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Abstract: Segregated conductive polymer composites exhibit excellent electrical properties with a
low percolation threshold. However, the mechanical properties of the segregated conductive polymer
composites were always poor because the conductive fillers at the interfaces hinder polymer chain
diffusion and thus lead to weak interfacial interaction between the conductive fillers and the polymer
matrix. In this paper, polyamide-6 and polyamide-612 microspheres were synthesized via the in
situ anionic ring opening of caprolactam and laurolactam. Segregated graphite sheets/polyamide-
6(GS/PA6) and polyamide-612(PA612) composites with good mechanical properties were realized
via high-pressure solid-phase compression molding. The microstructures of the composite samples
were observed by scanning electron microscopy, which showed that the formation of a GS-conductive
network at the PA6 granule interfaces in the segregated conductive structures and the adopting
of PA612 considerably improved the interfacial adhesion of the composites. A superior impact
strength of 5.1 kJ/m2 was achieved with 50 wt% PA612 loading owing to improvements in the
interface compatibility between PA6 and GS. The composites possessed an ultralow percolation
threshold, which was ascribed to the segregated network structure being successfully constructed
inside the material. As for GS/PA6 composites, the combination of segregated GS-conductive
networks achieved an ultralow percolation of 2.8 vol%. The percolation of 80PA6/20PA612-GS
composites was slightly higher, measuring up to 3.2 vol%. Moreover, the thermal conductivity of the
80PA6/20PA612-GS composites increased from 0.26 to around 0.5 W/(m·K), which was 1.9 times
larger than the pure polyamide.

Keywords: microspheres; percolation threshold; segregated structure; mechanical properties

1. Introduction

Over the past few decades, preparing conductive polymer composites with a segre-
gated structure has proved to be an effective method to improve their electrical proper-
ties, generating significant academic and industrial interest [1,2]. At present, segregated
conductive polymer composites have shown great application value in the fields of sen-
sors [3,4], antistatic materials [5,6] and electromagnetic shielding [7–10]. As for normal
conductive polymer composites (CPCs), numerous conductive fillers are needed to ob-
tain a satisfactory conductive performance, which will require complex processing and
exhibit inferior mechanical properties, limiting the application of CPCs [1]. The conductive
fillers of segregated CPCs (s-CPCs) are selectively segregated at the interfaces of poly-
meric granules instead of being randomly distributed throughout the conductive polymer
composites, which is beneficial when constructing conductive networks, providing more-
efficient conductive paths to considerably reduce the percolation threshold and improve
the electrical and thermal conductivities thanks to the higher local concentration of con-
ductive fillers [11–16]. Since Turner et al. [17,18] first proposed the segregated structure of
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conductive polymer composites, many polymers have been used to prepare s-CPCs, such
as polymethyl methacrylate (PMMA) [19], polystyrene (PS) [20,21], ultrahigh-molecular-
weight polyethylene (UHMWPE) [22,23] and other polymers [24–29].

However, the isolation structure of s-CPCs makes the conductive filler dispersed at
the polymer interface, which prevents the diffusion of the polymer molecular chain. In
addition, the selective dispersion of the fillers results in a significant increase in the density
at the interface, thus resulting in the porous microstructures in CPCs. Therefore, the me-
chanical properties of the segregated composites are extremely poor, owing to interfacial
phase separation and the poor compatibility between the polymer matrix and fillers [12].
The practical application of segregated CPCs as a kind of important functionalized poly-
mer material has been limited to low. Therefore, improving the mechanical properties
of segregated conductive polymer composites is of great significance for expanding their
applications, and many studies have been performed to achieve this goal. For example,
Yu et al. [30] obtained largely enhanced mechanical properties for segregated carbon nan-
otube/poly(vinylidene fluoride) (PVDF) composites by using solid-phase extrusion (SPE).
They found that a mechanically interlocked state between the PVDF and carbon nanotubes
(CNTs) improved the interfacial bonding by producing a large number of oriented crystals,
which resisted mechanical failure, leading to improvements in the strength and fracture
toughness of the segregated CNTs/PVDF composites. Cui et al. used small CB nanoparti-
cles to decrease the gap between the polymer matrix (UHMWPE) and the large graphite
flakes so that the mechanical properties would be enhanced [31]. Yan et al. prepared
a high-performance electromagnetic interference-shielding composite via high-pressure
solid-phase compression molding [18]. They believed that the enhanced mechanical prop-
erties could be considered as the mutual diffusion of PS chains under high pressure across
the interface between PS and rGO. Cui et al. fabricated a segregated structure in a typical
low-melt-viscosity polymer (i.e., PLA), making use of the melting temperature (Tm) dis-
crepancy between homocrystallites (HCs) (160–180 ◦C) and stereocomplex crystallites (SCs)
(∼220 ◦C) [32]. Their results showed a superior electrical conductivity of 12 S/m with only
1 wt% CNTs. Shi et al. [33] prepared poly(-l-lactide)/polyε-caprolactone)/multiwall carbon
nanotube (PLLA/PCL/MWCNT) composites with an electrically conductive segregated
structure, and the Young’s modulus of the segregated CPCs was 10% higher than that of the
corresponding conventional composites. Zhang et al. [26] reported a facile and ecofriendly
method to develop CNTs/polypropylene (PP) segregated composites with simultaneously
improved mechanical performance using two commercially available copolymerization
polypropylenes, including high-melting PP and low-melting PP. The elongation at the
break of the segregated CNT/PP composite was four times higher than the conventionally
injection-molded samples. Even today, it remains a considerable challenge to enhance the
mechanical properties of segregated composites.

