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Abstract: This work presents the synthesis of a new representative of hemicurcuminoids with a nony-
loxy substituent (HCur) as a fluorescent amphiphilic structural element of vesicular aggregates based
on phosphatidylcholine (PC), phosphatidylserine (PS), and 10,12-pentacosadiynoic acid (PCDA).
Both X-ray diffraction analysis of the single crystal and 1H NMR spectra of HCur in organic solvents
indicate the predominance of the enol-tautomer of HCur. DFT calculations show the predominance
of the enol tautomer HCur in supramolecular assemblies with PC, PS, and PCDA molecules. The
results of the molecular modeling show that HCur molecules are surrounded by PC and PS with a
rather weak exposure to water molecules, while an exposure of HCur molecules to water is enhanced
under its supramolecular assembly with PCDA molecules. This is in good agreement with the higher
loading of HCur into PC(PS) vesicles compared to PCDA vesicles converted into polydiacetylene
(PDA) ones by photopolymerization. HCur molecules incorporated into HCur-PDA vesicles exhibit
greater planarity distortion and hydration effect in comparison with HCur-PC(PS) ones. HCur-PDA
is presented as a dual fluorescence-chromatic nanosensor responsive to a change in pH within
7.5–9.5, heavy metal ions and polylysine, and the concentration-dependent fluorescent response
is more sensitive than the chromatic one. Thus, the fluorescent response of HCur-PDA allows for
the distinguishing between Cd2+ and Pb2+ ions in the concentration range 0–0.01 mM, while the
chromatic response allows for the selective sensing of Pb2+ over Cd2+ ions at their concentrations
above 0.03 mM.

Keywords: polydiacetylene; hemicurcuminoids; sensor

1. Introduction

The supramolecular assembly of different amphiphilic molecules allows for the incor-
porating of sensors into vesicular aggregates with high colloid stability and biocompatibility,
which provides a good basis for creating sensory systems [1–5]. The uses of colorimetric
and luminescence techniques for sensing are particularly attractive since they can facil-
itate the naked-eye or simple spectroscopic detection of biomolecules or water-soluble
toxicants [6–11]. The development of sensory systems on the basis of supramolecular
assemblies requires structure optimization on both molecular and supramolecular levels.

Curcumine and curcuminoid derivatives provide good basis for the development of
sensors [12–17]. Moreover, synthetic modifications of curcuminoids and hemicurcuminoids
allow an embedding of different functional groups into their molecules [18,19]. The result-
ing hemicurcumine HCur (also shown in Scheme 1) will be represented as a potential sensor
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for the fluorescent monitoring of heavy metal ions and polyaminoacids. To overcome the
poor water solubility of HCur, it has been incorporated into water-dispersible hydrophilic
vesicular aggregates such as phospholipid vesicles and polydiacetylenic polymeric vesicu-
lar aggregates (PDAs), which are already documented as convenient nanoplatforms for the
incorporation of luminophores, both organic [20] and complexed with metal ions [21–23].
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It is well known that both the conformation and the electronic structure of dye
molecules inserted into phospholipid vesicles are greatly influenced by their environ-
ment, which causes the sensitivity of dye molecules’ phase transitions of phospholipid
bilayers [24]. Moreover, both the conformational flexibility and hydrophobic or hydrophilic
environment of a dye molecule have a major influence on its sensory function. Therefore,
the inclusion of HCur molecules into mixed vesicular aggregates having both surface
groups capable of pH-dependent ionization and a hydrophobic bilayer would provide a
convenient basis for designing sensor systems focusing on the binding of both heavy metal
ions and polylysine.

It is also worth noting that 10,12-pentacosadiynoic acid molecules are able to form
polymeric polydiacetylene (PDA) nanoparticles after their self-organization into bilay-
ers and subsequent polymerization [25,26]. Moreover, the relationship between the pro-
tonation/deprotonation of the surface-exposed carboxylic groups of PDA and order-
ing/disordering within their hydrophobic ene-yne conjugation backbone [27–30] is the
already-documented reason for the colorimetric response to the binding event [31–33]. The
interplay between fluorescent and colorimetric responses of HCur molecules and PDA
vesicles, respectively, will also be demonstrated as a tool to alter the sensory functions
of mixed HCur-PDA vesicles. The present work is aimed at using the assembly of HCur
molecules with phospholipids or 10,12-pentacosadiynoic acid (a monomeric unit of PDA
polymer vesicles) as a tool for tuning the conformation and electronic structure of HCur
for the modification of its sensory function.

