
Citation: Sato, T. Kinetics of

Micellization and Liquid–Liquid

Phase Separation in Dilute Block

Copolymer Solutions. Polymers 2023,

15, 708. https://doi.org/10.3390/

polym15030708

Academic Editor: Diego Antonioli

Received: 30 December 2022

Revised: 22 January 2023

Accepted: 24 January 2023

Published: 31 January 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Kinetics of Micellization and Liquid–Liquid Phase Separation
in Dilute Block Copolymer Solutions
Takahiro Sato

Osaka Study Center, The Open University of Japan, 4-9-23, Onohara-Higashi, Osaka 562-0031, Japan;
tsato@chem.sci.osaka-u.ac.jp; Tel.: +81-72-730-8410

Abstract: A lattice theory for block copolymer solutions near the boundary between the micellization
and liquid–liquid phase separation regions proposes a new kinetic process of micellization where
small concentrated-phase droplets are first formed and then transformed into micelles in the early
stage of micellization. Moreover, the thermodynamically stable concentrated phase formed from
metastable micelles by a unique ripening process in the late stage of phase separation, where the
growing concentrated-phase droplet size is proportional to the square root of the time.
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1. Introduction

An amphiphilic diblock copolymer forms a micelle in a selective solvent. If the block
copolymer is thermosensitive, pH-sensitive, or ionic strength-sensitive, the kinetics of
the micelle formation in dilute homogeneous block copolymer solutions can be studied
experimentally by temperature-jump, pH-jump, or salt-jump experiments. Such kinetic
studies have been carried out extensively for various block copolymer solutions thus
far [1–16]. The micellization process of block copolymers is much slower than that of small
molecular surfactants, so the former kinetics is easier than the latter, but the micellization
of the block copolymers is still fast to study experimentally.

The micellization kinetics of both block copolymers and small molecular surfactants
have been analyzed on the basis of the stepwise aggregation mechanism of monomers [17–21].
This mechanism was first proposed by Aniansson and Wall in 1974 [17] to explain the mi-
cellization kinetics of small molecular surfactants, which resembles the kinetic theory of
nucleation (the formation of a new phase within a metastable phase) [19,21], and was also
utilized to analyze block copolymer micellization kinetics [3–6].

More recently, our group investigated the self-assemblies of several thermosensitive
and ionic strength-sensitive block copolymers in dilute aqueous solutions, and found the
competition between the micellization and liquid–liquid phase separation of those block
copolymers [22–26]. The competition comes from weaker amphiphilicity of the block
copolymers, which was explained semi-quantitatively by the lattice theory [27]. Further-
more, the lattice theory predicted that micellization prefers to liquid–liquid phase separation
at a lower hydrophobic content of the copolymers, and the prediction was demonstrated
experimentally using a thermosensitive block copolymer in aqueous solutions [26].

The present study deals with the kinetics of the micellization as well as of the liquid–
liquid phase separation in dilute block copolymer solutions, where the micellization com-
petes with the liquid–liquid phase separation. The liquid–liquid phase separation starts
from the formation of small concentrated-phase droplets, which are thermodynamically
less stable than the macroscopic concentrated phase due to the extra interfacial Gibbs en-
ergy. The preference of concentrated-phase droplets and micelles may be reversed during
the growing process of micellization or phase separation. The judgement of the preference
needs to quantitatively compare the Gibbs energy of formation of the concentrated-phase
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droplet with that of the micelle. Such a comparison proposes the unique kinetics of micel-
lization and concentrated-phase droplet growth in the early and late stage, respectively, as
explained in what follows.

2. Thermodynamics
2.1. Models and Mixing Gibbs Energy Densities [27]

Let us consider an aqueous solution of a block copolymer that consists of a hydrophilic
A-chain of the degree of polymerization PA and a hydrophobic B-chain of the degree of
polymerization PB. The hydrophilic and hydrophobic contents of the copolymer are given
by xA = PA/(PA + PB) and xB = PB/(PA + PB), respectively. The monomer units of the A-
and B-chains as well as the solvent water molecule are assumed to possess the same size a
(the unit lattice size).

