DSC aluminum pans and sealed. The temperature
ranges for the 1st and 2nd heating runs were from 25 ◦C to 200 ◦C and −80 ◦C to 200 ◦C,
respectively. Data from the second heating and first cooling run were used.

Dynamic mechanical analysis (DMA) in tensile mode was carried out on Netzsch Gabo
Eplexor 500 N DMA (Ahlden, Germany) equipped with a 25 N load cell using press molded
samples with standard dimensions (ISO 527-2/1BB). The measurements were performed in
temperature-sweep mode from −100 to 150 ◦C with a constant heating rate of 2 K·min−1 in
air, using an oscillation frequency of 10 Hz. During the measurements, a static strain of 1%
and a dynamic strain of 0.25% were used. The glass transition (Tg) was determined as the
temperature at the maximum in the peak of the loss factor (tan δ) vs. temperature curve.

Scanning electron microscopy (SEM) experiments were performed using a Zeiss Supra
40VP SEM (Carl Zeiss Microscopy Deutschland GmbH, Oberkochen, Germany). For this
purpose, planar block faces were prepared in an EMUC6FC6 cryo-ultramicrotome (Leica
Microsystems GmbH, Wetzlar, Germany) using a diamond knife at a cutting temperature
of −120 ◦C. Block faces were coated with 5 nm gold in a Q150 R ES sputter coater (Quorum
Technologies Ltd., Laughton, UK) and imaged in a high vacuum with an accelerating
voltage of 3 kV using an Everhart-Thornley backscattered electron detector. Images were
obtained at 2500× to 10,000×magnification.

Transmission Electron Microscopy (TEM) was carried out to see the distribution of
MWCNTs in the composite materials. For this purpose, thin films were prepared in an
EMUC6FC6 cryo-ultramicrotome (Leica Microsystems GmbH, Wetzlar, Germany) using
a diamond knife at a cutting temperature of −120 ◦C. Sections with thicknesses of 100 to
200 nm were deposited on TEM Grids (Cu, 400 mesh) and examined in a Talos™ F200X
TEM (FEI Deutschland GmbH/Thermo Fisher Scientific, Dreieich, Germany) using a Gatan
Cryo Transfer Holder Model 914 (AMETEK GmbH, Unterschleissheim, Germany) under
cryogenic conditions (−176 ◦C) at an accelerating voltage of 200 kV in bright field mode.
Images were acquired using a Ceta 16M CMOS camera at magnifications of 5000× to
95,000×.

Atomic force microscopy (AFM) was used to determine the phase-specific localization
of MWCNTs in the PEU-PLA composites. 2 mm thick sections were cut using a razor
blade from the composite and trimmed using a LEICA EM UC6 cryo-ultramicrotome.
The microtomed samples were investigated using MFP-3D Infinity (Oxford Instruments,
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Abingdon, UK) atomic force microscope to obtain the topography and phase contrast
images. All the measurements were performed at room temperature, and a standard
cantilever holder was used for operation in an air atmosphere. Images were taken with
a resolution of 512 × 512 pixels at a 1.5 Hz scan rate. The analysis was performed in
Amplitude Modulation-Frequency Modulation (AM−FM) mode using a silicon cantilever
AC160TS (Oxford instruments) with a spring constant of about 20–30 N/m. The topography
and phase-contrast images were measured at the fundamental resonance frequency of the
cantilever (~300 kHz). The images were processed using the Mountains® 9 software (Digital
Surf, Besancon, France) to understand the phase specific morphology of the different
polymers in the bulk composite. All the measurements were acquired using the same
cantilever for a single day.

