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Abstract: The application of natural fibers is increasing rapidly in the polymer-based composites.
This study investigates manufacturing and characterization of polypropylene (PP) based composites
reinforced with three different natural fibers: jute, kenaf, and pineapple leaf fiber (PALF). In each case,
the fiber weight percentages were varied by 30 wt.%, 35 wt.%, and 40 wt.%. Mechanical properties
such as tensile, flexural, and impact strengths were determined by following the relevant standards.
Fourier transform infrared (FTIR) spectroscopy was employed to identify the chemical interactions
between the fiber and the PP matrix material. Tensile strength and Izod impact strength of the
composites significantly increased for all the composites with different fiber contents when compared
to the pure PP matrix. The tensile moduli of the composites were compared to the values obtained
from two theoretical models based on the modified “rule of mixtures” method. Results from the
modelling agreed well with the experimental results. Tensile strength (ranging from 43 to 58 MPa),
flexural strength (ranging from 53 to 67 MPa), and impact strength (ranging from 25 to 46 kJ/m2)
of the composites significantly increased for all the composites with different fiber contents when
compared to the pure PP matrix having tensile strength of 36 MPa, flexural strength of 53 Mpa,
and impact strength of 22 kJ/m2. Furthermore, an improvement in flexural strength but not highly
significant was found for majority of the composites. Overall, PALF-PP displayed better mechanical
properties among the composites due to the high tensile strength of PALF. In most of the cases, T98

(degradation temperature at 98% weight loss) of the composite samples was higher (532–544 ◦C)
than that of 100% PP (500 ◦C) matrix. Fractured surfaces of the composites were observed in a
scanning electron microscope (SEM) and analyses were made in terms of fiber matrix interaction.
This comparison will help the researcher to select any of the natural fiber for fiber-based reinforced
composites according to the requirement of the final product.

Keywords: natural fiber; jute; kenaf; pineapple leaf fiber (PALF); polypropylene; composite; mechan-
ical properties; FTIR; TGA

1. Introduction

The past few decades have seen the emergence of natural fibers in our daily commodi-
ties, in their basic forms or in other geometric textile structures such as yarns, fabrics, and
non-woven sheets, as the alternative reinforcements to create composite materials due to
the ecological advantages as they offer over the manmade fibers such as glass or carbon
fibers [1–7]. Among the natural fibers, few members of the subgroup of bast fibers such as
jute, flax, hemp, kenaf and ramie, and few members of the subgroup of leaf fibers such as
sisal and pineapple have attracted particular attention from both the industry and academia.
Jute that belongs to the species of Corchorus capsularis (White jute) and Corchorus olitorius
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(Tossa jute) is known as a lignocellulosic bast fiber due to its high content of lignin (12–13%)
together with cellulose (over 61–71.5%) and hemicellulose (13.6–20.4%) [6–9]. It is the sec-
ond most important natural fiber after cotton and is mostly produced in Bangladesh, India,
and China. On the other way, Kenaf is another lignocellulosic bast fiber that comes from the
plants of the species of Hibiscus cannabinus commonly grown in tropical and subtropical
Africa and Asia. Its chemical constitution includes 60–80% cellulose, 5–20% lignin, and
up to 20% moisture [10]. Nevertheless, pineapple (Ananas comosus) is grown mainly for
its fruit, but its non-edible leaves produce a lingo-cellulosic fiber having a composition of
67.12–82% cellulose, 9.45–18.80% hemicellulose, and 4.40–15.40% lignin [4] and it is a waste
of pineapple product. Several contemporary research works reported the applications
of these fibers as composite reinforcements in both thermoplastic and thermoset plastic
matrices for structural as well as value-added product development [3,4,10–17].

A summary of jute, kenaf, and PALF fiber composites is presented in Table 1. Several
studies were carried out where the three fibers were incorporated into the PP matrix in
different forms (short fiber, long fiber, nonwoven mat) using compression and injection
molding and by extrusion in some cases. In general, the fiber content varied from 10 wt.% to
55 wt.%. The mechanical properties of the composites were determined by tensile, flexural,
and impact tests to ensure their successful fabrication and ability to perform in applications.
When the natural fibers were chemically modified, they promote better interfacial strength
or in achieving specific properties such as flammability or hydrophobicity. Observation of
the fractured surface by SEM determined interfacial bonding characteristics. In general,
the water uptake increases in the composites compared to the pure PP matrix. Not only
TGA, DMA but also DSC was tested to observe the thermal performance of the reinforced
composites. Appropriate fiber treatment can improve functional characteristics of the
resulted composites. After careful reviewing of the current literature, it is clear that varying
results on the functional characteristic of the jute, kenaf, and PALF fiber composites are
reported due to the variations in fiber content, forms, treatments, and processing techniques.
Although most of the investigation studied focused on a single fiber i.e., either jute, or kenaf
or PALF, Ng et al. [18] made a comparison on the mechanical properties of the composites
based on PP with kenaf and PALF. In general, PALF composites showed better properties
than kenaf-based composites and 30 wt.% fiber resulted the best mechanical properties.

However, no studies presented a comparison of the composites with the three selected
natural fibers such as jute, kenaf, and PALF-reinforced composites. From the composite
material fiber selection point of view of, it is important to prepare different fiber-reinforced
composites in identical conditions such as manufacturing process, fiber content, fiber
size, forms etc. This would provide a fair comparison to assess the effect of different
natural fibers. Herein, this paper aims to compare the structural, mechanical, and thermal
properties of jute, kenaf, and pineapple leaf fiber (PALF)-reinforced polypropylene (PP)
composites by varying weight percentages of individual fibers using the same fabrication
and testing procedure.