Figure 1a shows a schematic illustration of the spherical micelle. We assumed that
both the hydrophobic core and hydrophilic shell regions of the micelle were uniform, and
that the A- and B-block chains were completely excluded from the core and shell regions of
the micelle, respectively, as shown in Figure 1, to calculate the thermodynamic quantities of
the micellar phase. In this theory, the micelle is regarded as a thermodynamic phase. This
simplified model of the spherical micelle resembles that used by Leibler et al. [28], although
in the present model, the radii of the core Rcore and of the whole micelle Rm are given by

Rcore/a = PB
α, (Rm − Rcore)/a = PA

α (1)
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Figure 1. Simplified model of the spherical micelle (a) and the uniform density spherical model of
the concentrated-phase droplet (b).

Here, the exponent α was assumed to be 0.5 for the Gaussian chain in this paper, but
this α value does not essentially change the following semi-quantitative argument. Leibler
et al. [28] considered a homopolymer as the solvent, and treated Rcore and Rm as variables,
determined from the free energy minimization condition.

The average volume fraction of the copolymer φP in the micellar phase is given by φP
= 3(PA + PB)m/(4πRm

3), where m is the aggregation number of copolymer chains in the
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spherical micelle. The volume fractions of the A- and B-block chains in the shell and core
regions (φA,s and φB,c), respectively, can be calculated from φP by

φA,s =
xAφP

Φs
, φB,c =

xBφP

Φc
, Φc = 1−Φs ≡

Rcore
3

Rm3 (2)

By extending the Flory–Huggins theory [29], we can formulate the mixing Gibbs
energy density (per the unit lattice site) ∆gm(φP) in the micellar phase as [27]

∆gm(φP)
kBT = φP

P ln(κφP) + Φs(1− φA,s) ln(1− φA,s) + Φc(1− φB,c) ln(1− φB,c)

+[xA(1− φA,s)χAS + xB(1− φB,c)χBS − xAxBχAB]φP + 3Φc
Rcore/a

a2γc
kBT

(3)

where kBT is the Boltzmann constant multiplied by the absolute temperature, and κ is
a constant defined by

κ =
π

27
(PA + PB)

2+αxAxB
1−2α(xA

α + xB
α)3 (4)

χAS, χBS, and χAB are the interaction parameters between the A-chain and the solvent,
between the B-chain and the solvent, and between the A- and B-chains, respectively, and γc
is the interfacial tension between the core and shell regions. Using the theory of Noolandi
and Hong [30], as explained in Appendix A, the expression of γc as well as the thicknesses
of the corresponding interfaces dI,c are given by

a2γc

kBT
=

√
(φA,s + φB,c)∆ fc(0)

3
,

dI,c

a
=

√
φA,s + φB,c

12∆ fc(0)
(5)

where ∆f c(0) is defined as

4∆ fc(0) ≡ χABφA,sφB,c + (χBSφB,c − χASφA,s)(φB,c − φA,s)

+2φS,c ln
(

φS,c+φS,s
2φS,c

)
+ 2φS,s ln

(
φS,c+φS,s

2φS,s

) (6)

with φS,s = 1 − φA,s and φS,c = 1 − φB,s. Although not shown in Figure 1a, the interfacial
region of the micelle has a sharp concentration gradient, as illustrated in Figure A1 in
Appendix A. In Equation (3), the term of the interfacial tension between the shell region
of the micelle and the coexisting dilute phase was neglected, because φA,s and χAS were
considerably smaller than φP,d and χ (cf. Equation (8)), respectively.

Figure 1b illustrates the schematic diagram of the spherical concentrated-phase droplet,
where both volume fractions of the A- and B-chains are uniform. Through a simple
extension of the Flory–Huggins theory [29], the mixing Gibbs energy density ∆gd(φP) in
the concentrated-phase droplet is written as

∆gd(φP)

kBT
= φS ln φS +

φP

P
ln φP + χφSφP +

3a
Rd

a2γd
kBT

(7)

where φP and φS = 1 − φP are the volume fractions of the copolymer and the solvent in the
droplet phase, respectively, and χ is the average interaction parameter defined by

