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Abstract: Hydroxyapatite (HAp) has been used for various applications such as orthopedics, drug
delivery material, and bone tissue engineering. It is well known that HAp has a good biocompatibility
and osteoconductivity, so HAp can be used in biomedical applications. Hydroxyapatite can be
combined with other materials, in particular polymer, to expand its range of applications. In this
study, the polymer that will be used as a support for the HAp composite is alginate (Alg). The
HAp/Alg composite has been synthesized by the precipitation method. The XRD results show that
the crystal system of HAp was hexagonal. The spheric-like shaped particles can be observed from
SEM images, and particle size distribution spread from 400 to 1100 nm. The EDS spectrum exhibited
the peak of Ca, C, P, and O elements, indicating that alginate had interacted with hydroxyapatite
in the synthesized composite. The as-fabricated composite showed not only good crystallinity but
also high thermal resistance. Thermogravimetric-differential thermal analysis (TGA-DTA) revealed
that the HAp/Alg composites have a constant weight at 750 ◦C, so it might be applied in advanced
applications such as bioimaging, drug carrier, and other cancer treatments.

Keywords: hydroxyapatite; alginate; composite; high thermal resistance

1. Introduction

Hydroxyapatite (HAp), Ca10(PO4)6(OH)2 is a bioceramic-based calcium phosphate
compound that is stable under body fluids [1]. The crystal structure of HAp is hexagonal,
having a molar ratio of a Ca/P of 1.67 [2], which is currently widely applied in biomedical
fields such as orthopedics and dentistry, bone tissue engineering, drug delivery materials,
and cell imaging [3]. Various methods, such as the hydrothermal method [4], precipitation
method [5], sol-gel method [6], electrodeposition techniques [7], double diffusion tech-
nique [8], biomimetics [9], emulsion [10] and template method [11] have reported for the
fabrication of HAp. It can grow spheric-like, needle-like, fibrous, rod-shaped, irregularly
spherical, and flake-shaped, depending on the different growth conditions of crystal faces
of each method.

However, to widen the application of HAp, it is mainly composited with other ma-
terials, one of them being a polymer. Polymers are large molecules formed by small and
simple chemical units in the form of monomers. Therefore, polymers are often used, such
as alginate [12], chitosan [13], cellulose [14], silk fibroin [1], PVA [15], and others. In this
study, the polymer is alginate. Alginate is a polymer of great interest because it is an
unbranched polysaccharide containing various compositions of beta-D-mannuronate (M)
and alpha-L-guluronate (G) residues [12–16]. Hence the high cross-linking will reduce
the hydrogel’s swelling and create a trapped drug. In addition, alginate (Alg) is not only
cheap but also has good biocompatibility and biodegradability, so it supports drug delivery
systems [2,17].
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Recently, biopolymer matrix composites and inorganic reinforcement have been in-
vestigated for use in biomedical applications, including drug delivery, tissue engineering,
enzyme immobilization, bioadsorption, and dentistry. In addition, these new inorganic-
reinforced composites have demonstrated improved mechanical properties. Various
biopolymer composite materials have been prepared in many drug delivery applications
to enhance drug encapsulation/loading. They provide sustained release capabilities due
to the synergistic action of inorganic materials and biopolymers in the composite matrix.
Therefore, the enhanced characteristics of these biopolymer matrix-based composites can be
further modified by varying the reinforcement type and ratio. Recently, various inorganic
materials, such as carbon nanotubes (CNT), montmorillonite (MMT), calcium silicate (CS),
β-tricalcium phosphate (β-TCP), and hydroxyapatite (HAp), have been used as reinforce-
ment to alginate-based composites for use in drug delivery as shown in Table 1 [18]. The
table shows that alginate composites with CNT, MMT, CS, β-TCP, and HAp can be applied
as materials drug carriers, such as metronidazole, theophylline, bovine serum albumin,
ofloxacin, irinotecan, venlafaxine HCl, diclofenac sodium, and vancomycin.

Meanwhile, research on composites using alginate not as a matrix but as a reinforce-
ment has also been carried out. Sekar et al. (2022) reported the preparation of HAp/SA by
coprecipitation method with maximum fluoride adsorption capacity of HAp, HAp/SA1,
and HAp/SA4 was 10 mg/g, 35 mg/g, and 50 mg/g, respectively [19]. Sukhodub et al.
(2018) presented the synthesizing HAp/Alg nanocomposites with swelling(%) and porosity
values in HAp/Alg composites calcined at 1100 ◦C higher than pure Hap [20]. So, adding
alginate to HAp is expected to increase the adsorption ability of composite when it is
applied for drug delivery in the following research.