Wide angle X-ray scattering (WAXS) measurements were conducted at ambient tem-
perature and 55 ◦C utilizing a Bruker AXS D8 Discover x-ray diffractometer operating
in transmission geometry with a two-dimensional HI-Star detector (Bruker, Karlsruhe,
Germany). The samples of dimensions 2 × 0.5 cm and thickness 150 µm were fixed at both
ends during characterization. The sample-detector distance was set at 150 mm, and the
source wavelength was λ = 0.154 nm (Cu Kα). A graphite monochromator and a pinhole
collimator with an opening of 0.8 mm provided a parallel, monochromatic X-ray beam. The
two-dimensional diffraction images were integrated to obtain plots with intensity versus
diffraction angle (2θ = 5–45◦). Both Bragg diffraction peaks from the crystalline phase and
the broad scattering peak from the amorphous phase were fitted with Pearson VII functions.
The crystallinity index (Xc) was calculated based on the sum of the areas of the fitted peaks
assigned to the crystalline phase (Acryst) and the amorphous phase (Aamorph) (Equation (1)).

Xc =
Acryst

Acryst + Aamorp
× 100 (1)

A custom-built heating device was used to carry out the WAXS measurements of
the samples at 55 ◦C. The sample was equilibrated at this temperature for 5 min before
the measurement.

Electric heating and conductivity measurements of the printed composites were an-
alyzed using a Series 2410 SourceMeter (Keithley, Cleveland, OH, USA) with a source
voltage range between 5 µV and 100 V and a current range from 10 pA to 1.055 A. Alligator
clips were used to connect the printed samples with the source meter. In contrast, the
surface temperature was monitored using a VarioCAM® HiRes 384 infrared (IR) camera
(InfraTec GmbH, Dresden, Germany).

Composites consisting of a PEU/PLA matrix and MWCNTs as conductive fillers
were prepared in a DSM Xplore MC15 HT Vari-Batch micro compounder (Sittard, The
Netherlands) in co-rotating mode with a mixing chamber volume of 15 cm3. Dried pellets
of PEU and PLA were mixed in solid state at a ratio of 70:30 wt%. The content of MWCNT
was varied from 5 to 20 wt%. All ingredients were pre-mixed in an aluminum weighing
dish via stirring with a spatula, then fed manually into the mixing chamber preheated to
200 ◦C. Once all the materials were introduced into the mixing chamber, the rotational
screw speed was gradually increased from 20 to 100 rpm. The material was recirculated in
the mixing chamber for 5 min at 100 rpm to ensure proper mixing. The prepared composites
with MWCNT contents from 5 to 20 wt% were tested for their electric heating capacity,
as described above. Once it was observed that the addition of 15–20 wt% of MWCNTs
was sufficient to realize Joule heating, larger batches of composites containing such levels
of MWCNTs were prepared in a Thermo Scientific HAAKE Rheomex PTW16/25 OS co-
rotating twin screw compounder (Karlsruhe, Germany). Barrel zone temperatures varied
from 190 ◦C at the hopper to 220 ◦C at the die, while the screw speed was set to 35 rpm.
The dried PEU and PLA pellets and the MWCNTs were pre-mixed manually in a glass
container and fed into the hopper of the compounder slowly to avoid exceeding the torque
limit. Since it was impossible to ensure the even loading of the ingredients due to granular
convection during the manual feeding, it was decided to extrude the compound twice to
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increase the homogeneity of the mixture. After the first compounding cycle, the extrudate
was pelletized using a Thermo Scientific 16 mm fixed-length strand pelletizer (Karlsruhe,
Germany). After the second compounding cycle, filaments of a 2.85 mm diameter were
extruded and pulled with a Schulz & Busch K-25 conveyor belt (Wülfrath, Germany) in
preparation for 3D printing trials.

3D printing was performed in a 3ntr A4v3 filament-based material extrusion machine
(Jdeal-Form s.r.l., Oleggio, Italy), also known as a fused filament fabrication (FFF) 3D
printer. Computer-aided design (CAD) was performed using the online platform Tinkercad
(Autodesk Inc, San Rafael, CA, USA) and the Gcode was prepared using Ultimaker Cura
4.10.0 (Utrecht, The Netherlands). The used FFF 3D printer has three extrusion heads.