The rest of the article is organized in a way that Section 2 provides raw materials and
their composite fabrication processes with their related testing methods. Section 3 highlights
important outcomes and analyses of the comparative properties of the composites. Finally,
Section 4 presents important conclusions drawn from this study.
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Table 1. Jute, kenaf, and pineapple leaf fiber characterization parameter with composite fabrication method.

Fibers Composite Mechanical/Range Fiber Treatment Fiber% Fabrication Ref.

Jute

Oxidized Jute-PP TS increased (31–24 MPa), TM decreased (1.6–2.3 GPa),
FS increased (44–56 GPa), IS increased (31–45 J/m),

hardness increased (77–90)

Formic acid (HCOOH), sodium
periodate solution, urea [CO(NH2)2]

20–35% Single screw extrusion [19]

Jute fabrics-PP TS (68.1 MPa) and BS (94.1 MPa) increased TM (2936 MPa) and BM (4831 MPa)
increased, chemical absorption was high, IS increased

- 30–55% Compression molding [20]

Jute short fiber-PP Water absorption rate was high for alkali treated composites, TS increased
(21–30 MPa), TM increased (1.3–3 GPa)

Alkali, potassium permanganate,
and silane

30% Twin Screw extrusion [21]

Jute fabrics-PP TS increased (20.48–47.08 MPa), TM increased (1.24–3.58 GPa), Nonpolar octyl gallate (OG),
dodecyl gallate (DG), and octadecyl

gallate (OCG)

50% Hot press [22]

PP/jute TS and FS decreased with the addition of ESO and TOA, IS increased with the
addition of ESO and TOA,

Epoxy soybean oil (ESO)/tung oil
anhydride (TOA)

Torque rheometer followed
by injection molded

[23]

Jute mat-PP-MAPP TS increased for 30% MAPP (11.62–26.91 MPa) highest TM value shown for 20%
MAPP (1590.73 MPa), FS increased (38.45–6.95 MPa)

- 20–30% Compression molding [24]

Jute fiber-PP Storage modulus increased (580–1600 MPa), 2 ply of 3 cm jute fiber showed the
highest TS (17.86 MPa),

- 0–10% Hot press [25]

Jute fiber-PP Highest TS (25.8 MPa) and TM (1.7 GPa) for 40% jute-60%PP,
highest FS (17.1 MPa) and FM (16.7 GPa) for 30% jute-70% PP, IS decreased

(18–10KJ/m2),

- 30–60% Compression molding [26]

Kenaf (K)

MWCNT-K-PP Viscosity decreased, TGA value is decreased (187–200 ◦C), water absorption
stability increased, flammability is decreased, viscosity increased to

300–1600 Pa.S when MWCNT is added; when kenaf fiber incorporated viscosity
increased 50–300 Pa

- 10–40% Injection molding [27]

K-PP The highest TS value (42 MPa) was shown for 5% NaOH treated 30% fiber
content, TS value (58 MPa) increased for alkali–silane treated composites, TM
(3 GPa) of alkali-silane treated composited was high than untreated and alkali

treated composites
Highest FS (55 MPa) was for 6% alkali-treated composites

SEM examinations showed that TS and FS of composites increased for
alkali treatment

NaOH, (alkali–silane treatment) Compression molding [28]

K-PP Highest TS (48 MPa) was shown for 30% kenaf–PP composites, and flax-PP
composites showed the highest FS (76 MPa) and specific modulus was highest

for kenaf–PP composite

- 30% and
40%

Compression molding [29]

K-PP-MH-MAgPP Thermal stability decreased, TS decreased (40–23 MPa), TM (1.3–0.8) MPa
increased, BS (65–108 MPa) decreased, and BM (6–10 GPa) increased with fiber

content; with the addition of MgOH, TS (22–23 MPa) decreased, and BM
(5–7 GPa) increased

- 10–25% Haake RheocordRPM is 50 [30]

K-PP TS increased(25–50 MPa), TM increased (1–3 GPa), FS increased (31–70 MPa),
FM increased (1.2–3.1 GPa), IS decreased (5.8–4.7 KJ/m2)

NaOH 10–40% Close molding injection [31]
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Table 1. Cont.

Fibers Composite Mechanical/Range Fiber Treatment Fiber% Fabrication Ref.
K-PP Correlation measured between the physical and mechanical properties Alkaline, silane - Heat extrusion [32]

K-CNT-PP Higher TS (16 MPa) shown for 30 wt%, TM increased (700–2200 MPa), FS
increased (22–26 MPa), and FM increased (600–2400 MPa)

- 20–40% Injection molding [33]

K-PP TS (158–85 MPa) decreased, TM (12200–7000 MPa) decreased with orientation of
fiber and temperature (30–120 ◦C); BS (15–105 MPa) decreased, BM (1–8 GPa)
decreased, and storage modulus (10–80 GPa) decreased and Poisson’s ratio

(0.05–0.45)

- 40% Compression molding [34]

PALF

PALF-
LDPE

TS (37–40 MPa), IS, BS, thermal stability are highest for 7% NaOH and
7.5 Gamma radiation, TM (1–1.6 GPa), TM (1.3–1.6 GPa), BS (91–97) MPa,

NaOH, gamma 50% Heat press [35]

PALF-PP Highest TS (42.2 MPa) and TM (1864 MPa) for untreated composites, TS
(55.9 MPa) increased for ZnCl2 treatment, highest FS (51.6 MPa) shown for

40/60 weight percentage and for HNO3 treatment

Sodium Hydroxide (NaOH)
solution, Zinc chloride, Acetic

Anhydride and Nitric acid

10–40% Injection molding [36]

PALF-PP TS (14.98 MPa) for 30% PALF - 10–30% Twin-screw extrusion [37]
PALF-LDPE TS increased (17–28 MPa), TM increased (400–800 MPa), BS increased