Table 1. The previous study about the alginate-based composite in drug delivery application.

No Komposit Obat Ref.

1 CS-ALG Metronidazole [21]
2 CNT-ALG Theophylline [22]
3 core-shell CS-ALG Bovine serum albumin [23]
4 HAp-ALG Ofloxacin [24]
5 MMT-ALG Irinotecan [25]
6 MMT-ALG Venlafaxine HCl [26]
7 ALG-PVP- HAp Diclofenac sodium [27]
8 β-TCP-ALG Vancomycin [28]

In this study, we aim to perform the following: synthesize hydroxyapatite-alginate
(HAp/Alg) composites by precipitation method and study the alginate concentration role
in the properties of HAp/Alg composite. The composites prepared were analyzed by a
series of characterization techniques such as X-ray diffraction (XRD), scanning electron mi-
croscopy (SEM with EDAX), Fourier infra-red spectroscopy (FTIR), and thermogravimetric-
differential thermal analysis (TG-DTA).

2. Materials and Methods
2.1. Materials

HAp/Alg composites are fabricated using the reagent of calcium oxide extracted from
a natural source (bamboo shell, Sollen spp.) and alginate impression material (Medical
Instruments Co., Ltd, Shanghai, China). Ammonia Solution 25% (NH4OH), Di-ammonium
hydrogen phosphate ((NH4)2HPO4), and Nitric acid (HNO3) were analytical grade and
purchased from Merck (KGaA, 64271, Darmstadt, Germany).

2.2. Fabrication of HAp/Alg Composites

The method of synthesizing HAp/Alg composites is the precipitation method. The
diammonium hydrogen phosphate and calcium oxide powder were weighted in a molar
ratio of 1.67, and five samples of alginate powder of 9.1, 16.7, 23.1, 28.6, 33.3 w/w% were
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taken. The alginate sample was dispersed in diammonium hydrogen phosphate of 50 mL
at 80 ◦C in a magnetic stirrer at 250 rpm for two hours. Subsequently, the calcium oxide
solution in nitric acid was mixed into the solution containing diammonium hydrogen
phosphate and alginate at 300 rpm for two hours. The pH of the mixture was adjusted
by adding ammonia until the pH was 10. Next, the precipitate was rinsed a few times to
obtain an ammonia-free solution. At last, the sample was dried at 110 ◦C for about five
hours to obtain HAp/Alg composites.

2.3. Characterizations

Calcium in bamboo shell powder was analyzed using X-ray fluorescence (PAN an-
alytical). Then, the structural phase of the prepared composite was evaluated by X-ray
diffraction (XRD) (PAN analytical, Malvern Panalytical, Malvern, UK) at 10–60◦ using radi-
ation of Cu-Ka (k = 1.54 Å.) with a step size is 0.02◦. The absorbance bands were revealed
by Fourier Transform of Infra-Red spectroscopy (PerkinElmer Spectrum IR Version 10.6.1,
Waltham, MA, USA) in the range of 4000–400 cm−1 using the ATR technique. The mor-
phology and composition characterizations of the product were observed by SEM scanning
electron microscope (Thermo Scientific Quatro S, Thermo Fisher Scientific, Waltham, MA,
USA). The sample is sprinkled on carbon tape and then coated with gold. The coating
method is ion sputerring. Then, the size particle distribution was measured using ImageJ
software. The product’s thermal characteristic (10 mg) was evaluated by TG-DTA (Perkin
Elmer) from 0 ◦C to 800 ◦C at a rate of 10 ◦C min–1.

3. Results and Discussion
3.1. The XRF Analysis

Hydroxyapatite was synthesized using bamboo shell Sollen spp. as a biosource of
calcium ions. The XRF analysis showed that the highest content of the shell is calcium
(Figure 1), so it can be used as a precursor of calcium for the synthesis of the hydroxyapatite.
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3.2. The Structural Analysis

The diffraction patterns of the alginate, hydroxyapatite, and hydroxyapatite-alginate
composites in some variations are displayed in Figure 2. Figure 2a,b exhibited pure alginate
and hydroxyapatite diffraction patterns. The characteristic peak of alginate appeared at
21.71◦ belonged to the (200) crystal plane [14]. The characteristic peaks of HAp appeared at
25.96◦, 31.86◦, 32.16◦, 32.46◦, 34.08◦, 39.86◦, 46.78◦, 49.48◦, 53.28◦, which belonged to (002),
(211), (112), (300), (202), (310), (222), (213), and (004) crystal planes, respectively, according
to ICSD number 157481 [29–31]. Most of the characteristic peaks of HAp and alginate
appear in the diffraction pattern of composites, indicating the interaction between HAp
and alginate in the composite.
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Figure 2. The XRD patterns of (a) the pure alginate, (b) the pure HAp, (c) HAp/Alg 9.1%,
(d) HAp/Alg 16.7%, (e) HAp/Alg 23.1%, (f) HAp/Alg 28.6%, and (g) HAp/Alg 33.3%.