Polyamide, as an important engineering plastic, has excellent mechanical properties,
high wear resistance and chemical resistance, and it is applied in electronic communica-
tions [34], the automotive industry [35], biological engineering [36,37] and other fields [11].
When applied in the field of electronic appliances, most segregated CPC (s-CPC) matrices
possess a high-melt viscosity to resist plastic deformation and prevent the conductive
fillers from permeating into the polymer matrix during processing, thus facilitating the
formation of a segregated conductive network along the boundaries of polymer particles.
UHMWPE, PS and PMMA are used mainly as polymer matrices in s-CPCs. The conductive
filler’s diffusion into polyamide particles is a big problem during hot compacting when
creating segregated CPCs; thus, research on the preparation of s-CPCs based on polyamides
is limited owing to its low high-melt viscosity. In this work, the PA6 microspheres and
PA612 microspheres were first prepared via the anionic ring-opening polymerization ac-
cording to the phase-inversion morphology generated in the PS/PA6 and PS/PA612 blends.
Segregated GS/PA6 and PA612 composites were prepared by high-pressure solid-phase
compression molding. For segregated polyamide-6 and graphite sheet composites, the
mechanical properties were relatively poor because of the separation between the two
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phases. In order to overcome this defect, polyamide-612 was added as a binder to im-
prove the mechanical properties. We studied the electrical, mechanical and microstructure
properties and the thermal conductivity of the resulting GS-based composites. Herein, we
report a novel and facile method to develop polyamide-segregated CPCs with improved
mechanical properties; furthermore, the fabrication process in this work can be applied in
other polymer matrices by adding similar polymers with different melting points.

2. Materials and Methods
2.1. Materials

Caprolactam (CL) and laurolactam (LL) were kindly supplied by BASF. A graphite
sheet with a purity above 95% was purchased from Qindao Guangli Co., Ltd. (Qindao,
China). Commercial-grade PS (PG-22) and 2,4-toluene diisocyanate (TDI, analysis pu-
rity) were obtained from Taiwan Qimei Co., Ltd. (Taiwan, China) and Alfa Aesar (China)
Chemical Co., Ltd. (Shanghai, China), respectively. Sodium hydroxide (NaOH; analysis
purity) was provided by Xilong Chemical Co., Ltd. (Shantou, China) Toluene (analy-
sis purity) was purchased from the Shanghai Chemical Reagents Company (Shanghai,
China). All the reagents and solvents were of analytical grade and were used without
further purification.

2.2. Preparation of Polyamide Microspheres and Composites

Polyamide microspheres were synthesized via the in situ anionic ring opening of
caprolactam and laurolactam [38–40]. The fabrication process of polyamide/graphite sheet
composites is schematically illustrated in Figure 1. The process included mainly three main
steps: the synthesis of polyamide microspheres (Step 1), the mechanical blending of the
graphite sheet with PA6 and PA612 particles (Step 2) and hot molding (Step 3).
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Figure 1. Schematic of the fabrication of the segregated PA6 -GS composite and PA6/612-GS compos-
ite under high pressure.