(54–78 MPa), BM increased (1000–5800 MPa), highest impact strength was
33 KJ/m2 for 50% fiber weight

Gamma radiation 10–60% Compression molding [38]

PALF-PP TS increased (28–87 MPa) TM increased (338–1731 MPa), BS increased
(20–51 MPa), BM increased (230–840 MPa), IS increased (2.9–7.2 KJ/m2),

NaOH 25–45% Compression molding [39]

PALF-TBP TS increased upto18.37 MPa with 30% fiber and TM increased to 1.03 GPa, BS
increased to 19.34 MPa, IS increased to 18.10 kJ/m2 with 40% fiber

- 10–40% Compression molding [40]

PALF-PP With 20 wt% PALF fibers, increase Young’s modulus (146%) and stress at break
(112%), but decrease in elongation at break (298%)

- - Twin-screw extrusion [41]

PALF-PP/LDPE Highest TS (54 MPa) for 15/85% PALF-PP composites and increased with the
increase of PALF fiber

NaOH 0–25% Compression molding [42]

PALF-PP TS (37.28 MPa) and TM (687.02 MPa) for 10.8% fiber content, FM (2000 MPa)
was higher for 2.7% fiber content

- 0–18% Hot press [43]

Note: TBP—tapioca biopolymer, LDPE—low density polyethylene, MAgPP—maleic anhydride–grafted polypropylene, MWCNT—multi-wall carbon nanotube, TS—tensile strength,
F/BS—flexural/bending strength, TM—tensile modulus, BM—bending modulus, IS—impact strength, TGA—thermal gravimetric analysis, DMA—dynamic mechanical analysis,
DSC—differential scanning calorimetry, SEM—scanning electron microscope.
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2. Experimental Procedure
2.1. Materials

Jute fibers (Tossa jute: Corchorus Olitorius), Kenaf (HC-95 variety: Hibiscus Cannabi-
nus) were collected from Experimental Research Stations of Bangladesh Jute Research
Institute (BJRI) and pineapple leaf fiber (PALF: Ananas Comosus) was obtained from Mad-
hupur Thana under Tangail district of Bangladesh. Polypropylene pallets (Brand: SABIC,
KSA) were collected from the local market of Dhaka, which were used as a matrix material.
The fiber color, density, and mechanical properties of different raw materials are listed in
Table 2. From the table, it is clear that the trend of diameter for the fibers is Kenaf > Jute >
PALF, density PALF > Kenaf > Jute and tensile strength PALF > Kenaf > Jute.

Table 2. Physical and mechanical properties of jute fiber, kenaf fiber, PALF, and PP.

Types of
Fiber/Matrix Diameter (µm) Density

(gm/cm3)
Tensile

Strength (MPa)
Tensile

Modulus (GPa)

Jute 53.38 ± 5.93 1.40 300–773 20–55
Kenaf 55–60 1.45 350–600 26.00
PALF 20–40 1.56 413–1627 60–82

PP - 0.91 36.21 ± 0.68 1.085 ± 0.036

The single fiber was characterized by tensile testing using an Instron machine inte-
grated with a load of 100 N at a crosshead speed of 2.5 mm/min and the fiber span length
of 25 mm following D3822ASTM standard. Diameter of the fibers were measured by a
Fineness tester and image analysis.

Figure 1 presents fiber surface morphologies of the three fibers. The surface of raw jute
fiber was generally smooth with ridges and irregular cellular nature with some micropores.
Whereas the kenaf surface also appeared smoother with ridges. However, the PALF surface
was rougher with regular cellular structure. The fiber diameters for jute, kenaf and PALF
are approximately 30–50 µm, 50–65 µm, and 20–35 µm respectively.
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In this study, polypropylene (PP) was used as matrix material and jute (Tossa vari-
ety), kenaf, and pineapple leaf fibers (PALF) were used as the reinforcing materials for
fabricating composites.

2.2. Composite Fabrication Process
2.2.1. Fabrication of PP Sheets

The PP sheet of 1 mm thickness was fabricated by melting and compressing for pre-
weighed PP pellets by the CARVER heat press machine (Carver, INC, Model 4128, Wabash,
IN, USA) at 190 ◦C and a pressure of 1814 kgf for 10 min using a square mold dimension of
300 × 300 × 1 mm3. The fabricated PP sheets were then cooled through water flow at room
temperature (25 ◦C) for 15 min.

2.2.2. Fabrication of Composite Laminates

Composites of 4 mm thick were prepared by sandwiching two layers of fibers between
three pre-weighted PP sheets as shown in Figure 2. These fibers are carefully placed
between PP sheets by ensuring its uniform distribution as far as the mass of the fibers per
unit area is concerned. Fiber weights in each composite laminate were measured.
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Figure 2. Schematic diagram of experimental procedure.

The sandwiched PP sheets were then placed between two steel molds with randomly
oriented fibers and heated at 190 ◦C for 15 min to soften the polymer sheets and impreg-
nated into the fiber at 2268 kgf pressure. Finally, the mold was allowed to cool at room
temperature. After that the fiber-reinforced PP composite sheet was removed from the
mold plate. The nominal thickness of the composite plate was approximately 3.00 mm.

2.3. Fourier Transform Infrared (FTIR) Spectroscopy

Fourier transform infrared (FTIR) spectroscopy was carried out in a Shimadzu
81,001 spectrophotometer at Bangladesh University of Engineering and Technology (BUET),
Bangladesh. The transmittance range of the scan was set from 650 to 4000 cm−1. To obtain
the spectra, the attenuated total reflectance (ATR) mode was employed.