2. Experimental Section
2.1. Reagents and Materials

AcOEt (Acros Organics) was distilled over P2O5. DMSO-d6 (99.5% isotopic purity)
from Aldrich was used for NMR spectroscopy. Methanol (99.9%), 1-benzoylacetone (HBA),
4-hydroxybenzaldehyde, triethylamine (TEA), BF3·Et2O (48%), and 1,6-diaminohexane
(Acros Organics) were used as commercially received without further purification.
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Compounds 10,12-pentacosadiynoic acid, L-a-Phosphatidylcholine (P3644, Mav = 776 g/mol),
1,2-Diacyl-sn-glycero-3-phospho-L-serine (P7769, Mav = 790 g/mol) were received from
Sigma Aldrich.

Synthesis: The synthetic routes, structural formulae and numbering of atoms of
the investigated compounds are shown in Scheme 1. The 4-nonyloxybenzaldehyde and
benzoylacetone-difluoroboron (BA-BF2) were obtained as described in the literature [34,35].
1H and 13C chemical shifts and spin-spin coupling constants observed for synthesized
hemicurcuminoids HCur-BF2 and HCur are presented in Table S1. HCur was characterized
by high resolution mass spectrometry (HRMS) data (Figure S1).

Synthesis of HCur was performed through the preliminary synthesis of HCur-BF2 (the
detailed synthetic procedure is in the Supplementary Materials) followed by its hydrolysis
with the production of HCur (the detailed procedure is in the Supplementary Materials).

2.2. Synthesis of the Mixed Vesicles

HCur-PC(PS). The L-α-Phosphatidylcholine (PC), 1,2-Diacyl-sn-glycero-3-phospho-L-
serine (PS) and HCur were dissolved in chloroform. Aliquots of HCur (0.314 mL, 0.26 mM)
and PC (2.0 mL, 2.58 mM) or PS (2 mL, 2.53 mM) were mixed and evaporated at 40 ◦C
and ≈450 mbar. De-ionized water (16 mL) was added to the thin film, and the resulting
solution (0.32 mM PC/PS with 0.05 mM of HCur) was sonicated in an ultrasonic bath for
4 min at 25 ◦C. Vesicles HCur-PC and HCur-PS were used as is after the synthesis.

HCur-PDA. The synthesis of HCur:PDAs were in accordance with the previously
published procedure [36]. The monomeric 10,12-tricosadiynoic acid was dissolved in
chloroform and filtered by using a 0.45 µm nylon filter to remove polymerized particles.
Aliquots of 10,12-PCDA (1.87 mL, 4.27 mM) and HCur (0.314 mL, 0.26 mM) were mixed
and evaporated at 40 ◦C and ≈450 mbar. De-ionized water (16 mL) was added to the thin
film, and the resulting solution (0.5 mM PCDA with 0.05 mM of HCur) was sonicated in an
ultrasonic bath for 4 min at 60 ◦C. Vesicles were stored at 4 ◦C within 24 h, and then were
polymerized in a Petri dish using UV Crosslinker Bio-link 254 for 60 s.

The molar ratios of HCur:PC, HCur:PS and HCur:PDA were determined through the
spectral analysis of the residual amounts of HCur after the thin film step according to the
procedure described in Supplementary Materials. The molar ratios were calculated through
Equation (1) represented in the Supplementary Materials

2.3. Methods

The detailed descriptions of common methods such as C, H microanalysis, mass
spectra, high resolution mass spectra, dynamic light scattering (DLS), conditions and
equipment for electronic absorption and fluorescence spectra measurements, and pH-
measurements are presented in the Supplementary Materials.

The equipment for collecting of X-ray diffraction data is described in the Supplemen-
tary Materials. The collection and treatment of the data was conducted on the basis of
well-known techniques and programs [37–41]. Crystallographic data (excluding structure
factors) for the investigated structure 3 has been deposited in the Cambridge Crystallo-
graphic Data Centre as supplementary publication no. CCDC 2213569. Copies of the data
can be obtained free of charge upon application to the CCDC (12 Union Road, Cambridge
CB2 1EZ UK. Fax: (internat.) +44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk).