χ ≡ χASxA + χBSxB − χABxAxB (8)

and γd is the interfacial tension between the concentrated-phase droplet and the homo-
geneous (dilute) solution phase. Not illustrated in Figure 1b, the interfacial region of the
droplet must possess a sharp concentration gradient. There are two limiting cases: one is
that only A-block chains make contact with the coexisting dilute phase at the interface, like
the micelle, and the other is to assume that the composition φA(x)/φB(x) (cf. Figure A1 in
Appendix A) is uniform, even at the interface. Here, we took the latter limiting case (i.e.,
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the total copolymer volume fraction φP(x) changes under the constant composition). Then,
the expression of γd and the thickness of this interface dI,d are obtained from Equations
(A4)–(A6) in Appendix A by

a2γd
kBT

=

√
∆ fd(0)

3[φP + φP,h(Rd)]
[φP − φP,h(Rd)],

dI,d

a
=

φP − φP,h(Rd)√
12[φP + φP,h(Rd)]∆ fd(0)

(9)

with the copolymer volume fraction φP,h(Rd) in the dilute solution phase coexisting with
the concentrated-phase droplet of the radius Rd and

4∆ fd(0) ≡ χ[φP − φP,h(Rd)][φS,h(Rd)− φS]

+2φS ln
[

φS+φS,h(Rd)
2φS

]
+ 2φS,h(Rd) ln

[
φS+φS,h(Rd)

2φS,h(Rd)

] (10)

[φS = 1 − φP and φS,h(Rd) = 1 − φP,h(Rd)].
The excess chemical potentials (per molecule) of the solvent ∆µS,d and of the copolymer

∆µP,d in the droplet phase can be calculated from Equation (7) as

∆µS,d
kBT = ln φS +

(
1− 1

P

)
φP + χφP

2 + 2
(Rd/a)

a2γd
kBT −

3φP
(Rd/a)

(
d

dφP

a2γd
kBT

)
∆µP,d/P

kBT = 1
P ln φP −

(
1− 1

P

)
φS + χφS

2 + 2
(Rd/a)

a2γd
kBT + 3φS

(Rd/a)

(
d

dφP

a2γd
kBT

) (11)

Finally, the mixing Gibbs energy density ∆gh(φP) as well as the excess chemical
potentials of the solvent ∆µS,h and of the copolymer ∆µP,h in the homogeneous copolymer
solution phase are given by [29]

∆gh(φP)
kBT = φS ln φS +

φP
P ln φP + χφSφP

∆µS,h
kBT = ln φS +

(
1− 1

P

)
φP + χφP

2, ∆µP,h/P
kBT = 1

P ln φP −
(

1− 1
P

)
φS + χφS

2 (12)

which correspond to Equations (7) and (11) in the limit of infinite Rd.

2.2. Phase Diagram

When χ is sufficiently large, concentrated-phase droplets with the copolymer volume
fraction φP,d(Rd) appear in the homogeneous copolymer solution, and if the amphiphilicity
is strong enough (or χBS >> χAS), the micellar phase with the copolymer volume fraction
φP,m is formed in the homogeneous copolymer solution. The copolymer volume fractions
φP,d(Rd) and φP,m can be calculated from the following phase equilibrium conditions

∆µS,h(φP,h(Rd)) = ∆µS,d(φP,d(Rd)), ∆µP,h(φP,h(Rd)) = ∆µP,d(φP,d(Rd)) (13a)

∆µS,h(φP,h
(m)) = ∆µS,m(φP,m), ∆µP,h(φP,h

(m)) = ∆µP,m(φP,m) (13b)

where ∆µS,I and ∆µP,i (i = h, d, m) are the excess chemical potentials (per molecule) of
the solvent and of the copolymer, respectively, in the homogeneous solution (i = h), in
the droplet phase (i = d), and in the micellar phase (i = m); φP,h(Rd) and φP,h

(m) are the
copolymer volume fractions of the homogeneous (dilute) phase coexisting with the droplet
and micellar phases, respectively.