2.4. Physical and Mechanical Characterization of Composites
2.4.1. Determination of fiber fractions

The weight of final composite sheet was measured using a weighing balance and
accordingly, the fiber weight content (%) in the fiber-reinforced composite was determined
using Equation (1).

Fibre weight (%) =
Total f ibre weight in the composite

Composite sheet weight
× 100 (1)
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Table 3 presents fiber fractions in each composite with the corresponding sample IDs.

Table 3. Fiber weight, volume fractions, and layer configuration of the fiber-reinforced PP composites.

Samples ID Code Fiber wt.% Fiber Vf%

30/70 Jute/PP Composite JF1-PP 30 21.60
35/65 Jute/PP Composite JF2-PP 35 25.71
40/60 Jute/PP Composite JF3-PP 40 30.00
30/70 Kenaf/PP Composite KF1-PP 30 20.45
35/65 Kenaf/PP Composite KF2-PP 35 24.41
40/60 Kenaf/PP Composite KF3-PP 40 28.57
30/70 PALF/PP Composite PL1-PP 30 26.49
35/65 PALF/PP Composite PL2-PP 35 31.17
40/60 PALF/PP Composite PL3-PP 40 35.92

2.4.2. Determination of Tensile Properties

Tensile test of fiber-reinforced composite samples was carried out using Instron Uni-
versal testing machine (3369 series) equipped with a 5000 N load cell and a cross-head
speed of 5 mm/min. Specimens with a nominal dimension of 180 mm × 20 mm × 4 mm
for each type of composite were employed during the uniaxial tensile tests used for tensile
testing. Standard dumbbell-shaped test specimens were tested according to ASTM D638
standard. Five specimens were tested for each composite to check the test repeatability.
The tensile test specimens are shown in Figure 3.
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2.4.3. Determination of Flexural Properties

The flexural strengths and moduli of the composite specimens were measured using
a three-point bending test according to ASTM D790-02: 2002 test standard in Hounsfield
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H10 KS, UK. The tests were carried out with a span-to-depth ratio of 16:1 and at a
crosshead speed of 2 mm/min. Specimen dimensions for three-point bending tests
were 120 × 13 × 4 mm3. It should be noted that the edges of composite samples were
smoothened by sandpaper in order to avoid stress concentration during the tensile and
bending tests. The flexural strength (σf ) and modulus of the composite samples were
determined using the Equations (2) and (3).

σf =
3PL
2bd2 (2)

E f =
L3m
4bd3 (3)

where P is the applied load (N), L is the length of support span, b is the specimen width
(mm), d is the specimen thickness (mm), and m is the slope of the tangent to the initial
straight-line portion of load-deflection curve (N/mm).

2.4.4. Determination of Impact Properties

Impact strength is defined as the ability of a material to absorb energy. The impact
strength of composites is directly related to its overall toughness. The composite toughness
is affected by interlaminar and interfacial strength parameters. The Izod impact test for
un-notched specimens was conducted using an impact-testing machine of HUNG Ta
Instrument Co., Ltd. (Taiwan). The load of the pendulum was 4 J. The impact properties
were measured according to ASTM D256 test standard. Specimen dimensions for impact
strength tests were 90 mm × 13 mm× 4 mm. It should be noted that the edges of composite
samples were smoothened by sandpaper in order to avoid stress concentration during the
Izod Impact tests.

2.5. Thermogravimetric Analysis of Composites

The thermal stability of the composite samples was assessed by using the Thermogravi-
metric Analyzer ELTRA Thermostep (Eltra GmbH, Haan, Germany). TGA measurements
were carried out on 40–50 mg sample placed in a platinum pan, heated from 30–600 ◦C at a
heating rate of 10 ◦C/min in a nitrogen atmosphere with a flow rate of 20 mL/min to avoid
unwanted oxidation.

2.6. Fractured Surface Analysis Procedure

The fractured surfaces of the composites were observed under a scanning electron
microscope (SEM) to analyze the adhesion and interfacial characteristics between the
natural fibers and the matrices. The fractured surface was coated with a thin layer of gold
to make it conductive. An SEM of model JSM-5600LV from JEOL Ltd. was used at an
accelerating voltage equal to 20 kV in secondary electron mode.

3. Results and Discussion

The virgin PP and the natural fiber-reinforced composites were characterized for
structural, mechanical, and thermal properties. To compare the composites, the theoretical
values of Young’s moduli were calculated by two specific theoretical models and compared
with the experimental results.

3.1. FTIR Analysis

FTIR of three fibers (jute, kenaf, and pineapple), as well as their respective composites,
are depicted in Figure 4.
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and (c) PALF.

Owing to the cellulose structure of the fibers, broad peaks of OH group were appeared
between 3300 and 3400 cm−1. The peaks were slightly shifted with the variation of fibers.
In case of jute, the OH peak was located approximately 3336 cm−1 whereas it was at
3329 cm−1 for both the kenaf and pineapple fibers. Similar shifting was also visualized
for other important peaks such as C-H, C-C, C-OH, C-H ring, and aromatic C-H plane.
Meanwhile, due to a C-H vibration of -(CH3) group, a peak for natural fibers in the
region of 2900 to 2920 cm−1 was also found with small variations among the fibers for
the existence of the methyl group (–CH2) of cellulose and hemicellulose portion [44].
Furthermore, C-O stretching in carbonyl and unconjugated β-ketone appeared at peaks
between 1730 and 1740 cm−1 due to the presence of xylan in hemicellulose [44]. Moreover,
peaks appeared between 1454 and 1375 cm−1 indicating the symmetrical bending of -CH3
bending of lignin and other carbohydrate compounds. Another broad peak at around
1000 to 1100 cm−1 represents C-C, C-OH, C-H ring, aromatic C-H plane deformation and
side group vibration of the fibers because of hemicelluloses and lignin [35]. Similar types
of peaks (OH-, CH-C-C) were also reported for untreated and chemically treated jute
fibers-reinforced composites [45,46]. On the other hand, PP matrix material, C-H vibration
of -(CH3) group appeared in the region of 2900 to 2920 cm−1. From the figure, it was clear
that FTIR of composite was the superimposed version of the selected fibers and the matrix
material. The peaks of the fibers as well as the matrix material both were visible in the
composite material. Neither any evidence of additional peak nor significant peak shifting
occurred in case of the composites signifying no or lack of strong chemical bond between
the fibers and the matrix.