2.4. Computations

The thermodynamically correct structural ensembles for the conformers of each possi-
ble tautomer of HCur were generated with the use of CREST (short for Conformer-Rotamer
Ensemble Sampling Tool) program [42]. Free energies of the generated species in solutions
were calculated with the recently published CENSO protocol of Grimme et al. [43], designed
for the evaluation of structure ensembles containing non-rigid molecules. The geometries
were optimized with the r2SCAN-3c [44] composite density functional in their respec-
tive solutions using the DCOSMO-RS [45] implicit solvation model, whereby interactions
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with the environment are already considered from the beginning. Solvation contributions
δGsolv to the free energy at 298.15 K were obtained with COSMO-RS [46,47] using the
BP_TZVP_C30_1601.ctd parameterization in combination with the energy and density
of the high-level single-point calculation. The thermostatistical contributions to the free
energy were obtained by single-point hessian (SPH) calculations [48] within the framework
of the modified rigid-rotor-harmonic-oscillator statistical treatment (∆GmRRHO) [49,50]
at the GFN2-xTB [51] /ALPB [52] level, where GFN2-xTB is the robust and fast semi-
empirical quantum chemical method and ALPB is the robust and efficient implicit solva-
tion model for fast semiempirical methods. The final free energies were obtained from
∆G = ∆E(r2SCAN-3c) + ∆GmRRHO(GFN2-xTB/ALPB) + ∆δGsolv(COSMO-RS).

The most stable conformers of each tautomer, revealed on the basis of computed ∆G
values, were used in the computation of UV-Vis spectra. Time-dependent density functional
response theory (TD-DFT) [53–55] has been employed to compute the vertical excitation
energy (i.e., absorption wavelengths) and oscillator strength on the ground state geometries
optimized within the framework of the CENSO protocol as described above. For this
purpose, the PBE0 function [56] in combination with the Ahlrichs’ triple-ζ def2-TZVP AO
basis set [57–59] was used.

The same conformers were further used as starting structures to generate clusters of
these species explicitly solvated by PC or PCDA molecules. Clusters are generated by the
Quantum Cluster Growth (QCG) algorithm [60,61] which, in short, adds solvent molecules
around the solute at energetically favorable positions using an intermolecular force field
docking algorithm (xTB-IFF) [20]. The cluster-generation step is followed by molecular
dynamics (MD) simulations with the use of the recently developed general force field
GFN-FF [62]. Equilibrated snapshots from the trajectory are fully geometry-optimized at
the GFN2-xTB level, forming an ensemble of low-energy clusters. The dynamical behavior
of the clusters of the lowest free energy (i.e., including thermostatistical corrections) was
further studied within the framework of the MD approach. MD trajectories of 1200 ps were
carried out with the use of a generic all-atomic force field GFN-FF. All DFT and TD-DFT
calculations were carried out using the Turbomole-7.5.1 program package [63].

3. Results and Discussion
3.1. Synthesis and Structure of Hemicurcuminoids

The synthesis of the hemicurcuminoid HCur-BF2 was carried out by the condensing of
4-nonyloxy-benzaldehyde with the boric complex of benzoylacetone (BA-BF2) (Scheme 1).
Aldol condensation and the subsequent destruction of the boron complex, achieved by
its treatment of boiling in MeOH with the addition of TEA in the case of HCur-BF2,
leads to the formation of target hemicurcuminoid (HCur). The obtained compounds were
characterized by the elemental analyses, NMR and MS techniques. According to 1H NMR
data, the compound HCur in DMSO-d6 solution at a concentration of 0.03 M is found in
enol form (>99%).

The structure of HCur was finally established by a single crystal X-ray crystallography
of the separated crystal grown from the DMSO-d6 (Figure 1a). Compound HCur belongs
to the monoclinic system, space group C2/c (Table S2). The crystal consists only of hemi-
curcuminoid 3 molecules, which are in enol form as well as in DMSO-d6 solution. This
form is stabilized by intramolecular hydrogen bonds between the hydrogen atom of the
hydroxyl group and the oxygen atom of the carboxyl group [O3-H3···O1 (2.4736(15) Å]
(Figure 1b). In general, the molecule has a flat elongated structure where all carbon atoms
are practically in the same plane (Figure 1c). This fact can be explained by the conjugation
effect in the molecule and the effect of packing.
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Figure 1. (a) Photo of the single crystal of HCur; (b,c) ORTEP view of two projections of the molecule
in the crystal. Non-hydrogen atoms are represented by probability ellipsoids of thermal vibrations
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An intermolecular hydrogen bond was observed between the hydrogen atom of the
hydroxy group and the oxygen atom of the carbonyl group [C2-H2···O1 (2.690(17) Å,
symmetry code: x,−1+y,z] (Figure 1d). This hydrogen bond forms a chain structure along
the b-axis. A molecular packing diagram of HCur is shown in Figure 1e and represents
an antiparallel stacking of H-chains along the a-axis mainly through the van der Waals
interactions. Although such packing leads to the absence of voids in the crystal, it does
not lead to the densest packing, since the calculated packing factor of Kitaygorodsky is
equal to 0.699, which is in the middle part of the range characteristic for crystals of organic
compounds (0.65–0.75). At the same time, despite the planar conformation, these molecules
turn out to be sufficiently labile for the formation of various types of crystal packings, as
evidenced by our obtaining crystals of this compound of a different triclinic modification.
Research on these crystals is ongoing.