As a case study, Figure 2 shows three mixing Gibbs energy densities, ∆gh, ∆gd,
and ∆gm as functions of φP for an AB diblock copolymer solution with PA = PB = 100
(xA = xB = 0.5), χAS = 0.4, χAB = 0, and χBS = 1.122. The blue curve (∆gd) for the droplet
phase shifts slightly upward from the black curve (∆gh) for the homogeneous solution due
to the interfacial tension term in Equation (7). The red curve (∆gm) for the micellar phase
has stronger curvature than the black and blue curves. By choosing χBS = 1.122, we can
draw a common tangent to the black and red curves (although not clearly shown, the black
curve was convex downward at φP~0), which makes contact with the black and red curves
at φP,h(∞) (=φP,h

(m)), φP,m, and φP,d(∞). When χBS < 1.122, the red curve shifts upward, and
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when χBS > 1.122, the red curve shifts downward relative to the black curve, indicating that
the homogeneous solution and the micellar phase are thermodynamically stabler at lower
and higher χBS, respectively [27].
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From the Gibbs–Duhem relation, the mixing Gibbs energy density is related to the
excess chemical potential by

∆gh(φP) = (1− φP)∆µS,h + φP
∆µP,h

P
, ∆gm(φP) = (1− φP)∆µS,m + φP

∆µP,m

P
(14)

and this equation verifies that φP,h
(m) and φP,m in Figure 2 fulfill the phase equilibrium

conditions given by Equation (13b). On the other hand, the Gibbs–Duhem relation does
not hold for the droplet phase due to the interfacial tension term in Equation (7), which is
not proportional to the total number of molecules in the system. However, the coexisting
phase volume fractions φP,d(Rd) and φP,h(Rd) can be calculated by solving the simultaneous
Equation (13a).

Pairs of the coexisting phase volume fractions, φP,h(∞) and φP,d(∞), φP,d(Rd) and
φP,h(Rd), and φP,h

(m) and φP,m, are obtained as functions of χBS, at constant χAS = 0.4 and
χAB = 0 [and at Rd/a = 20 for the pair of φP,d(Rd) and φP,h(Rd)]. Figure 3 shows the phase
diagram under this condition. Here, the black, blue, and red curves indicate coexisting
homogeneous, droplet, and micellar phases, respectively, and solid and broken curves the
stable and unstable (or metastable) states, respectively. The small black circle in the figure
indicates the critical point for the liquid–liquid phase separation. It was noted that there is
no critical point for the homogeneous-droplet phase equilibrium. For the coexistence of the
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micellar and homogeneous phases, we can draw two common tangents (the two tangents
become identical at χBS = 1.122 in Figure 2), and the phase diagram has two coexistence
regions of the micelle + dilute phase and micelle + concentrated phase, as shown in Figure 3.
In what follows, we focused only on micellization and the concentrated-phase droplet
formation in dilute copolymer solutions.

Polymers 2023, 15, x FOR PEER REVIEW 6 of 14 
 

 

phase volume fractions ϕP,d(Rd) and ϕP,h(Rd) can be calculated by solving the simultaneous 

Equation (13a). 

Pairs of the coexisting phase volume fractions, ϕP,h(∞) and ϕP,d(∞), ϕP,d(Rd) and 

ϕP,h(Rd), and ϕP,h(m) and ϕP,m, are obtained as functions of χBS, at constant χAS = 0.4 and χAB 

= 0 [and at Rd/a = 20 for the pair of ϕP,d(Rd) and ϕP,h(Rd)]. Figure 3 shows the phase diagram 

under this condition. Here, the black, blue, and red curves indicate coexisting homogene-

ous, droplet, and micellar phases, respectively, and solid and broken curves the stable and 

unstable (or metastable) states, respectively. The small black circle in the figure indicates 

the critical point for the liquid–liquid phase separation. It was noted that there is no critical 

point for the homogeneous-droplet phase equilibrium. For the coexistence of the micellar 

and homogeneous phases, we can draw two common tangents (the two tangents become 

identical at χBS = 1.122 in Figure 2), and the phase diagram has two coexistence regions of 

the micelle + dilute phase and micelle + concentrated phase, as shown in Figure 3. In what 

follows, we focused only on micellization and the concentrated-phase droplet formation 

in dilute copolymer solutions. 

The micellar phase formation thermodynamically prefers the formation of the drop-

let phase with Rd/a = 20 at χBS >1.048, as indicated by the blue thin dotted line in Figure 3. 

This phase boundary shifts to lower χBS than the boundary between the micellization and 

macroscopic liquid–liquid phase separation (cf. the red thin dotted line in Figure 3), be-

cause the interfacial tension term in ∆gd(ϕP) given by Equation (7) destabilizes the droplet 

concentrated phase. With increasing Rd, the boundary between the micelle and droplet 

phases approaches the red thin dotted line, located at χBS = 1.122. 