3.2. Tensile Strength (TS)

The fracture surfaces of the fiber-reinforced composite are shown in Figure 5.
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The tensile test results for the fiber-reinforced PP composites are presented in Figure 6.
It was clear from the figure that all the fabricated composites displayed higher tensile
strengths than the PP matrix itself. For the jute-PP and kenaf-PP composites, a decreasing
trend of tensile strength was noticed with an increase in the fiber content. At 30 wt.% and
35 wt.% fiber content kenaf-PP composite showed better tensile strength than the jute-PP
composite. However, at 40 wt.%, the strength of kenaf-PP composite dropped significantly.
Although at 30 wt.% and 35wt.% fiber content, PALF-PP composite showed lower strength
compared to the other composites, but the PALF-PP composite produced the highest TS at
40 wt.%.

The general trend in tensile strength of the composites for all fiber wt.% can be
arranged in the following descending order: jute-PP < kenaf-PP < PALF-PP except the
PALF-PP composite at 40 wt.%, which was higher than the 40 wt.% kenaf-PP composite.
Similarly, for all composites the tensile modulus decreased with the fiber loading. Among
the composites, the jute-PP composite displayed the best stiffness which was more than
double the value of the PP.

Benhamadoucheet al. [47] found that recycled jute fabric-reinforced PP composite
showed a tensile strength of 30 MPa but a modulus of (4–4.5) GPa, which was two times
higher than the tested jute-PP composite in this study. Whereas Shahinur et al. found
tensile strength of 30–34 MPa and tensile modulus of (2–4) GPa for jute-PP composite [48].
Akil et al. [49] reported that until 60% kenaf fiber incorporation increased the strength and
modulus of the PLA composite, whereas in this study, a fiber loading greater than 30 wt.%
the tensile strength and modulus have decreased for the Kenaf/PP-reinforced composite.

In this study, the PALF-PP composites showed lower TS and TM compared to the
kenaf-PP composites except the 40% fiber loading condition. However, Feng et al. [50]
found higher TS and TM in case of PALF fiber-reinforced composite compared to the kenaf-
PP composite. This could be due to the difference in the fiber structure and the adhesion
criteria between the fiber and matrix. Furthermore, in another study, Feng et al. [51] also
reported that after chemical (NaOH) treatment, strength, modulus, and impact properties
were linearly increased for the kenaf-PP and PALF-PP composites where 30 wt.% fiber
was incorporated in chopped mode and the method of composite fabrication was the hot
press. Berzin et al. [41] found increasing trend of tensile strength and tensile modulus with
the PALF incorporation between 10, 20, 30 wt.% in the PP matrix when the composites
were fabricated through the twin-screw extrusion method. Gadzama et al. [36] found
the pineapple leaf-PP composite tensile properties of PALF-PP composites increased until
30 wt.% after that they decreased. However, in this study, tensile properties were found
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higher in case of 40 wt.% pineapple leaf fiber-reinforced composites compared to the
other composites.
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Figure 6. (a) Tensile strengths, (b) tensile moduli of the composite specimens.

At low fiber content, a small fiber population contributes to low load transfer capacity
among the fibers. As a result, accumulation of stress occurs at certain points of the compos-
ite. It was evident that higher fiber loading increased the probability of fiber agglomeration
within the matrix which produces non-uniform stress transfer and stress concentration
promoting crack propagation. Moreover, too many fiber ends encourage micro crack forma-
tion in the interface. As a result, the strength and modulus of the composite again decrease.
Generally, the toughness of fiber-reinforced polymer composites is dependent on the fiber,
the polymer matrix, and the interfacial bond strength [52,53].
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3.3. Theoretical Calculation of Tensile MODULUS

The tensile modulus of composites is primarily dependent upon the fiber volume
fraction [54,55] and it can be predicted based on the modified “rule of mixtures” method.
According to Sayeed et al., 2013 [56], the theoretical models of tensile modulus of natural
fiber-reinforced composites have been analyzed for predicting the tensile modulus of
jute/PP nonwoven composites. Motivated by their work, Miao and Shan [57] and Pan [58]
models for short fiber composites were applied for predicting the tensile modulus of jute,
kenaf and PALF fibers-reinforced PP composites. Accordingly, Miao and Shan [57] have
attempted to predict the tensile modulus of short fiber composites by employing Krenchel
fiber orientation factor in the rule of mixtures equation, as shown below.

EC = η0ηlVf E f +
(

1 − Vf

)
Em (4)

η0 = ∑ ancos4θn (5)

where Ef, Em, and Ec are the modulus of fiber, matrix, and composite, respectively, ηl is a
length efficiency factor, ηo is a Krenchel factor related to fiber orientation, Vf is the fiber
volume fraction, and an is the fraction of fibers with orientation angle θn with respect to the
loading direction. Alternatively, Pan has proposed to replace fiber volume fraction (Vf) in
rule of mixtures method by fiber area fraction (Af) that accounted for the fiber orientation
and the direction of the cross-section. In order to compute the direction dependence of
composite tensile properties, the fiber area fraction and the area fraction of matrix are
defined on a plane (Θ, ΦΘ, Φ), as shown below.