3.2. Synthesis and Spectral Properties of PDA-HCur, PC-HCur, PS-HCur

The amphiphilic nature of HCur (its structure is shown in Scheme 1) is the reason
for its incorporation into the PC-, PS- and PCDA-based vesicles. The nonyl substituents
of the HCur molecules provide the driving force of their incorporation into PC-, PS- and
PCDA-based vesicles through the well-known hydrophobic effect, resulting in the mixed
vesicles’ formation. The mixed vesicles were synthesized through the modified thin-film
synthetic procedure described in detail in the Exp. Section. The synthesis was performed
at various HCur:PCDA molar ratios, followed by analysis of residual amounts of HCur
after the exposure of the mixed thin film (PCDA-HCur) to an aqueous solution under
ultrasonication. The residual amounts of HCur were evaluated by spectrophotometry
after their dissolution in chloroform (more details are in the Supplementary Materials,
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Figure S2). These results allow the optimization of the synthetic procedure and calculation
of the HCur:PCDA molar ratio (1:45) in the mixed vesicles. A similar synthetic strategy
was applied in the synthesis of the mixed PC- and PS-based vesicles. The analysis of
the residual amounts of HCur also confirms its incorporation into the PC- and PS-based
vesicular aggregates, although the calculated HCur:PC(PS) molar ratios are 1:12 and 1:14,
correspondingly. The incorporation of HCur molecules into the phospholipid vesicles is
manifested by the electronic absorption bands shown in Figure 2a. Contributing to the
spectral profile of HCur-PDA is the intensive bands at 560–640 nm arising from the ene-yne
conjugation backbone of the PDA nanoplatform, while the electronic absorption of HCur in
HCur-PDA is blue-shifted vs. HCur-PC(PS) (Figure 2a). The poor photobleaching of HCur
under the irradiation required for the photopolymerization (Figure S2) prerequisites the
conversion of HCur-PCDA vesicles into HCur-PDA polymeric ones without the significant
photodegradation of HCur molecules.
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Figure 2. Electronic absorption (a) and emission spectra (b) of HCur-PC (CHCur = 0.041), HCur-PS
(CHCur = 0.036) and HCur-PDA (CHCur = 0.011).

The electronic absorption and emission spectral profiles of HCur are greatly affected
by the nature of the nanoplatform (Figure 2), although the represented spectra differ from
those performed in chloroform and DMF solutions (Figure S3). The main difference is the
increased intensity of the longer wavelength emission, which shifts the maximum from
471 nm in DMF to 494–500 nm in PC and PS vesicles, while the emission at 470–475 nm
still remains as the shoulder in the spectra along with the appearance of the shoulder
at ~570 nm (Figures 3b and S3). The spectra of HCur incorporated into PDA vesicles
have a maximum at ~480 nm, while the emission at ~510 and ~555 nm is manifested by
the shoulders (Figure 2b). It is worth discussing the main factors affecting the emissive
properties of HCur molecules in the mixed vesicles, since the properties are dependent on
the nature of the nanoplatform.
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Figure 3. (a) Structures of the most energetically stable conformers of the simplified model of
HCur and their relative Gibbs free energies (∆G/kcal·mol−1, in parentheses) computed with the
use of CENSO protocol for chloroform solution. (b,c) Optimized structures of cluster HCur-PC and
HCur-PCDA obtained by MD simulation, where hydrogen atoms are omitted for clarity.

The keto-enol tautomeric equilibrium shift is the main factor influencing the lumi-
nescence of curcuminoid derivatives [64]. The computations were performed in order
to reveal which tautomeric form of HCur is most favorable in their mixed aggregates
with PC molecules. Three possible tautomers of the simplified model of HCur are shown
in Figure 3. According to the free energy values computed for molecules implicitly sol-
vated by dimethylformamide or chloroform, enol tautomer strongly dominates in both
media. It should be noted that the same form is also found in single crystals of HCur
(cf. Figures 1b and 3a). UV-Vis spectra were simulated for the most stable conformers of
each tautomer (Figure 3a), revealed on the basis of their computed free energies. The
TD-DFT simulated spectrum of keto tautomer contains two strong bands in the spectral
interval ~300–450 nm, while only one band at ~390 nm is registered in the UV-Vis spectra
of solutions. The latter band is fairly well matched by the only strong band (~400 nm)
in this interval, which is computationally predicted for enol and enol2 tautomers. The
experimental absorption spectra of HCur-PC and HCur-PCDA in the spectral interval
~300–450 nm are very similar to the spectra of solutions discussed above, which strongly
suggests that enol tautomers are the major forms of HCur in all systems under study.