Extrusion head 1 uses filaments with a diameter of 1.75 mm, and the other two ex-
trusion heads support filaments with a diameter of 2.85 mm. Four types of specimens
were printed with electro-active filaments (i.e., PEU70PLA30MWCNT14). The four printed
demonstrators, and their dimensions are shown in Figure 1. The first object was a rectan-
gular bar (50 × 10 × 2 mm3) (Figure 1a), which was used for mechanical characterization
and quantification of the TSE by bending experiments. A U-shape resistor (Figure 1b) and
linear compression device (Figure 1c) were printed with a single electro-active composite.
The fourth object (Figure 1d) was a multi-material hinge and was printed with red PLA
(passive component) in extrusion head 1 and the composite (electro-active component) in
extrusion head 2. Extrusion head 1 had a 0.4 mm brass nozzle, and extrusion head 2 had
a 0.8 mm brass nozzle. The printing conditions used to print the different materials are
shown in Table S1 (see in Supplementary Materials).
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Figure 1. 3D-printed specimens with the conductive composite (PEU70PLA30MWCNT14): (a) rect-
angular bar used for mechanical characterization (b) U-shaped resistor (c) linear compression device;
(d) hinge 3D printed with non-conductive PLA (red) and a conductive composite (black).

The triple-shape effect was quantified by measuring the recovery ratios in a triple-
shape bending procedure. The 3D-printed composite bar was programmed by a two-step
bending procedure. In step one, the sample (shape C) was heated to 90 ◦C and was bent
to 90◦ (θB) and was fixed by cooling to 55 ◦C under constrain (shape B). After a waiting
period of 15 min, the constraint was removed and a subsequent bending to 180◦ (θA) at
55 ◦C, followed by cooling to −10 ◦C (shape A), was carried out. After the removal of the
constraint, the triple-shape fixation was completed.

For recovery, a stepwise reheating to Tmid = 55 ◦C by applying a low voltage (Vlow)
and to Thigh = 90 ◦C by application of a higher voltage (Vhigh) was carried out. The recovery
process was recorded via a video camera, and the recovery angles were recorded and
evaluated using the ImageJ v1.53e software package (NIH, Bethesda, MD, USA). The ratios
of different angles before and after recovery were used to calculate the shape recovery
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ratios RA–B (shape A to shape B) or RA-C (shape A to shape C) using Equations (2) and (3).
Here, θB

rec is the angle in the partially recovered sample in shape B, and θC
rec is the angle

in the fully recovered sample (shape C). A schematic demonstration of different angles and
shapes during triple-shape bending is shown in Figure 2.

RA−B =
θA − θBrec

θA − θB
× 100% (2)

RA−C =
θA − θCrec

θA − θC
× 100% (3)
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3. Results and Discussions
3.1. Selection of Composite Formulation