A f (Θ, Φ) + Am(Θ, Φ) = 1 (6)

where A f (Θ, Φ) and Am(Θ, Φ) are the fiber and matrix area fractions on a plane defined
by polar angle (Θ) and base angle (Φ). In addition, a relationship between the fiber area
fraction A f (Θ, Φ), and the fiber volume fraction has also been formulated [58], as illustrated
in the Equation (7).

A f (Θ, Φ) = Ω(Θ, Φ)Vf (7)

where Ω(Θ, Φ) is the probability density function of fiber orientation projected on the
plane defined by (Θ, Φ). Accordingly, the rule of mixtures has been modified as shown
below [58].

EC = ηl A f (Θ, Φ)E f +
(

1 − A f (Θ, Φ)
)

Em (8)

Alternatively,

EC = ηlVf Ω(Θ, Φ)E f +
(

1 − Vf Ω(Θ, Φ)
)

Em (9)

In this study, the short fibers reinforced in the composites are hand laid in two layers
in between polypropylene films and randomly oriented in the composites in order to obtain
the “quasi-isotropic” structure. Therefore, these fiber structures can be easily presumed to
be “quasi-isotropic” type of structure having fibers orientated randomly in three dimensions
(3D). Accordingly, the Krenchel fiber orientation factor and the probability density function
for ideally randomly oriented short fiber structures given in the Eqs. 5 and 7 are 0.2 and
0.159, respectively [57,58]. Moreover, the length efficiency factor of fibers can be ignored,
i.e., ηl = 1, as the fibers in the short fiber structures have a very high aspect ratio [58].
Hence, Equations (4) and (9) were used for computing the tensile modulus of ideally
randomly orientated short fiber composites based on the work of Miao and Shan, 2011 and
Pan, 1994 are given below.

(EC)Miao and Shan = 0.2Vf E f +
(

1 − Vf

)
Em (10)
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(EC)Pan = 0.159Vf E f +
(

1 − 0.159Vf

)
Em (11)

Accordingly, the tensile modulus of short fiber composites has been predicted based on
Equations (6) and (8) and subsequently, compared with the experimental tensile modulus
of jute, kenaf, PALF-reinforced PP composites. The modulus of 30/70 jute/polypropylene,
35/65 jute/polypropylene and 40/60 jute/polypropylene composites were observed to
be 2.11, 2.03, and 1.87 GPa, respectively. Similarly, the moduli of 30/70 kenaf/PP, 35/65
kenaf/PP, 40/60 kenaf/PP composites were 1.89, 1.71, and 1.46 GPa and for 30/70 PALF/PP,
35/65 PALF/PP, 40/60 PALF/PP composites, the moduli of these composites were 1.64,
1.53, and 1.67 GPa respectively. In general, a good agreement has been obtained between
the experimental and the theoretical results of tensile modulus of short fiber composites
obtained by the Pan model, as shown in Figure 7. On the other hand, the model defined
by Miao and Shanfor predicting the tensile modulus of short fiber composites has clearly
overestimated the experimental results. Similarly, Sayeed et al. has predicted the tensile
modulus of nonwoven jute/PP composites for different stacking sequences of nonwoven
layers [56].
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Figure 7. Comparison between theoretical and experimental results of elastic modulus of jute, kenaf,
and PALF fibers-reinforced PP composites having different weight proportions of fibers.

3.4. Flexural strength (FS)

Generally, structural materials that have high tensile strength also perform well at the
bending load due to good interaction with the fiber and matrix. In this regard, flexural
properties were investigated and shown in Figure 8. From the figure, it was clear that
at 35 wt.% fiber content, both jute-PP and kenaf-PP composites showed the best flexural
strengths in contrary to the highest FS found for the PALF-PP composite at 40 wt.%. An
increasing trend of strength from 30 wt.% to 35 wt.% and decreasing trend from 35 wt.% to
40 wt.% was seen for the jute and kenaf composites, whereas an inverse trend was found
for the PALF composites. In general, the kenaf-PP composites displayed poorer flexural
strengths compared to the others whereas jute-PP composites showed quite consistent
behavior for all three fiber contents. However, in terms of flexural modulus, a significant
improvement was noticed for all composites compared to the matrix. The general trend
in flexural modulus of the composites for all fiber wt.% can be arranged in the following
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descending order: jute-PP < kenaf-PP< PALF-PP similar to the tensile modulus. However,
no clear correlation was found between the flexural strengths and moduli except at 35 wt.%.
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Figure 8. (a) Flexural strengths and (b) modulus of jute, kenaf, and PALF fiber-reinforced PP
composite specimens.

Force vs. extension curves for the composites during flexural testing are presented
in Figure 9. From the extension plot it was clearly observed the extensions before failure
increased with up to 35 wt.% fiber content but at 40 wt.% the extensions were similar to the
matrix material.
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Figure 9. Force vs. extension graphs during flexural testing of the composite specimens (a) jute,
(b) kenaf, and (c) PALF.

Although all composites showed higher or similar flexural strength values compared
to PP, but the respective increase in FS was not as high as that in the tensile strength. The
poor flexural strength results for kenaf-PP composite could be related to relative lower fiber
strength and/or inadequate interfacial adhesion.

3.5. Impact Strength (IS)

Impact strength of the fabricated jute, kenaf, and PALF-reinforced composites are
shown in Figure 10. A general trend of increasing impact strength was noticed in all
composites with the increase of the fiber content. Among the composites, the best and
worst impact properties were found for PALF-PP and kenaf-PP composites respectively
possibly due to their individual fiber strength characteristics as shown in Table 1. The
results emphasized the fact that all the composites will absorb higher energies before
breaking than that of the PP matrix.
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Figure 10. Impact strengths of the natural fiber-reinforced PP composites.