For the above reason, computational modeling of the structural arrangement of HCur-
PC and HCur-PCDA aggregates was conducted for the single enol tautomer of HCur
surrounded by (a) ten PC or (b) ten PCDA molecules in the aqueous environment modeled
implicitly. According to our computations of system (a), Ph(C=O) moiety of HCur is
pushed to the periphery of the cluster (Figure 3b) and almost completely immersed in
the surrounding water shell. The molecule of the dye is situated in a rather narrow well,
formed mainly by long hydrocarbon tails of PC. In contrast, in the case of system (b), PCDA
molecules form a rather loose disk-like association, and the dye molecule penetrates into it
in such a way that both its Ph(C=O) head and its long tail protrude into the surrounding
water from opposite sides of the cluster (Figure 3c), and the entire surface of HCur is only
weakly screened by PCDA molecules.

Thus, the enolic form of HCur predominates in the mixed vesicles, although the
location of HCur molecules within the PC- and PCDA-based bilayers is quite different,
which is reflected, e.g., in different exposures of the molecules to the hydrated exterior layer.
This can be a reason for the different spectral patterns of HCur in the PDA- and PC(PS)-
based vesicles, although possible translocations of HCur molecules within the PDA-bilayer
during photopolymerization of HCur-PCDA vesicles cannot be excluded. Moreover, the
experimentally observed smaller loading extent of HCur into PDA- in comparison with
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PC(PS)-based vesicles agrees with the MD calculations revealing better compatibility of
HCur with the phospholipids than with PCDA molecules reflected in more close contact of
the dye with the former matrix than with the latter environment.

The planarity of HCur molecules can be distorted when their R-substituents are
incorporated into the hydrophobic layer of the vesicles, which may blue-shift the emission
bands. The deprotonation of the enolic form of curcumine and curcuminoide derivatives
is another reason for the changes in their emissive properties [65]. The phase transitions
in the mixed bilayers should also be mentioned as the factor triggering a translocation of
the dye molecules from the hydrophobic core of the PhL bilayers to their polar periphery,
typically manifested by the changes in the dye spectra [66,67]. Finally, the aggregation of
mixed vesicles can be considered as another factor affecting the luminescence of the HCur
molecules included into the vesicular aggregates.

The incorporation of the dye molecules into the phospholipid vesicles is the reason
for the disturbing of the structural ordering in their hydrophobic layers, which can be
followed by the enhanced aggregation of the mixed vesicles vs. their pure phospholipid
counterparts [68]. The DLS data (Figure 4) measured for the aqueous solutions of the mixed
vesicles reveal the average size values, which are greater than the previously reported
values of the PC and PDA vesicles [69] and those of the PS vesicles measured in similar
conditions (Figure S4). The size and polydispersity characteristics calculated from the DLS
data (Table 1) indicate that the incorporation of HCur molecules into the PC-, PS- and
PDA-based bilayers affects the size and stability of the mixed vesicular aggregates but does
not cause significant aggregation of the mixed vesicles.
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Figure 4. (a) IH/IL of HCur-PC, HCur-PS and HCur-PDA at different pH values; (b) UV-vis spectra
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Polymers 2023, 15, 714 9 of 16

Table 1. Size distribution by volume and intensity of HCur-PC (1), HCur-PS (2) and HCur-PDA (3)
at pH = 8.1.

PdI Size by Intensity (dI, nm) Size by Volume (dI, nm)

HCur-PC 0.430 47 ± 8
265 ± 88

43 ± 9
274 ± 99

HCur-PS 0.594 125 ± 63 66 ± 49

HCur-PDA 0.450 271 ± 100 283 ± 115

3.3. Dependence of Spectral Behavior of PDA-HCur, PC-HCur, PS-HCur on External Stimuli (pH,
Heating, Metal Ions)

The enolic forms of HCur molecules can undergo dissociation in specific pH conditions,
followed by the enhancement of the lower energy emission [65]. The lack of detectable
changes in the ratios of the intensities of the lower and higher energy transitions of HCur-
PDA or HCur-PC(PS) vesicles under the acidification of their aqueous dispersions to pH
values below 7.5 (Figure S5a–c) indicates the insignificant deprotonation of HCur molecules
in the aforesaid conditions.