The Scherrer equation (Equation (1)) was used to determine the particles crystallite size.

Dhkl = 0.9·λ / β·cos θ (1)

where λ is the wavelength of X-rays (1.5406 Å), β is full width at half maximum (FWHM)
value, and θ is the diffraction angle [32]. The crystallite sizes of HAp and all of the
composite are displayed in Table 2. It can be observed that the crystallite size tends to
increase as the concentration of alginate increases. The crystal size of HAp, HAp/Alg 9.1%,
HAp/Alg 16.7%, HAp/Alg 23.1%, HAp/Alg 28.6%, and HAp/Alg 33.3% are 4.80 nm,
5.90 nm, 5.99 nm, 4.28 nm, 5.23 nm, and 5.60 nm, respectively.

Table 2. Comparison of crystallite sizes of various samples.

Sample 2θ (Degree)
(211) FWHM Average Crystal Size

(nm)

HAp 31.80 0.74009 4.80
HAp/Alg 9.10% 31.75 0.97988 5.90
HAp/Alg 16.7% 31.99 1.42138 5.99
HAp/Alg 23.1% 32.18 1.66924 4.28
HAp/Alg 28.6% 32.08 1.57521 5.23
HAp/Alg 33.3% 32.03 1.54234 5.60

3.3. The FTIR Analysis

The spectra of FTIR of the pure alginate, the hydroxyapatite, and the hydroxyapatite-
alginate 9.1%, 16.7%, 23.1%, 28.6%, and 33.3% composite are displayed in Figure 3. The
absorption bands are observed at 963; 438.56; 1023 and 560.64 cm−1 for symmetric stretch-
ing v1, bending v2, asymmetric stretching v3, and bending v4 of PO3−

4 group, respec-
tively [13,33,34]. A broad band at 3359 cm−1 was marked to the O–H stretching vibration
of hydroxyapatite and alginate in composite [35]. Meanwhile, the main characteristic bands
of alginate involve two carboxylic group bands at 1613 cm−1 and 1421 cm−1 as (–COO–
asymmetric) and (–COO– symmetric) bands [2,33]. Moreover, the vibration mode of C–O
stretching appeared at 1421 cm−1 [36]. Mostly the absorption band is shifted toward the
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lower and higher region due to some interaction between hydroxyapatite and alginate in
composite fabrication, as displayed in Table 3. However, these results correspond to the
XRD result, as shown in Figure 2.
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Figure 3. The FT-IR spectrum of (a) the pure alginate, (b) the pure HAp, (c) HAp/Alg 9.1%,
(d) HAp/Alg 16.7%, (e) HAp/Alg 23.1%, (f) HAp/Alg 28.6%, and (g) HAp/Alg 33.3%.

Table 3. Functional group of the prepared sample.

Functional Group and
Mode Vibration

Wavenumber (cm-1)

Alg HAp HAp/Alg 9.1% HAp/Alg 16.7% HAp/Alg 23.1% HAp/Alg 28.6% HAp/Alg 33.3%

Phosphate (PO4
3-)

v1 symmetric stretching - 963 963 963 963 963 963
v2 bending - 438.56 467.22 477.64 452.55 476.00 461.19

v3 asymmetric stretching - 1023.51 1022.49 1022.82 1022.18 1022.33 1022.34
v4 bending - 560.64 and 603 559.5 and 603 558.67 and 603 558.93 and 603 558.74 and 603 559.05 and 603

O–H stretching - 3359 3364.37 3358.43 3357.47 3360.84 3348.93
C=C stretching 1640 1638.96 1637.35 1633.32 1629.33 1629.39