3.6. Thermal Characteristics

The effects of temperature on the mass changes of the jute, kenaf, and PALF-reinforced
composites are presented in Figure 11.
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There are three significant regions of weight loss due to a rise in the operating tem-
perature. According to Shahinur et al. [53], the initial low temperature weight loss of the
composites is due to the removal of moisture from the composites, major weight loss due to
degradation and vitalization of polypropylene along with jute fibers present in composites
and the residue that are formed after degradation requires higher temperature for subse-
quent degradation. The initial (at 10% and 20% weight loss), major (at 75% weight loss)
and final weight loss and their corresponding degradation temperatures for the jute-PP,
kenaf-PP, and PALF-PP composites and 100% PP are given in Table 4.

Table 4. TGA data of jute, kenaf and PALF-reinforced PP composites.

ID
Degradation
Temperature,

◦C (T10%)

Degradation
Temperature,

◦C (T20%)

Degradation
Temperature,◦C

(T75%)

Degradation
Temperature,
◦C (at T98%)

100% PP 323.31 348.51 420.23 500.11
JF1-PP 302.26 331.94 420.04 500.21
JF2-PP 303.60 332.80 426.01 531.57
JF3-PP 293.97 325.98 402.45 488.41
KF1-PP 294.86 331.17 428.24 541.17
KF2-PP 297.38 332.20 427.05 542.79
KF3-PP 289.67 327.46 424.09 544.13
PL1-PP 298.70 325.51 409.64 504.86
PL2-PP 295.01 327.46 422.61 538.35
PL3-PP 292.93 327.02 424.24 539.53

Note: T10% = degradation temperature at 10% weight loss; T20% = degradation temperature at 20% weight loss;
T75% = degradation temperature at 75% weight loss, T98% = degradation temperature at 98% weight loss.

From Figure 11a, it is clear that major weight loss (75%) of the 35/65 Jute-PP composite
occurred at 426 ◦C possibly due to degradation of the PP along with the jute fibers present
in the composite. Whereas the final weight loss (~95–98% loss) of this composite sample
(35/65 Jute/PP) occurred at 53 ◦C which is higher than that of the 100% PP. This final
degradation of the jute-PP composite shifted to higher temperature due to a stronger
adhesion between jute fibers and the PP matrix. Hence, the effect of this jute fiber-reinforced
composite (35/65) showed increased thermal stability at higher temperature compared
to other jute fiber wt.%. Similar type of thermal stability was also reported in case of
jute-reinforced unidirectional epoxy composite [52] as well as short jute fiber-reinforced PP
composite [53].

The TGA results of kenaf fiber-reinforced polypropylene composite at 30, 35, and
40 wt.% fiber loading are illustrated in Figure 11b. The major weight loss (75%) of the
40/60 Kenaf/PP composite occurred at 424 ◦C due to degradation of the PP matrix along
with the kenaf fibers. The degradation of final residue i.e., final weight loss (~95–98% loss)
of this composite sample (40/60 kenaf/PP) occurred at 544 ◦C which was higher than that
of the 100% PP. It should be noted that the degradation temperatures (at different weight
loss%) do not change significantly with varying kenaf fiber loading in the composites.
Azam et el. [27] reported that with the increase in kenaf fibers in the PP matrix materials,
the activation energy increases.

The TGA results of the PALF-PP composite at 30, 35, and 40 wt.% fiber loadings
are shown in Figure 11c. The major weight loss (75%) of the 35/65 and 40/60 PALF-PP
composites occurred at around 420 ◦C due to degradation of the PP as well as the PALF
fibers. Here the final weight loss (~95–98% loss) of these composite samples (35/65 and
40/60 PALF/PP) occurred at 538 ◦C and 539 ◦C respectively which was higher than that of
the 100% PP. Here the same reason can be given for the degradation of the PALF composite
that shifted to a higher temperature like the other two composites.

Thus, in general, it can be revealed that all three fiber-reinforced PP composites
possessed higher thermal stability than the pure PP particularly at major and final weight
loss conditions. At final degradation condition, both kenaf-PP and PALF-PP composites
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showed an increase in degradation temperature with the fiber content. The thermal stability
performance of the composites can be ranked with the following ascending order jute-PP <
kenaf-PP < PALF-PP. The difference in constituent (like cellulose and lignin) of the fibers
may affect the thermal stability of the composites [36].

3.7. Fractured Surface Morphology

SEM images of the fractured composite surfaces during tensile testing showed general
characteristics of fiber breaking and fiber pull out (Figure 12). Furthermore, the broken
fibers were clean indicating a lack of adhesion. Similar types of fiber pull out was reported
by Shahinur et al. [46] for jute-PP and treated jute-PP composite.
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Figure 12. SEM images of fractured composites reinforced with different wt.% of jute, kenaf and
PLAF fibers.

Closer look at the interface at high magnification also revealed gaps between the fibers
and the matrix for all composites (Figure 13). However, the gap was relatively smaller in
the case PALF-PP composites indicating a better fiber matrix adhesion, which could be
responsible for bearing higher load. As the natural fibers are different in their structures,
their lumen sizes and shapes are also different. Therefore, the product density will be
different. From the SEM fractured surfaced, it was clear that the interaction between the
fiber matrix and penetration of the matrix material varied in the composite depending on
the fiber type, which affected the gap formation and mechanical properties of the composite.