The pH-dependence of the emission was analyzed through the intensity ratios mea-
sured for higher- and lower-energy bands (Ih/Il) at 474 and 555 nm, respectively, for
HCur-PDA, and at 495 and 555 nm, respectively, for HCur-PC(PS). The Ih/Il values at
various pHs are plotted in Figure 4a. The results represented in Figure 4a indicate the
insignificant changes under the alkalization of HCur-PC(PS) aqueous colloids to a pH
above 8.5, while the ratios measured for HCur-PDA decrease under the alkalization. Sim-
ilar to the PDA-vesicles themselves [70], the alkalization to pHs above 7.5 triggers the
chromatic changes (Figure 4b) peculiar for the blue-to-red transitions of PDA vesicles. It
has been already documented that the incorporation of the amphiphilic molecules into
the PDA vesicles can stabilize either red [71] or blue forms [36] of the PDA-based back-
bones. The comparative monitoring of the pH-induced colorimetric changes of HCur-PDA
and PDA vesicles through the CR% (Colorimetric Response calculated by the Equation
(2) in the Supplementary Materials) indicate that both vesicles exhibit the blue-to-red
transition at pHs above 8.0, while the transition of HCur-PDA becomes detectable at
pH > 8.0 and while greater alkalization is required for the similar transition of PDA vesicles
(Figures 4c and S4d).

Heating is another well-known trigger of the blue-to-red transition [72]. Thus, the
heating-induced changes of HCur-PDA vesicles should be compared with those of PDA
itself. The data presented in Figure 4d indicate very poor transitions up to 55 ◦C, while the
PDA vesicles themselves exhibit significant blue-to-red transition in these conditions.

The fluorescence of HCur in the phospholipid vesicles exhibits insignificant changes in
the Ih/Il values under heating (Figure 4e), while changes are detectable under the heating
of HCur-PDA vesicles. The aforesaid changes can be correlated with the temperature-
dependence of both conformational changes of HCur in the PDA-vesicles and hydration-
induced quenching. Thus, the greater distortions of HCur molecules under their incorpora-
tion into the PDA-vesicles vs. the PC(PS)-vesicles correlate with the higher sensitivity of
HCur-PDA in comparison with HCur-PC(PS) to the temperature changes.

Coordinative bonds can provide a good basis for the spectral response of HCur
incorporated into the vesicular aggregates. It is worth noting that the enolic form of HCur
can coordinate metal ions (Me2+) in accordance with the equilibrium (1)

HCur + Me2+ = [MeCur]+ + H+ (1)

However, the spectral response of HCur to heavy metal ions is negligible in HCur-PC
and small in HCur-PS (Figure S5), but becomes significant for HCur-PDA (Figure 5a,b).
This agrees well with the above-mentioned difference in the location of HCur molecules
within the PC- and PCDA-based bilayers. The concentration-dependent quenching of both
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the higher (474 nm) and lower (555 nm) energy bands of HCur-PDA observed under the
increase in concentrations of Co2+, Mn2+, Ni2+ (Figure S6) results from their coordination
with the enolate form of HCur (Figure S6). The luminescent response of HCur-PDA to
the growing amounts of Cd2+ and Pb2+ is manifested by both enhancement of the lower
energy and quenching of the higher energy bands (Figure 5a,b). The peculiarity of the
luminescent response of HCur-PDA to Cd2+ and Pb2+ ions is demonstrated by the Ih/Il
values (Figure 5c). The values remain practically unchanged in the wide concentration
range of Co2+, Mn2+, Ni2+, while the concentration-dependent decrease of Ih/Il values is
observed in the solutions of Cd2+ and Pb2+ (Figure 5c). The aforesaid peculiarity derives
from the increased planarity of the HCur molecule under the complex formation with
Pb2+ and Cd2+. Moreover, the Ih/Il values plotted vs. various concentrations of metal ions
reveals the selectivity of the HCur-PDA sensor to Cd2+ over Pb2+ ions (Figure 5c). It is
worth noting that the selectivity derives from the conformational changes of HCur resulting
from its complex formation with Cd2+ and Pb2+ ions with specific electronic structure (d10

and d10s2 correspondingly). Thus, both nature and lengths of coordination bonds are worth
noting among the factors influencing such changes, although all the factors responsible for
the sensitivity cannot be specified within the present work scope.
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Figure 5. (a,b) Luminescence spectra of HCur-PDA at the concentration of CdCl2 and PbCl2 var-
ied from 0 to 0.058 mM (pH = 7.5). (c) IH/IL of HCur-PDA vs. concentration of d-metal cations
(pH = 7.5): CdCl2; PbCl2; NiCl2; MnCl2; CoCl2. (d,e) UV-vis spectra of HCur-PDA at pH = 7.5 and
different concentration of CdCl2 (d) and PbCl2 (e). (f) Colorimetric response (CR%) of HCur-PDA to
CdCl2 and PbCl2.