To retain the flexibility of the blend, PEU was selected as a continuous phase, and the
mass ratio of PEU to PLA was varied between 90/10, 80/20, and 70/30. A morphological
analysis of these blends confirmed the incompatibility of the PEU and PLA phases. In
particular, a two-phase morphology with PLA droplets suspended in the PEU phase can
be seen in all blends. Representative SEM images of the pure blends with a PEU-PLA
mass ratio of 90/10 (PEU90PLA10) and 80/20 (PEU80PLA20) are shown in Figure S1a
(see in Supplementary Materials). The diameter of the PLA domains in the blends was
observed to be of the order of ~1–10 microns, with less variability in the case of the
PEU70PLA30 formulation. To enable a TSE, the crystallizable soft segments of PEU with a
melting point of Tm = 47 ◦C served as the first switching domain, while the amorphous
segments of PLA with a glass transition of Tg = 61 ◦C acted as the second switching domain.
The DSC thermograms of neat PEU and PLA are shown in the Supplementary Materials
(Figure S1b). For the blend PEU/PLA (90/10), no Tg associated with amorphous PLA
was observed, and only a melting transition related to the crystallizable soft segment of
PEU was observed. For blends PEU80PLA20 and PEU70PLA30, two different transition
temperatures were observed, related to the Tm of crystallizable segments of the PEU and
the Tg of the amorphous PLA domains, respectively. An investigation of the mechanical
properties of the blends by uniaxial tensile testing revealed a significant increase in stiffness
(elastic modulus) as the PLA content was increased. The elastic modulus of pure PEU
(E = 50 MPa) was increased to E = 87 MPa for PEU70PLA30. In parallel, the elongation at
break (εb) was significantly decreased from εb = 860 ± 45% for pure PEU to εb = 319 ± 45%
PEU70PLA30. The representative stress–strain curves are shown in Figure S1c (see in
Supplementary Materials). To assess the 3D printability of the neat blends, filaments with
a uniform diameter d = 2.85 ± 0.05 mm were extruded. One of the major concerns of
3D printing of polyurethanes-based filaments is their lack of stiffness, which can result in
buckling in gear-fed 3D printing equipment due to the force applied during the feeding
process and the requirement that the filament takes on the role of a piston that applies
pressure on the polymer melt. Only PEU70PLA30 (with an elastic modulus of 87 MPa)
provided sufficient stiffness to enable FFF printing using the equipment described. For
the blends PEU90PLA10 and PEU80PLA20, in contrast, the buckling of the filaments
made printing impossible. Based on these initial studies, PEU70PLA30 was chosen for
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the fabrication of the electro-active composite, given its attractive combination of suitable
stiffness for 3D printing and two different transition temperatures for exploring TSE.

MWCNTs were used as filler to increase the electrical conductivity of the polymeric
blend, thus allowing for the production of an electroactive TSE. The weight content of the
MWCNT in the blends varied between 6 and 18 wt.% (3.3 and 10.5 vol.%). The nomencla-
ture of the composite is given as PEU70PLA30MWCNTx, where “x” is the wt% of MWCNT
in the composite as determined by thermogravimetric analysis (TGA) (see Figure S2a,
see in Supplementary Materials). Figure S2b (see in Supplementary Materials) shows the
electrical resistance of PEU70PLA30 composites with various MWCNT contents at room
temperature. The same composite dimensions and testing methodology were used for all
formulations, as shown schematically in Figure S3 (see in Supplementary Materials). At
filler concentrations up to 11 wt.% (6.3 vol.%), the high resistance of the composite (~1 MΩ)
indicates the presence of a polymeric insulating phase. Between 11 wt.% (6.3 vol.%) and
14 wt.% (8 vol.%), a drastic decrease in the resistance to 85 ± 10 Ω was observed. This
decrease in resistance was attributed to the formation of conductive pathways in the
composite due to exceeding the percolation threshold. By further increasing the content
of MWCNTs to 18 wt.% (10.5 vol.%), the resistance was further decreased to 45 ± 10 Ω.
Compared to previous reports with a similar type of filler, the percolation threshold ob-
served here was relatively high and implies incomplete dispersion of the MWCNT in the
blend [44]. Nevertheless, as this effort focused on achieving electrical conductivity, not
filler dispersion, the composites PEU70PLA30MWCNT14 and PEU70PLA30MWCNT18
were selected for further studies, given a low enough resistance to enable Joule heating. In
contrast, composites with 11 wt.% of MWCNTs or lower were insufficiently conductive,
and no electric heating of these composites was observed. Along with the filler content,
the heating efficiency of these electroactive composites depends on the size of the sample,
applied voltage, and the time for electric current exposure [45]. Therefore, to assess the
heating efficiency and the maximum achievable temperature (Tmax), composite specimens
with dimensions of 50 × 10 × 2 mm3 were printed based on PEU70PLA30MWCNT14
and PEU70PLA30MWCNT18. The current flow and the Tmax achieved due to resistive
heating in the composite specimens are shown as a function of voltage in Figure 3. A
voltage of 17 V enabled a current flow of 135 mA and a Tmax of 90 ◦C (well above the
PLA Tg) in PEU70PLA30MWCNT14, whereas for PEU70PLA30MWCNT18, only 11 V
was required to reach a similar level. Nevertheless, because of the brittle nature of the
PEU70PLA30MWCNT18 compound, the PEU70PLA30MWCNT14 was selected for all
further investigations of electrically activated TSE.
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3.2. Morphology of the Composites