Polymers 2023, 15, 830 20 of 23

Polymers 2023, 15, 830 22 of 26 
 

 

   
Jute-PP 40/60 Kenaf-PP 40/60 PALF-PP 40/60 

Figure 12. SEM images of fractured composites reinforced with different wt.% of jute, kenaf and 

PLAF fibers. 

Closer look at the interface at high magnification also revealed gaps between the fi-

bers and the matrix for all composites (Figure 13). However, the gap was relatively smaller 

in the case PALF-PP composites indicating a better fiber matrix adhesion, which could be 

responsible for bearing higher load. As the natural fibers are different in their structures, 

their lumen sizes and shapes are also different. Therefore, the product density will be dif-

ferent. From the SEM fractured surfaced, it was clear that the interaction between the fiber 

matrix and penetration of the matrix material varied in the composite depending on the 

fiber type, which affected the gap formation and mechanical properties of the composite. 

   
Jute-PP 30/70 Kenaf-PP 30/70 PALF-PP 30/70 

   
Jute-PP 35/65 Kenaf-PP 35/65 PALF-PP 35/65 

  

Polymers 2023, 15, 830 23 of 26 
 

 

   
Jute-PP 40/60 Kenaf-PP 40/60 PALF-PP 40/60 

Figure 13. Close view of fiber matrix interaction in all the composites. 

Therefore, the distinctive surface characteristics of the PALF fiber leading to a better 

adhesion with the PP matrix and the relatively higher tensile strength of the PALF fiber 

could be attributed to the higher strength displayed by the PALF-PP composites com-

pared to the other two composites. 

4. Conclusions 

Polypropylene (PP)-based composites reinforced with three natural fibers such as, 

jute, kenaf, and pineapple leaf fiber (PALF) were prepared, and their structural, mechan-

ical, and thermal properties were evaluated. FTIR study indicated subtle differences in the 

fiber structures of the composites with no strong evidence of chemical interaction between 

the fibers and composites. Overall, all the composites showed better mechanical proper-

ties compared to the pure PP, but for all composites improvement in tensile strengths were 

higher than the flexural strengths. The best mechanical properties were found for the 

PALF-PP composite at the higher fiber content (40 wt.%). In terms of impact strength, the 

composites can be ranked as PALF-PP > jute-PP > kenaf-PP where an increase in fiber 

content increased the impact strength in all the composites. Among the composites, im-

proved properties in PALF-PP composites could be related to its higher fiber strength and 

better interfacial bonding as evidenced by the SEM images of the fractured surfaces. Fur-

thermore, a good agreement was obtained between the experimental and the theoretical 

results of the tensile modulus of short fiber composites obtained by Pan, 1994 model, 

whereas Miao and Shan, 2011 model clearly overestimated the experimental results. The 

composite samples displayed better thermal stability particularly at higher degradation 

temperature. From this study, the natural fibers can be selected to fabricate the final com-

posite materials as per the end application requirements. The effect of aging (physical, 

thermal, and mechanical) on the mechanical properties of the fiber-reinforced composites 

will be explored in the near future. 

Author Contributions: Conceptualization, M.M.A.S., A.S.M.S., and J.H.; methodology, M.M.A.S., 

A.S.M.S., J.H., S.A., M.M.H., H.R., and S.S.; investigation, M.M.A.S., A.S.M.S., J.H., S.A., M.M.H., 

H.R., and S.S.; resources, M.M.A.S., A.S.M.S., and J.H.; data curation, M.M.A.S., A.S.M.S., J.H., S.A., 

M.M.H., H.R., and S.S.; writing—original draft preparation, M.M.A.S., A.S.M.S., J.H., and S.S.; writ-

ing—review and editing, M.M.A.S., A.S.M.S., J.H., and S.S.; visualization, M.M.A.S., A.S.M.S., J.H., 

and S.S.; supervision, M.M.A.S., A.S.M.S., J.H., and S.S.; project administration, M.M.A.S.; All au-

thors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data presented in this study are available within the article. 

Acknowledgments: The authors acknowledge the technical support from the Manchester Metro-

politan University, UK and Bangladesh Jute Research Institute, Dhaka, Bangladesh. 

Figure 13. Close view of fiber matrix interaction in all the composites.

Therefore, the distinctive surface characteristics of the PALF fiber leading to a better
adhesion with the PP matrix and the relatively higher tensile strength of the PALF fiber
could be attributed to the higher strength displayed by the PALF-PP composites compared
to the other two composites.

4. Conclusions

Polypropylene (PP)-based composites reinforced with three natural fibers such as, jute,
kenaf, and pineapple leaf fiber (PALF) were prepared, and their structural, mechanical, and
thermal properties were evaluated. FTIR study indicated subtle differences in the fiber
structures of the composites with no strong evidence of chemical interaction between the
fibers and composites. Overall, all the composites showed better mechanical properties
compared to the pure PP, but for all composites improvement in tensile strengths were
higher than the flexural strengths. The best mechanical properties were found for the
PALF-PP composite at the higher fiber content (40 wt.%). In terms of impact strength,
the composites can be ranked as PALF-PP > jute-PP > kenaf-PP where an increase in
fiber content increased the impact strength in all the composites. Among the composites,
improved properties in PALF-PP composites could be related to its higher fiber strength
and better interfacial bonding as evidenced by the SEM images of the fractured surfaces.
Furthermore, a good agreement was obtained between the experimental and the theoretical
results of the tensile modulus of short fiber composites obtained by Pan, 1994 model,
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whereas Miao and Shan, 2011 model clearly overestimated the experimental results. The
composite samples displayed better thermal stability particularly at higher degradation
temperature. From this study, the natural fibers can be selected to fabricate the final
composite materials as per the end application requirements. The effect of aging (physical,
thermal, and mechanical) on the mechanical properties of the fiber-reinforced composites
will be explored in the near future.
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