 

Figure 3. Phase diagram of the AB diblock copolymer solution with PA = PB = 100 (xA = xB = 0.5), χAS 

= 0.4 and χAB = 0. 

As already shown in a previous work [27], when χAS decreases, the biphasic region 

of the liquid–liquid phase separation goes up (Figure 3), while the binodal curves for the 

micelle–homogeneous phase equilibrium do not change as much. Thus, the stable liquid–

Figure 3. Phase diagram of the AB diblock copolymer solution with PA = PB = 100 (xA = xB = 0.5),
χAS = 0.4 and χAB = 0.

The micellar phase formation thermodynamically prefers the formation of the droplet
phase with Rd/a = 20 at χBS > 1.048, as indicated by the blue thin dotted line in Figure 3.
This phase boundary shifts to lower χBS than the boundary between the micellization
and macroscopic liquid–liquid phase separation (cf. the red thin dotted line in Figure 3),
because the interfacial tension term in ∆gd(φP) given by Equation (7) destabilizes the
droplet concentrated phase. With increasing Rd, the boundary between the micelle and
droplet phases approaches the red thin dotted line, located at χBS = 1.122.

As already shown in a previous work [27], when χAS decreases, the biphasic region
of the liquid–liquid phase separation goes up (Figure 3), while the binodal curves for
the micelle–homogeneous phase equilibrium do not change as much. Thus, the stable
liquid–liquid phase separation region becomes narrower and finally disappears in the
phase diagram. A similar change in the phase diagram occurs when χAB increases.

In Figure 3, the black thin dot-dash curve indicates the spinodal, calculated by [29]

φP,sp± =
2χ− 1 + P−1 ±

√
(2χ− 1 + P−1)

2 − 8P−1χ

4χ
(15)

within the spinodal region, the homogeneous phase is not stable with respect to long-ranged
concentration fluctuation induced by thermal agitation, and the spinodal decomposition
can take place in the early stage of the liquid–liquid phase separation. On the other
hand, the concentration fluctuation is unstable in the homogeneous solution, outside the
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spinodal region. Thus, when the homogeneous solution is jumped into the region between
the spinodal and binodal curves in the dilute region, the concentrated-phase droplet and
spherical micelle may be formed in the solution through the nucleation–growth mechanism.

3. Kinetics of Micellization and Liquid–Liquid Phase Separation
3.1. Growth of the Concentrated-Phase Droplet and Spherical Micelle in the Early Stage

Let us consider a metastable dilute homogeneous solution with a copolymer volume
fraction φP,h between φP,h(Rd) and the lower spinodal volume fraction φP,sp− (cf. Equation
(15)). When a spherical concentrated-phase droplet with the radius Rd and the copolymer
volume fraction φP,d is formed in this homogeneous copolymer solution, the Gibbs energy
of the droplet formation δGd is given by

δGd =
∆gd(φP,d)− ∆gh(φP,h)

φP,d
(PA + PB)m (16)

where φP,d is assumed to be equal to the equilibrium copolymer volume fraction φP,d(Rd)
calculated by the phase equilibrium condition, Equations (13a) and (13b), as a function of
the droplet radius Rd, and the aggregation number m is calculated by

m =
4π

3(PA + PB)
Rd

3φP,d (17)

Because the droplet of the radius Rd is in equilibrium with the homogeneous solu-
tion with φP,h(Rd) (<φP,h), there was a concentration gradient in the vicinity of the droplet
surface and the droplet grew through the diffusion flow of the copolymer from the homo-
geneous solution.

Similarly, when a spherical micelle with the aggregation number m and the copolymer
volume fraction φP,m formed in the dilute homogeneous copolymer solution with the
copolymer volume fraction φP,h (φP,h

(m) < φP,h < φP,sp−), the Gibbs energy of the micelle
formation δGm is given by

δGm =
∆gm(φP,m)− ∆gh(φP,h)

φP,m
(PA + PB)m (18)

where φP,m is calculated from m by

φP,m =
a3(PA + PB)