Initially, polyamide microspheres were prepared according to the phase-inversion
morphology generated in the PS/PA blends. A certain amount of polystyrene (PS) was
mixed with caprolactam (CL) at 100 ◦C for 5 h to obtain a homogeneous transparent mixture.
Water in the reaction system was removed by distilling it under reduced pressure. Anionic
polymerization was initiated by NaOH and TDI, and the mixture was then immediately
poured into a mold preheated to 170 ◦C and polymerized in an oven at 170 ◦C for 30 min.
Finally, the obtained PA6/PS blends were shattered and then immersed in toluene for
10 h to dissolve the PS phase. The product was washed by distilled water to remove CL
monomer and dried at 70 ◦C in a vacuum oven for 12 h. The PA microspheres were finally
obtained. The PA612 microspheres were similarly synthesized via the in situ anionic ring
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opening of caprolactam and laurolactam. Additionally, the graphite sheet was mixed with
PA6 and PA612 particles by high-speed mixer for 5 min. The mixture was heated by the
vacuum drying oven at 50 ◦C for 2 h. Finally, the GS-coated PA6 and PA612 particles were
consolidated into the cylindrical billet at 200 ◦C for 8 min under a pressure of 10 MPa. As
a comparison, PA6-GS composites were prepared by the same method. For subsequent
analysis and characterization, the prepared composites were coded PA6/612-GS(x/y-z),
where x, y and z indicated the percentages of PA6, PA612 and GS, respectively.

2.3. Characterization

The synthesized polyamide microspheres were ultrasonically dispersed in ethanol
(1 g/mL) and dropped on the slide. After drying, all samples were gold plated under
vacuum, and thereafter, their morphologies were observed by scanning electron microscopy
(SEM; Vega II XMU instrument, Tescan, Czech Republic) at an operating voltage of 15 kV.
For the segregated structure investigation, the cross-sectional morphology of the samples
was also observed by using SEM at an acceleration voltage of 15 kV.

The melting temperature (Tm) of the synthesized polyamide was characterized by a
differential scanning calorimeter (TA instruments, DSC Q100, New Castle, DE, USA), with
nitrogen as the protective atmosphere. The mass of each sample was about 5 to 6 mg, and
the samples were dried in a vacuum oven at 80 ◦C for 12 h before the test. The sample
was first heated from normal temperature to 250 ◦C at a heating rate of 10 ◦C/min and
maintained at 250 ◦C for 3 min to erase the thermal history. Next, it was cooled down to
30 ◦C at a cooling rate of 10 ◦C/min and kept constant for 3 min. Finally, the temperature
increased to 250 ◦C at a rate of 10 ◦C/min.

The volume conductivities of the composite samples with conductivities higher than
10−6 S m−1 were carried out using a 4-probe method by the RTS resistivity measurement
system (RTS-8, Guangzhou, China), and the volume of electrical conductivities below
10−6 S m−1 were measured by using a high-insulation-resistance meter (ZC-90F, Shanghai
Sute Electric Co. Ltd., Shanghai, China). The thermal conductivities were measured by
using a thermal conductivity tester (DRP-II, Xiangtan, China).

Tensile tests to determine the tensile strength, modulus and elongation-at-break values
were carried out by using a universal testing machine (Instron 5966, Instron Corporation,
Canton, OH, USA) with a load cell of 10 kN and a crosshead deformation rate of 5 mm/min
at room temperature, according to the ASTM D638-22 (standard test method for tensile
properties of plastics) standard. Furthermore, the notched impact test specimens, having
dimensions of approximately 80 × 10 × 2 mm were compression molded (L ×W × B) ac-
cording to the ISO 179-2 (the plastics determination of Charpy impact properties) standard.
All the corresponding presented data were calculated as the average and the standard
deviation of at least five specimens for each composition.

3. Results and Discussion
3.1. Characterization of PA6, PA612, and Graphite Sheet

As mentioned above, PA6 and PA612 microspheres were synthesized via the in situ
anionic ring opening. By etching the PS matrix with solvent, the PA6 and PA612 spheres
were easily obtained. The size of the PA6 and PA612 microspheres was verified by the SEM
displayed in Figure 2. PA6 is uniform, with a diameter about 50 µm, while PA612 is around
20 µm. The different sizes are beneficial for helping the composites form a dense structure.
As shown in Figure 2c, the graphite sheet is approximately 10 µm, which is much smaller
than the size of the PA6 microspheres and PA612 microsphere, which could fill the gap
between them to further densify the composite.
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Figure 2. SEM micrographs of PA6 microspheres (a), PA612 microspheres (b) and graphite sheets (c).