The morphologies of the composites on the micro- and nanoscale were elucidated
by microscopic analysis. The backscattered SEM images of 3D-printed composite cross-
sections of the sample showed irregularly shaped micron-sized aggregates of MWCNT
(confirmed by EDX) that were statistically distributed within the polymer matrix. The
representative SEM images of PEU70PLA30MWCNT14 are shown in Figure 4a,b. As
confirmed by threshold values of MWCNTs, these aggregates enabled the formation of a
conductive network in the composite that seems to originate from the high packing density
of the primary agglomerates of MWCNTs. In general, due to the high concentration of
MWCNTS, strong van der Waals attractions between the individual MWCNTs and poor
polymer-MWCNT compatibility, the homogeneous dispersion of MWCNTs in the polymer
matrix was not observed. Strategies for achieving higher levels of MWCNT dispersion
would include modifying their surface and/or adding compatibilizers to enhance thermo-
dynamic compatibility while reducing their concentration and/or increasing the level of
applied shear during mixing to accelerate the kinetics of dispersion. In practice, however,
achieving high levels of MWCNT dispersion is not essential for realizing Joule heating.
On the contrary, a system with only well-dispersed MWCNTs would contain no MWCNT-
MWCNT contacts, precluding the formation of conductive paths and leading to low levels
of electrical conductivity, thus making Joule heating challenging to achieve, especially at
low voltages [46]. Randomly distributed micro-level voids of different dimensions were
also observed in the composite, which could be attributed to the mechanical entrapment
of air or the volatilization of small molecules (e.g., water) during melt processing. Fur-
thermore, polymer degradation (either thermal due to shear heating, or hydrolytic due
to the presence of water) could also contribute to microvoid formation. In contrast to the
observation of these voids, the spherical PLA domains seen in the unfilled blends were not
seen in the backscattered SEM images of the composites. This observation is consistent
with prior work showing that nanoparticles can cause reductions in the length scale of
phase separation in immiscible blends [47].
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To further study the distribution of MWCNTs in the polymer blend matrix, TEM
analysis was carried out. Here, the difference in electron density resulted in the observation
of dark cylindrical features (assigned to MWCNTs) in a lighter matrix (assigned to the
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PEU/PLA blend), as shown in Figure 4c,d. While individual MWCNTs were observed via
TEM imaging and their average diameter was assessed as being ~5–10 nm, no attempt was
made to estimate MWCNT length given the very low probability of observing fully intact
MWCNTs within a single TEM slice.

The morphology of the 3D-printed composites was further elucidated by AFM analysis.
To determine the phase-specific localization of MWCNTs by AFM, four samples were ana-
lyzed: neat PEU, a PEU/MWCNT composite (PEU100MWCNT14), the neat PEU-PLA blend
(PEU70PLA30), and the PEU-PLA blend/MWCNT composite (PEU70PLA30MWCNT14).
AFM images of the composite PEU70PLA30MWCNT14 with sizes 3× 3 µm2 and 1.5× 1.5 µm2