(4π/3)Rm3 m (19)

where Rm is calculated by Equation (1).
In Figure 4, δGd and δGm are plotted against the aggregation number m in the copoly-

mer solution at φP,h = 0.002. As seen in Figure 3, micellization is preferred to the liquid–
liquid phase separation at χBS = 1.3, but δGm for the micelle is higher than δGd for the
concentrated-phase droplet at m < 23. Thus, if χBS abruptly changes from a low value
(<0.85, the one-phase condition) to 1.3, small concentrated-phase droplets form more easily
than the micelles with the same m (<23) in the copolymer solution. However, when these
concentrated-phase droplets grow, they become less stable than the micelle at m > 23. This
indicates that the core–shell structure may be developed inside the growing droplets. Fi-
nally, the micelles with m = 34 (the red circle in Figure 4 for χBS = 1.3) form in the copolymer
solution in the equilibrium state.
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Figure 4. Gibbs energy of the droplet formation δGd (blue curves) and the Gibbs energy of the micelle
formation δGm (red curves) in the copolymer solution with PA = PB = 100, χAS = 0.4, χAB = 0, and
χBS = 1.3, 1.1, and 0.9 at φP,h = 0.002, as functions of the aggregation number m. Red circles indicate
the points corresponding to the equilibrium micelle, fulfilling Equations (13a) and (13b).

A similar relation between δGd and δGm also holds at χBS = 1.1. Concentrated-phase
droplets first form in the copolymer solution, and they may be transformed into micelles
with m = 31 (the red circle in Figure 4 for χBS = 1.1) during the growing process. Although
the liquid–liquid phase separation is preferred to the micellization at χBS = 1.1 in the final
equilibrium state, as seen in Figure 3, the micelle is a metastable state, and the formation of
the concentrated phase of a large size must overcome the activation Gibbs energy barrier.
The late stage of the concentrated-phase droplet growth in such a solution is discussed in
the next Section 3.2.

At χBS = 0.9, δGd is smaller than δGm in the whole m range, and the concentrated-phase
droplet keeps growing without transforming into the micelle. In the equilibrium state, the
liquid–liquid phase separation is preferred to micellization (cf. Figure 3).

The kinetics of liquid–liquid phase separation and micellization in the early stage has
been argued in the scenario of the nucleation–growth mechanism thus far. That is, the
nuclei of the concentrated phase and the micelle are formed step-wise from the unimer
(m = 1) [17–21]. In the concentrated-phase droplet, the copolymer chain was assumed to
take the random coil conformation, and the concentration gradient near the droplet surface
was neglected to derive Equation (7). Thus, Equation (7) for ∆gd(φP) holds only at Rd
larger than <R2>1/2/2 + dI,d, where <R2>1/2 is the mean-square end-to-end distance of the
copolymer chain [=(PA + PB)a2], and dI,d is calculated by Equation (9). In Figure 4, m =
10 is close to the lower limit where Equation (7) holds. Moreover, in the micelle model
used in this work, Rm and Rcore are given by Equation (1), which may hold only when φB,c
is sufficiently high. For small m, where φB,c is low, B-block chains forming the core may
shrink to escape contact with the solvent, so our micelle model cannot be used for such
a small m. Under the condition of Figure 4, φB,c ≈ 0.25 at m = 10, and our micelle model
may not be applied at m considerably smaller than 10. Therefore, Equations (16) and (18)



Polymers 2023, 15, 708 9 of 13

cannot be used to discuss the nucleation processes of liquid–liquid phase separation and
micellization [21].

Although these nucleation processes were not discussed, the above argument proposes
a new kinetics of the micellization process in the early stage (i.e., the transformation from
the small concentrated-phase droplet to the spherical micelle). As above-mentioned, the
stable liquid–liquid phase separation region becomes narrower and finally disappears in
the phase diagram, when χAS decreases and/or χAB increases. Nevertheless, the same
kinetics of the micellization process in the early stage can also be expected at lower χAS
and higher χAB, because δGd < δGm at small m, even if the liquid–liquid phase separation
region becomes unstable, as demonstrated in Figure 4 at χBS = 1.3.