When forming the segregated structure, it is important to control the processing
temperature. If the temperature is too high to decrease the polymer’s viscosity, the fillers
easily infiltrate into the inner part of the polymer matrix, resulting in the formation of
a poorly segregated structure. On the contrary, the powder cannot completely melt if
the processing temperature is too low, leading to an undesired morphology, resulting
in the poor interface adhesion or even the hole between the polymer and the fillers. To
obtain the proper processing temperature, the different melting points Tm of the PA6 and
PA612 microspheres were investigated by DSC. As shown in Figure 3, PA612 has only
one melting point, while PA6 has two melting points. The melting point of the PA612
microsphere (Figure 3) is about 180 ◦C, while the melting points of the PA6 microsphere
are about 210 ◦C and 220 ◦C. The Tm (180 ◦C) of PA612 is lower than both the Tms of PA6
(210 ◦C and 220 ◦C). To ensure that PA6 maintains a solid phase while keeping PA612
in a melting state, the appropriate processing temperature range, as marked by the line
in Figure 3, needs to be selected. In this study, a temperature of 200 ◦C is chosen as the
hot processing temperature; thus, composite processing is considered to be a solid-phase
compression molding. In addition, the composites not only can contain isolation structures
but also have good interface adhesion, according to the compatibility of PA612. Therefore,
the mechanical properties of the polyamide-segregated composites can be improved.
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3.2. The Electrical Conductivity of PA6/612-GS Composite

The GS content’s dependence on electrical conductivities for the PA6-GS and PA6/612-
GS segregated composites is illustrated in Figure 4. In both cases, with the increase in
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GS concentration, the electrical conductivities of the PA6-GS and PA6/612-GS composites
substantially increase with GS loading and exhibit the characteristic percolative behavior.
For the PA6-GS composite, the electrical conductivity increases by 14 orders of magnitude
in a very narrow GS content range, from 0 to 2.8 vol%. However, for the PA6/612-GS
composite, the percolation value slightly increases to 3.2 vol% because the GS enters the
molten PA612 during processing. However, both composites possess an ultralow percola-
tion threshold, which should be ascribed to the segregated network structure constructed
inside the material.
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To provide insights into the structural formation and the evolution of conductive
networks, the scanning electron microscopy images of the PA6-GS and 80PA6/20PA612-GS
composites with various GS contents are shown in Figures 5 and 6, respectively. The
typical segregated network structures of the PA6-GS composites are shown in Figure 5e,
and some PA6 matrix particles showed plastic deformation under high pressure during
processing. Figure 5a–f shows that the PA6 matrix becomes rougher, while the interface of
the PA6 matrix becomes clearer with the increase in the content of GS, which is because
the incompatible GS distributes mainly at the interfaces of the PA6 particles (Figure 5e).
Regardless of the GS loading, a selective distribution of GS around the PA6 domains
can be observed, which means that the graphite sheets were restricted from penetrating
into the PA6 granules’ interiors during processing. However, some microvoids exist as
interfacial defects, indicating the poor interfacial adhesion of the PA6-GS composites at
higher magnification (Figure 5c′). Owing to the high diffusion barrier, the PA6 chains could
not fully fill the enriched GS layer gaps via conventional compression molding. Therefore,
we introduced the PA612 granules, which were molten at the processing temperature, into
the composites that were used as binders to improve the connection between the PA6
matrix and the GS filler. Figure 6 also shows the composites’ typical segregated network
structures, where the PA6 matrix is becoming rougher with the increasing GS content.
Meanwhile, there is no visible defect along the segregated conductive path, indicating
an improved interfacial adhesion, which would have a significant impact on improving
mechanical properties, as described below. Moreover, GS stacking in the 80PA6/20PA612-
GS composites could be more compact and ordered, which would facilitate the formation
of an effective thermal conductivity network, as shown in Figure 6e.
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3.3. The Thermal Conductivity of PA6/612-GS Composite