are shown in Figure 5, while the images of neat PEU, PEU100MWCNT14, and PEU70PLA30
are shown in Figure S4 (see in Supplementary Materials). Furthermore, details about
the micro-phase separation in pure PEU, the multi-domain architecture of pure blend
PEU70PLA30 and the distribution of MWCNT in pure PEU are discussed in Supplemen-
tary Materials (Section S1). In Figure 5, images a–b represent topography, while images
c–d represent phase contrast. The blend composite PEU70PLA30MWCNT14 showed
a distinct two-phase morphology of PLA and PEU. The topographic images shown in
Figure 5a,b reveal a distribution of MWCNTs similar to that observed in Figure S4c (see
in Supplementary Materials) for PEU100MWCNT14. Similarly, the relevant phase con-
trast image (Figure 5c,d) shows a similar level of phase separation between the PLA and
the PEU domains, as was observed in Figure S4e, for the equivalent MWCNT-free spec-
imen. Furthermore, the phase contrast images of the composite blend indicate selective
localization of MWCNTs in the PEU phase. This selective localization phenomenon of
MWCNTs in an immiscible blend of thermoplastic polyurethane and PLA was also reported
by Buys et al. [48]. Their investigations indicated that whenever inorganic nanoparticles
are added to immiscible polymer blends, they tend to be dispersed heterogeneously, ei-
ther preferentially concentrated in one of the polymer phases or localized to the interface
between the two.
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3.3. Thermal and Thermo-Mechanical Properties

DSC and DMA at varied temperatures were carried out to determine the transition
temperatures necessary for the triple-shape programming and recovery process. The
DSC thermograms of the neat PEU70PLA30 blend showed a sharp melting transition at
Tm = 49 ◦C with a melting enthalpy of ∆Hm,PEU = 34 J·g−1 and a weak glass transition just
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above the terminus of the melting transition (Tg~61 ◦C) (Figure 6a). The first switching do-
main was assigned to the melting of the crystallizable PBA soft segments of the PEU, while
the second switching domain was associated with the glass transition of PLA. Furthermore,
a peak at Tc~10 ◦C (∆Hc,PEU = 28.9 J·g−1), corresponding to the crystallization of the PBA
soft segments of the PEU, was also observed. By the addition of MWCNTs to the blend
to form the composite PEU70PLA30MWCNT14, the Tm of the PEU soft segments was
increased to 50 ◦C (∆Hm = 26.2 J·g−1, while the Tc was decreased to 9 ◦C (∆Hc = 27.5 J·g−1)
(Figure 6a). However, no significant change in the Tg of the amorphous PLA domains was
observed. Finally, the broad cold crystallization peak (Tcc = 120 ◦C) and small melting
peak (Tm = 152 ◦C, ∆Hm,PLA = 25 J·g−1) assigned to crystalline PLA in the unfilled blend
were observed. By adding MWCNTs, ∆Hm,PLA was slightly increased to 26.2 J·g−1, but no
significant change in the Tm of PLA in the composite was observed.
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The effects of MWCNT addition on the crystalline microstructure of the PEU-PLA
blend composite were further studied by WAXS (Figure S5, see in Supplementary Materials).
For the neat blend PEU70PLA30, the diffraction pattern exhibited clear peaks at 2θ = 21.7◦

and 24.2◦ and a shoulder at 22.5◦, yielding χc = 18.2 ± 0.3%. The peaks were assigned to
the PBA crystalline polymorphs (α form and β form) as indicated in the literature [49,50].
The fact that the characteristic peaks associated with crystalline PLA did not appear may
be attributed to the low amount of PLA present in this system. All peaks associated with
crystalline polymer disappeared at 55 ◦C, as expected, given that this exceeds the melting
point of PBA as observed via DSC (Tm = 49 ◦C). For the composite PEU70PLA30MWCNT14,
the addition of MWCNTs resulted in no significant changes in the position and shape of
the polymer peaks. For the unfilled blend, no peaks associated with crystalline PLA
were observed. The most noticeable change was a characteristic peak associated with the
MWCNTs at 2θ = 26◦ [51]. While, as before, all crystalline polymer peaks disappeared at
55 ◦C, the MWCNT peak remained, as expected.