3.2. Modification of the Lifshitz–Slyosov Theory in the Late Stage of the Phase Separation

As above-mentioned, the micellar phase is the metastable state at χBS = 1.1 (more
generally at χBS from 1.03 to 1.122) within the biphasic region in Figure 3, and the thermody-
namically equilibrium state is the liquid–liquid phase separation (where the concentrated-
phase droplet size is macroscopic) in that region in Figure 3. The phase boundary (the
blue horizontal dotted line in Figure 3 at Rd/a = 20) shifts to χBS = 1.1 at Rd/a = 50, so the
concentrated-phase droplet with Rd/a > 50 is stabler than the micelle. If the concentrated-
phase droplet of such a large size is formed occasionally by overcoming the activation Gibbs
energy barrier, it keeps growing without developing the micellar structure. Since φP,h(Rd) <
φP,h

(m) at Rd/a > 50, the growth of such large droplets in the solution is accompanied by the
dissociation of micelles existing in the solution. This droplet ripening process in the micellar
solution is different from the conventional Ostwald ripening in the usual liquid–liquid
phase separation of the late stage.

The conventional Ostwald ripening process is quantitatively dealt with by the Lifshitz–
Slyozov theory [31,32]. In the theory, the droplet with the radius Rd is in equilibrium with
the homogeneous dilute solution (the mother solution) with the concentration φP,h(Rd)
given by (in terms of our notations)

φP,h(Rd) = φP,h(∞) +
σ

Rd
(20)

where σ is a constant parameter proportional to the interfacial tension. When the average
concentration of the mother solution is denoted as φP,h, larger droplets with φP,h(Rd) < φP,h
can grow, while smaller droplets with φP,h(Rd) > φP,h dissociate along with diffusing the
solute into the mother solution. The critical radius R* for the growing droplet is given by

R∗ =
σ

φP,h − φP,h(∞)
(21)

Along with the droplet growth, the concentration of the mother solution is reduced,
and R* increases with time t. Although the σ calculated from the results of φP,h(Rd) obtained
by Equations (13a) and (13b) was slightly dependent on Rd, we neglected this dependence
according to Lifshitz and Slyozov in what follows, of which the approximation is good only
at sufficiently large Rd, or in the late stage of the phase separation

The concentration of the mother solution containing spherical micelles should maintain
the critical micelle concentration φP,h

(m), even during the growth of concentrated-phase
droplets. Thus, Equation (21) should be replaced by

R∗ =
σ

φP,h
(m) − φP,h(∞)

(22)

Thus, R* is independent of t until all micelles disappear in the solution, which is in
contrast with the Lifshitz–Slyozov theory, and the theory should be modified as follows.
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New parameters u and tr are defined by

u ≡ Rd
R∗

, tr ≡
σD
R∗3 t (23)

where D is the diffusion coefficient of the solute in the mother solution. Using these
parameters, the droplet growth rate du/dtr can be written as

du
dtr

=
1
u

(
1− 1

u

)
(24)

By integrating this equation, we obtain

1
2
(u + 3)(u− 1) + ln(u− 1) + C0 = tr (25)

with the integration constant C0. Figure 5 shows the time dependence of Rd for the growing
droplet (Rd = R* at t = 0) in the micellar solution, calculated by Equation (25). When u and
tr are sufficiently large, Equation (25) can be approximated to

u ≈
√

2tr (26)
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This is in contrast with the Lifshitz–Slyozov theory, where the average radius of the
droplet is proportional to t1/3 in the late stage [31,32]. After all micelles disappear in the
solution, the droplet growth should obey the Ostwald ripening (i.e., larger droplets grow
by consuming the solute provided by dissociating smaller droplets). As the result, the
average radius of the growing droplet is proportional to t1/3.

4. Concluding Remarks

A discussion has been made on the phase separation kinetics in the block copolymer so-
lution where the micellization competes with the liquid–liquid phase separation. When the
block copolymer solution is jumped from the one-phase to biphasic region near the micelle–
liquid–liquid phase separation boundary, small droplets of the concentrated phase are first
formed, and afterward, the micellar structure may be developed in the concentrated-phase
droplets. This is a kinetic mechanism of the micellization newly proposed in this study.

The kinetics of the micelle formation in block copolymer solutions has been investi-
gated experimentally by many researchers by using the temperature-jump and stopped
flow experiments [1–16]. When homogeneous block copolymer solutions were brought
into the micelle region, the scattering intensity and hydrodynamic radius in the copolymer
solutions increased with time, and these experimental results were analyzed in terms of
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the step-by-step association model [17–21], but the detailed structure inside the scattering
particles have not been investigated thus far. It is not enough to only measure the scattering
intensity and hydrodynamic radius to distinguish the micelle from the concentrated-phase
droplet experimentally. The newly proposed micellization kinetics must be checked in
future work.