Because of the perfect thermal conductivity of graphite sheets, the existence of a con-
ductive network could obviously improve the composites’ thermal conductivities [41]. The
dependence of the GS content on thermal conductivity for the PA6-GS and 80PA6/20PA612-
GS composites are presented in Figure 7. The thermal conductivity of the PA6-GS and
80PA6/20PA612-GS composites increased in the wake of the increasing GS content. The
thermal conductivity of the latter was invariably higher than those of the former with the
same composition. In particular, the thermal conductivity is considerably increased, up to
0.5 W·m−1·K−1, with only 5 vol% GS loading. This implies that the graphite sheets in the
80PA6/20PA612-GS composites are more efficient in forming thermal conductive networks
than the PA6-GS composites are. On the basis of discussions about SEM results and electrical
properties, we concluded that the 80PA6/20PA612-GS composites can make the stacking of
the GS more compact, with good interface between the PA6 matrix and GS, consequently
giving rise to the superior thermal conductivity in the 80PA6/20PA612-GS composites.
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3.4. The Mechanical Properties of PA6/612-GS Composite

In practical applications, mechanical properties are one of the most considerable char-
acteristics of materials [42], and they are a major limitation for the engineering applications
of segregated CPCs. Thus, it is of great significance to improve the mechanical properties
of segregated CPCs [43–45]. To evaluate the potential applications for the composites, the
mechanical performances of the PA6/612-GS composites were explored by using a tensile
test. The representative mechanical property data, including the tensile strength, Young’s
modulus, and elongation at the break of the PA6/612-GS composites, are summarized in
Table 1. Moreover, the stress–strain curves of the PA6/612-GS composites obtained from
the tensile test are shown in Figure 8a, and the tensile strength and elongation at the break
of the PA6/612-GS composites with various PA612 contents are also presented in Figure 8
for comparison.

Table 1. Data on typical mechanical properties of PA6/612-GS composites.

Sample Tensile Strength (MPa) Young’s Modulus (MPa) Elongation at Break (%)

PA6/612-GS (100/0-5) 17.1 ± 3.8 1552.9 ± 376.3 1.7 ± 0.1
PA6/612-GS (90/10-5) 18.4 ± 3.2 1362.9 ± 180.9 1.8 ± 0.2
PA6/612-GS (80/20-5) 21.5 ± 0.1 1181.3 ± 37.4 2.7 ± 0.1
PA6/612-GS (70/30-5) 21.9 ± 3.4 1123.2 ± 73.3 3.1 ± 0.1
PA6/612-GS (60/40-5) 22.0 ± 0.4 950.5 ± 21.2 4.7 ± 0.2
PA6/612-GS (50/50-5) 22.0 ± 2.2 888.4 ± 69.1 4.9 ± 0.2



Polymers 2023, 15, 1041 9 of 13Polymers 2023, 15, x FOR PEER REVIEW 9 of 13 
 

 

 
Figure 8. Mechanical properties of PA6/612-GS composites: (a) stress–strain curves, (b) tensile 
strength, and (c) elongation at break. 

The typical stress–strain curves of the PA6/612-GS composites shown in Figure 8 il-
lustrate the relatively ductile fracture for the PA6/612-GS composites compared with the 
brittle failure for the PA6-GS composites. The PA6-GS(100-5) composite exhibited brittle 
failure at around 1.7% strain. In contrast, the addition of PA612 could significantly im-
prove the elongation at the break of the composites. As shown in Figure 8b,c, for the 
PA6/612-GS composites, with the increase in the PA612 content, both the tensile strength 
and the elongation at the break of the PA6/612-GS composites showed a gradual increase. 
The average tensile strength and elongation at the break were improved to 21.5 MPa and 
2.7%, respectively, with the addition of 20 wt% PA612, showing a 20% and a 58% increase 
compared with the PA6-GS(100-5) composite. When PA612 content increased to 50 wt%, 
the tensile strength was about 22.0 MPa and the elongation at break rose to 4.9%, which 
increased by 188% compared with that of PA6-GS(100-5) composite, indicating that the 
incorporation of the PA612 into PA6-GS composite was effective in improving toughness. 
As we know, the solid PA6 granules were poorly compatible with GS. For the PA6-GS 
composite, the poor interfacial adhesion caused premature debonding, which led to an 
early propagation of the void and brittle failure. The improved mechanical properties of 
the PA6/612-GS composites could be proved from the SEM above. 