It is well known that the coordinative binding with Pb2+ ions facilitates the blue-to-red
transition of the PDA vesicles modified by the additional ligands [73–76]. The monitoring
of the electronic absorption spectra of the HCur-PDA vesicles under the growing con-
centrations of Pb2+ and Cd2+ (Figure 5d,e) indicates the specific colorimetric response of
HCur-PDA to Pb2+ and Cd2+ ions (blue-to-red transition).

Thus, the aforesaid reveals HCur-PDA vesicles as the more sensitive and selective
nanosensor to metal ions than HCur-PC(PS) vesicles. This correlates with a higher exposure
of HCur molecules to water in their supramolecular assemblies with PCDA molecules in
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comparison with the HCur-PC assemblies revealed by our computational modeling (vide
supra). Moreover, the HCur-PDA vesicles demonstrate both fluorescent and colorimetric
responses to the heavy metal ions, although there is no correlation between Ih/Il and
CR% values (Figure 5f). In particular, the CR% values can distinguish between Pb2+

and Cd2+ ions at concentrations above 0.03 mM, while the Ih/Il values give the selective
response to Cd2+ over Pb2+ ions at concentrations below 0.01 mM. The different selectivity
of the chromatic (Pb2+) and fluorescent (Cd2+) responses of HCur-PDA indicates that the
latter derives from the complexation of the metal ions with HCur, while the former is
predominantly affected by the complexation with the PDA platform.

3.4. Sensitivity of PDA-HCur Fluorescence to Polyaminoacids and Proteins

The presence of the multiple-surface exposed carboxy/carboxylate groups makes
the PDA nanoplatform a convenient basis for the binding of macromolecules through the
combined effect of electrostatic attraction and hydrogen bonding. Polylysine (PL) is a good
choice to reveal an impact of the latter effect on both colorimetric and fluorescent responses
of HCur-PC(PS) and HCur-PDA vesicular aggregates. PL molecules are well known for
their conformational flexibility, being predominantly in α-helical structure at pHs above
10.4 and converting into the coil-like and β-sheet secondary structures at pHs below 8.0 [77].
The spectral response of HCur-PDA monitored in a buffer solution at pH 7.5 is evident
from both fluorescent and chromatic changes under the increased concentration of PL
(Figure 6a,b), which are manifested by the decrease in the Ih/Il values and the increase in
the CR values correspondingly (Figures 6c,d and S7c). It is worth noting that no significant
changes in the Ih/Il values are revealed for HCur-PC(PS) under the increased concentration
of PL (Figures 6c and S7a,b).
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Figure 6. Luminescence (a) and electronic absorption spectra (b) of HCur-PDA at different concentra-
tions of PL (from 0 to 0.091 g/L). (c) IH/IL of HCur-PC, HCur-PS and HCur-PDA vs. concentration of
PL (from 0 to 0.091 g/L). (d) Colorimetric response of PDA and HCur-PDA to different concentrations
of PL. (e) IH/IL of HCur-PDA at different concentration of PL, LSZ and BSA.

Thus, similarly to the above-mentioned spectral responses of HCur-PDA vesicles
to alkalization and Pb(Cd)2+ ions, the spectral response to PL reveals the interference
between the chromatic and fluorescent changes. In particular, the incorporation of HCur
is the factor suppressing the chromatic response of HCur-PDA to PL in comparison with
that of PDA itself (Figure 6d). However, the close-to-linear increase in the CR values
covers the concentration range 0–0.04 mM (Figure 6d), while the sharp decrease of the
Ih/Il values within 0.002–0.025 mM of PL comes to the saturation level at 0.02–0.045 mM
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(Figures 6e and S7d,e). The difference in the concentration ranges required for the chromatic
and fluorescent responses of HCur-PDA reveals the difference between the binding of PL
molecules with the fluorescent (HCur) and colorimetric (PDA) sensors. However, the Ih/Il
values of HCur-PDA exhibit some decrease under the concentration of PL above 0.045 mM,
which correlates with the blue-to-red phase transition of the PDA nanobead triggered by
the interaction with PL. This provides one more argument for the interference between the
colorimetric and fluorescent responses of HCur-PDA to PL.

The results reveal an impact of the surface-exposed amino/ammonium groups of
PL molecules on their efficient binding with HCur-PDA, which raises a question about
a possibility of its fluorescent response to Lysozyme (LSZ) with the net charge at 8e and
pI = 10.33 [78]. LSZ does not trigger the chromatic responses of both PDA and HCur-
PDA vesicles (Figure S6f). The fluorescent response of HCur-PDA requires a greater
concentration of LSZ in comparison with that of PL. This correlates with the smaller
amount of the surface-exposed amino/ammonium groups of LSZ, while the lack of any
detectable fluorescent response of HCur-PDA to bovine serum albumin (BSA) correlates
with its charge (−18e) and pI characteristics (4.7), which are quite different from those
of LSZ.