According to the above micellization kinetics, the micelles exist as a metastable state,
even out of the micellization region in the thermodynamically stable phase diagram. In
the late stage of the phase separation, the metastable micelle may be transformed into the
stabler concentrated phase through the ripening process of the concentrated-phase droplet.
This ripening process differs from the conventional Ostwald ripening occurring in the usual
liquid–liquid phase separation systems [31,32], because the droplet growth in our block
copolymer solution takes place by consuming the solute provided by metastable micelles
in the solution. The growing droplet size is proportional to the square root of time t in the
micellar solution, and the conventional t1/3 dependence of the (average) droplet size in the
Ostwald ripening is recovered after all micelles are consumed.

Recently, Narang and Sato [33] investigated the self-assembly of an amphiphilic amino
acid derivative in aqueous dimethylsulfoxide, where concentrated-phase droplets coexist
with micellar particles. Unfortunately, after the temperature jump of the solution, light
scattering indicated the existence of sub-micron size droplets, but the droplets did not
essentially grow any more during the light scattering and small-angle X-ray scattering
measurements, maybe because of the fast ripening process in this small molecular system.
To the best of the author’s knowledge, there have been no reports demonstrating the t1/2

dependence of the droplet size in phase separating solutions.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Interfacial Tension and Interfacial Thickness

Noolandi and Hong [30] formulated the interfacial tension γ and interfacial thickness
dI for phase separating solutions containing two homopolymers A and B and a solvent
S. They simply assumed linear concentration gradients in the interfacial region shown
in Figure A1. Here, x is the distance from the middle of the interface, φA(x), φB(x), and
φS(x) [=1 − φA(x) − φB(x)] are the volume fractions of the A and B homopolymers and the
solvent, respectively, at x; φA

(α), φB
(α), and φS

(α) are φA(x), φB(x), and φS(x) at x ≤ −dI/2
(the α or homopolymer A rich bulk phase), and φA

(β), φB
(β), and φS

(β) are φA(x), φB(x), and
φS(x) at x ≥ dI/2 (the β or homopolymer B rich bulk phase).

Their results of the interfacial tension γ and interfacial thickness dI are written as

a2γ

kBT
=

√
1
3

KAB∆ fAB(0),
dI

a
=

√
KAB

12∆ fAB(0)
(A1)

where a is the unit lattice size; kBT is the Boltzmann constant multiplied by the absolute
temperature; and the parameters KAB and ∆f AB(0) are defined by

KAB ≡

(
φA

(β) − φA
(α)
)2

φA
(β) + φA

(α)
+

(
φB

(β) − φB
(α)
)2

φB
(β) + φB

(α)
(A2)

4∆ fAB(0) ≡ χAB

(
φA

(α) − φA
(β)
)(

φB
(β) − φB

(α)
)

+
[
χAS

(
φA

(α) − φA
(β)
)
− χBS

(
φB

(β) − φB
(α)
)](

φS
(β) − φS

(α)
)

+2φS
(β) ln

(
φS

(β)+φS
(α)

2φS
(β)

)
+ 2φS

(α) ln
(

φS
(β)+φS

(α)

2φS
(α)

) (A3)
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For phase separating binary solutions containing a homopolymer P and a solvent S,
the above equations can be simplified by

a2γ

kBT
=

√
1
3

KP∆ fP(0),
dI

a
=

√
KP

12∆ fP(0)
(A4)

KP ≡

(
φP

(β) − φP
(α)
)2

φP
(β) + φP

(α)
(A5)

4∆ fP(0) ≡ χ
(

φP
(β) − φP

(α)
)(

φS
(α) − φS

(β)
)

+2φS
(β) ln

(
φS

(β)+φS
(α)

2φS
(β)

)
+ 2φS

(α) ln
(

φS
(β)+φS

(α)

2φS
(α)

) (A6)

where φP
(α) and φP

(β) are the polymer volume fractions in the α phase (dilute phase) and
the β phase (concentrated phase), respectively.
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