Moving from microstructure to viscoelastic response to assess the effects of MWCNTs
on the thermomechanical properties of the blend, DMA was carried out as a function of
temperature. A stepwise drop in the value of E′ was observed in both the unfilled blend
and composite as the temperature increased from −50 ◦C to 100 ◦C (Figure 6b). E′ for
PEU70PLA30 decreased from ~1300 MPa at −50 ◦C to a near-plateau of ~140 MPa at 50 ◦C.
This drop was attributed to the glass transition temperature (Tg) and the melting point
(Tm) of the semi-crystalline PBA soft segments of the PEU. A second steep decline in E′

was observed between 50 ◦C and 100 ◦C, at which point a value of 4 MPa was reached; this
was attributed to the Tg of PLA. Finally, the value of E′ started to increase once more at
temperatures around 100 ◦C, the result of the cold crystallization of the PLA [52].

The decrease in modulus at temperatures around 150 ◦C indicates further softening of
the sample before the melting transition detected for the crystalline PLA phase following
cold crystallization. However, the amount of PLA crystallinity is too low to explain the
large change in modulus fully. It is therefore posited that, in addition to this transition, the
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MDI/1,4-BDO hard segments present in the PEU are also undergoing a thermal transition.
This hypothesis is supported by literature reports reporting hard segment thermal transi-
tions over a similar temperature range [53] and showing that they become difficult to detect
via DSC as the hard segment content decreases [54]. Here, given the low modulus of the
pure PEU (implying a low hard segment content) coupled with its further dilution by PLA,
it is not surprising that the melting transition for the PEU hard segments is not resolved by
DSC but remains detectable via DMA. Finally, for the composite PEU70PLA30MWCNT14
formulation (red line in Figure 6b), a higher value of E′ was observed across the entire
temperature range tested, indicating an increase in rigidity in both the glassy and rubbery
regions vs. the unfilled blend.

Uniaxial tensile testing of the neat blend and the composite PEU70PLA30MWCNT14
(50 × 10 × 2 mm3) at room temperature and 90 ◦C was carried out (Figure 6c) to assess
quasi-static mechanical properties and deformation capabilities. The elastic modulus of the
neat PEU70PLA30 blend was measured as E = 87 ± 5 MPa at room temperature, increasing
to E = 110 ± 3 MPa (+26%) in the case of the filled PEU70PLA30MWCNT14 composition.
Nevertheless, the elongation (εb) at break was decreased from 319 ± 45% for PEU70PLA30
to εb = 196 ± 15% for PEU70PLA30MWCNT14 (−39%). At an elevated temperature
(T = 90 ◦C), the neat PEU70PLA30 blend displayed an elastic modulus of 0.04 MPa and an
elongation at break of 140 ± 10%, while the filled PEU70PLA30MWCNT14 formulation
gave an elastic modulus of 0.14 MPa (+250%) but could only be extended to 7 ± 2%
(−92%) before failing. The limited deformability of the composite could be attributed to the
aggregated MWCNTs, which act as stress concentrators and cause premature failure. Due
to the low elongation of the printed composites, the electroactive TSE was only explored in
bending mode.

3.4. 4D Printing of Electro-Active Triple-Shape Composites

The composite PEU70PLA30MWCNT14 exhibited reliable printability and was used
to print 3D models of the electroactive composite alone or in combination with electrically
passive subcomponents. The printing parameters and the filling density for all the mod-
els were kept constant (Table S1, see in Supplementary Materials). As explained in the
experimental section, the U-shaped composite sample was programmed (θA = 180◦) by
using a triple-shape bending procedure. To observe the electrically activated TSE, the two
ends of the U-shaped specimen were connected using electrodes and subjected to different
voltages. An IR camera monitored the surface temperature during electric heating. The
application of 13 V enabled a Tmax of 50 ◦C, above the Tm of the PBA crystalline domains
in the PEU, and triggered a partial recovery (θB = 55◦) of the sample in 150 s. Here, it must
be clarified that to avoid the involvement of the glass transition range of PLA during the
first recovery step, precise heating of the composite to enable the complete melting of the
PBA crystalline domain at ~50 ◦C was necessary. A further increase in voltage level to 17 V
resulted in a quick rise of temperature to 90 ◦C (above the Tg of PLA) and near-complete
recovery of the composite model in 25 s, as shown by thermographic imaging in Figure 7a
(Video S1). The residual angle in shape C can be attributed to the mechanical constraints
imposed on the sample by the electrodes connecting to the other ends of the specimen,
which restrict complete recovery.