  

Figure 8. Mechanical properties of PA6/612-GS composites: (a) stress–strain curves, (b) tensile
strength, and (c) elongation at break.

The typical stress–strain curves of the PA6/612-GS composites shown in Figure 8
illustrate the relatively ductile fracture for the PA6/612-GS composites compared with
the brittle failure for the PA6-GS composites. The PA6-GS(100-5) composite exhibited
brittle failure at around 1.7% strain. In contrast, the addition of PA612 could significantly
improve the elongation at the break of the composites. As shown in Figure 8b,c, for the
PA6/612-GS composites, with the increase in the PA612 content, both the tensile strength
and the elongation at the break of the PA6/612-GS composites showed a gradual increase.
The average tensile strength and elongation at the break were improved to 21.5 MPa and
2.7%, respectively, with the addition of 20 wt% PA612, showing a 20% and a 58% increase
compared with the PA6-GS(100-5) composite. When PA612 content increased to 50 wt%,
the tensile strength was about 22.0 MPa and the elongation at break rose to 4.9%, which
increased by 188% compared with that of PA6-GS(100-5) composite, indicating that the
incorporation of the PA612 into PA6-GS composite was effective in improving toughness.
As we know, the solid PA6 granules were poorly compatible with GS. For the PA6-GS
composite, the poor interfacial adhesion caused premature debonding, which led to an
early propagation of the void and brittle failure. The improved mechanical properties of
the PA6/612-GS composites could be proved from the SEM above.

To further investigate the mechanical properties of the PA6/612-GS composites, we
also evaluated the impact properties of the samples by using the Charpy unnotched impact
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test, as shown in Figure 9. Five tests were carried out, and the average of the obtained
values are shown in the bar graph of Figure 9. The PA6-GS composite was extremely
brittle, with an impact strength of 1.1 kJ/m2. The impact strength of the PA6/612-GS
composite gradually increased with the increasing PA612 content. The impact strength of
the PA6/612-GS composites with 10 wt% PA612 was 2.3 kJ/m2. There was a considerable
increase in toughness by adding 10 wt% PA612. When the PA612 reached 20 wt% and
30 wt%, the impact strength of the PA6/612-GS composites increased to 2.8 kJ/m2 and
3.0 kJ/m2, respectively, which were 155% and 173% higher than the 1.1 kJ/m2 of the
PA6-GS composite with weak interfacial adhesion, respectively. One can easily find that a
remarkable improvement in the toughness of the PA6/612-GS composite is achieved by
loading 50 wt% PA612. The impact strength of the PA6/612-GS composite is improved
from 1.1 kJ/m2 to 5.1kJ/m2 (a 364% increase with the PA612 loading variation from 0 wt%
to 50 wt%). Obviously, adopting PA612 is favorable for improving the impact property of
the composite as a result of compatibilization, as shown in Figures 5 and 6.
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4. Conclusions

In summary, segregated PA6/612-GS composites were fabricated by the mechanical
blending and molding process. PA6 microspheres and PA612 microspheres were succes-
sively prepared via an in situ anionic ring opening. Because the Tm of PA6 is much higher
than that of PA612, PA6 granules could be easily reserved when an appropriate temperature
was chosen for compression molding. At the same time, the segregated structure was well
maintained, making the composites exhibit a low percolation threshold and excellent electri-
cal and thermal conductivities. As for PA6/GS composites, the combination of a segregated
GS-conductive network achieved an ultralow percolation, of 2.8 vol%. The percolation of
the 80PA6/20PA612-GS composites was slightly up, to 3.2 vol%. Moreover, the stackings of
the GS were more compact and ordered in the 80PA6/20PA612-GS composites, resulting in
the superior thermal conductivity of the composites, which was 1.9 times higher than that
of the pure polyamide. During the hot processing, the melting PA612 acted as the adhesive,
which improved the mechanical properties of the segregated CPCs. The increase in the
content of PA612, up to 50 wt%, led to an increase in the maximum elongation at break
and an increase in the impact strength values of the segregated PA6/612-GS composites by
188% and 364%, respectively, compared with the PA6-GS(100-5) composite. A new way
to enhance the mechanical properties of the polyamide-segregated CPCs is provided by
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adding similar polymers with different melting points. Further investigations to improve
the mechanical properties of polyamide-segregated CPCs are necessary.
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