4. Conclusions

In summary, the newly synthesized representative of the hemicurcuminoid family bear-
ing a nonyl substituent (HCur) forms the supramolecular assemblies with phosphatidyl-
choline, phosphatidylserine and poly10,12-pentacosadiynoic acid (PCDA) molecules, which
allows for the obtaining of mixed vesicular aggregates containing the fluorescent HCur
through the thin film procedure. The HCur-PCDA vesicles were converted into the poly-
meric ones through photopolymerization. The phospholipid-based vesicles demonstrate
the high loading by HCur molecules, while the loading extent is much less for the PDA-
based vesicles. This correlates with molecular modeling simulations revealing the more fa-
vorable encapsulation of HCur molecules via their nonyl substituents into the phospholipid-
based assemblies, while the PCDA-based assembly provides less efficient screening of HCur
molecules from the exterior water molecules.

The single-crystal XRD analysis revealed a high planarity of HCur molecules in
the solid state, although the planarity distortion of HCur may have affected its spectral
behavior in the mixed vesicles. The spectral behavior of HCur in the PDA-based aggregates
differed from that in the phospholipid-based ones. In particular, the fluorescence of HCur
in the PDA-based vesicles demonstrated much greater sensitivity to the external stimuli
(temperature changing from 293 to 313 K and the pH increase from 7.5 to 9.5) than the
fluorescence of HCur-PC(PS) vesicles. This highlights an impact of greater exposure of
HCur to a bulk of solution on the sensitivity of its fluorescence to the external stimuli.

It is also worth noting that HCur-PDA is introduced as the dual fluorescent-chromatic
nanosensor. The difference in the sensitivity and selectivity of the fluorescent and chro-
matic responses of HCur-PDA indicates that they are driven by the substrate–HCur and
substrate–PDA interactions correspondingly. Thus, the fluorescent response of HCur-PDA
vesicles to both heavy metal ions (Pb2+ and Cd2+) and polylysine is more sensitive than
the colorimetric response of the vesicles, although both responses interfere with each other.
This highlights both the molecular structure of HCur and its supramolecular package into
the different vesicular aggregates as the key factors responsible for the sensing ability
towards the heavy metal ions and polylysine. However, further modifications on both
molecular and supramolecular levels are required to develop a sensor able to recognize
protein molecules.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/xxx/s1: Table S1. 1H and 13C chemical shiftsa (ppm) and spin-spin
coupling constants (Hz) observed for the enol form of compounds HCur-BF2 and HCur in DMSO-d6
at 303K; Table S2. Experimental crystallographic data for compound 3; Figure S1 HRMS (ESI) of
HCur (C26H32O3), m/z: 393.2420, [M+H]+, calcd for C26H33O3 393.2424; Figure S2 a - UV-vis spectra
of HCur at different concentration. b - I400 of UV-vis spectra of HCur at different concentration. c -
UV-vis spectra of residual amount of HCur after synthesise of PC-HCur, PS-HCur and PCDA-HCur.
(d) – UV-vis spectra of HCur in CHCl3 at different time of UV-irridiation (254nm); Figure S3 a,b -
Emission and excitation spectra of HCur in DMF (emission 470 nm, excitation 390 nm). c,d - Emission
and excitation spectra of HCur in CHCl3 (emission 460 nm, excitation 340 nm); Figure S4 Size distri-
bution by Volume (red line) and by intensity (black line) of PDA-HCur(a), PC-HCur (b) and PS-HCur
(c): a,b,c – at pH = 8.1; d,e,f – at pH = 3.5. g,h,I – size distribution of bilayers aggregates of PC (g),
PS(h) and PDA(i); Figure S5. Luminescence spectra of PC-HCur(a), PS-HCur(b) and PDA-HCur(c)
at different pHs. d – UV-vis spectra of PDA at different pHs; Figure S6. Luminescence spectra of
PDA-HCur in presence of different concentration of CuCl2 (a), MnCl2 (b) and NiCl2 (c); Figure S7.
Luminescence spectra of HCur-PC(a) ab HCur-PS(b) and HCur-PDA(3) vs concentration of PL. c –
UV-vis spectra of PDA at different concentration of PL. d,e – Luminescence spectra of HCur-PDA at
different concentration of BSA and LSZ.
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