The temperature profile of the composite at two different voltages is shown in Figure 7b.
Using the recovery angles during the electrical activation of TSE, the bending recovery
ratios RA→B and RA→C were calculated. A relatively low recovery ratio RA→B = 61% for the
transition from shape A to shape B was observed. However, a higher value of RA→C = 89%
for the second recovery at 17 V was calculated.
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The second 3D printed demonstrator is an M-shaped linear compression device,
which was printed with an internal angle θint = 20◦ and was programmed in a triple
shape stretching mode. During the triple shape programming step, the internal angle
(θint) was changed from 15◦ to 80◦. By passing electric current through the device at two
different voltages, a stepwise recovery of the device to the original shape was triggered.
A voltage of 13 V enabled a change of θint from 80◦ to 65◦, and a further increase of the
voltage to 17 V resulted in full recovery of an internal angle of 20◦ as shown in Figure 8a
(Supplementary Materials Video S2).
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The last 3D-printed object was a multi-material hinge structure. In this object, the hinge
itself consists of the electroactive composite with tripe-shape capability, while the outer
segments are electro-passive and are based on red-colored PLA. The multi-material 3D
structure was thermally programmed using the triple-shape bending procedure described
in the experimental section. Electrically induced TSE was triggered by subjecting the
composite to different voltages in a stepwise manner. At 13 V, the hinge structure opened
partially, increasing the voltage level to 17 V completed the process (Figure 8b). The video
of the electrically activated triple-shape capability of the 3D-printed multi-material hinge is
shown in the Supplementary Materials (Video S3).

4. Conclusions

In summary, 4D printing of electroactive triple-shape composites based on a PEU/PLA
blend filled with MWCNTs was carried out. An optimized selection of the ratios of the
three components in the blend enabled smooth FFF printability and Joule heating capability
by passing electric current at different voltages. Morphological analysis revealed a phase-
separated morphology with randomly distributed agglomerates of MWCNTs in the blend.
The melting point of the crystallizable PBA soft segments in the PEU (Tm = 50 ± 1 ◦C)
acted as the lower transition temperature, while the glass transition of the amorphous
PLA (Tg = 61 ± 1 ◦C) acted as the upper transition temperature. Different single and
multi-material parts were printed using a multi-nozzle FFF 3D printer and programmed
using two-step bending procedures. A pronounced TSE was observed by increasing the
voltage from 0 V to 13 V and 17 V to achieve well-defined temperatures below, between,
and above the PEU and PLA transition temperatures, respectively. The ability to use 4D
printing to fabricate composites displaying a stepwise, tunable shape change process that
may be triggered remotely on-demand has clear implications for various applications in
soft robotics, actuators, and smart textiles.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym15040832/s1, Table S1: Printing parameters of red colored
PLA and conductive composite; Figure S1: (a) Back-scatter SEM images of the unfilled pure blends,
(b) DSC thermograms of neat PEU, neat PLA and unfilled polymer blends, (c) Tensile testing of neat
PEU and unfilled polymer blends; Figure S2: (a) Thermogravimetric analysis of pure blend and
composites, (b) Electrical resistance of pure blend and composites with different MWCNT content;
Figure S3: Schematic representation of the method used for measuring the resistance of the composite
samples; Figure S4: AFM images of the reference samples; Figure S5: WAXS analysis of the neat blend
and composite at ambient temperature and at 55 ◦C; Section S1: Morphology of the reference samples
by atomic force microscopy; Video S1: Electrically activated triple-shape effect (TSE) in 3D printed
“U” shape model; Video S2: Electric activation of the TSE in 3D printed “M” shaped compression
device; Video S3: Electric activation of the TSE in a multi-material hinge structure. Refs. [55–60] are
cited in Supplementary Materials file.
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