O–H of the carboxyl group 789 - 789.00 788.00 787.74 788.24 787.28
COO symmetric

stretching 1421 - 1455 1446.5 1443 1424 1423

COO asymmetric
stretching 1613 - - - - - -

C–H stretching 2173 2164.50 2164.11 2175 2174 2186 2175.34

3.4. Surface Morphologies and Chemical Compositions

SEM analysis of the HAp and HAp/Alg composites is demonstrated in Figure 4.
Figure 4a is the SEM image of HAp, which shows that HAp has irregular flake-like
shapes [37]; meanwhile, in Figure 4b, the alginate particles are well dispersed and dis-
tributed over the HAp particles [20]. However, due to the concentration of alginate increases
the SEM images of HAp/Alg 28.6% and HAp/Alg 33.3% show spheric-like particles only
with no flake-like particles. Among all variations in alginate concentration, the HAp/Alg
33.3% sample was more homogeneous in shape with a smaller particle size, which spread
from 400 to 1100 nm, as shown in Figure 5. The EDS spectrum of HAp and HAp/Alg 33.3%
are displayed in Figure 6, which exhibited the peak of Ca, P, and O elements for HAp and
the peak of Ca, C, P, and O elements for HAp/Alg composite. The Ca/P molar ratio of
HAp and HAp/Alg 33.3% composite are 1.67 and 1.43, respectively. The HAp/Alg 33.3%
composite has a lower molar ratio because of the appearance of the C element from alginate.
The attendance of the C element indicated that alginate had interacted with hydroxyapatite
in the synthesized composite.
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3.5. Thermal Stability

Thermal property is important for approximating the thermal performance and rel-
ative strength of the prepared sample. The TGA curve of HAp, alginate, and HAp/Alg
composites was examined, as displayed in Figure 7. It shows a slow weight loss system
between 30 and 750 ◦C. The TGA curve shows that the sample had a slight weight loss in the
range of 30–150 ◦C could be due to water molecules vaporization in the prepared samples.
The subsequent weight loss at the temperature between 200 and 350 ◦C is identified as
the degradation of composite alginate reinforcement [33]. The last weight loss seems to be
at 350–500 ◦C, which might be attributed to the advanced degradation of the composite.
Furthermore, at a temperature of about 600 ◦C, weight loss can be observed because of
carbonation decomposition. As a result, there was no more weight loss up to 750 ◦C, which
confirms the high thermal stability of the prepared composite [38].

Corresponding to the weight losses of the TGA analysis, the DTA curve presented
sharp endothermic peaks at a minimum temperature of 58.82 ◦C for pure HAp, 56.97 ◦C for
HAp/Alg 9.1%, 61.46 ◦C for HAp/Alg 16.7%, 61.38 ◦C for HAp/Alg 23.1%, 60.49 ◦C for
HAp/Alg 28.6% and 62.68 ◦C for HAp/Alg 33.3%. On the contrary, the broad endothermic
peaks were present at a minimum temperature of 434.58 ◦C for alginate. Moreover, the
DTA curve displayed broad endothermic peaks at a minimum temperature of 429.02 ◦C for
pure HAp, while 439.30 ◦C for HAp/Alg 9.1%, 442.73 ◦C for HAp/Alg 16.7%, 438.42 ◦C
for HAp/Alg 23.1%, 434.13 ◦C for HAp/Alg 28.6% and 423.59 ◦C for HAp/Alg 33.3%. The
maximum degradation rates of HAp/Alg composites were lower than those of pure HAp
might be attributed to a strong interaction between alginate and HAp in the fabrication of
the composite.

The total percentage of weight losses during the whole process was about 4.61% for
pure HAp, whereas 6.50% for the HAp/Alg 9.1%, 10.09% for the HAp/Alg 16.7%, 9.12%
for the HAp/Alg 23.1%, 10.81% for the HAp/Alg 28.6% and 9.63% for the HAp/Alg 33.3%.
These results imply that alginate plays a role in thermal stability improvement.
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for HAp/Alg 9.1%, 61.46 °C for HAp/Alg 16.7%, 61.38 °C for HAp/Alg 23.1%, 60.49 °C for 
HAp/Alg 28.6% and 62.68 °C for HAp/Alg 33.3%. On the contrary, the broad endothermic 
peaks were present at a minimum temperature of 434.58 °C for alginate. Moreover, the 
DTA curve displayed broad endothermic peaks at a minimum temperature of 429.02 °C 
for pure HAp, while 439.30 °C for HAp/Alg 9.1%, 442.73 °C for HAp/Alg 16.7%, 438.42 °C 
for HAp/Alg 23.1%, 434.13 °C for HAp/Alg 28.6% and 423.59 °C for HAp/Alg 33.3%. The 
maximum degradation rates of HAp/Alg composites were lower than those of pure HAp 
might be attributed to a strong interaction between alginate and HAp in the fabrication of 
the composite.  

The total percentage of weight losses during the whole process was about 4.61% for 
pure HAp, whereas 6.50% for the HAp/Alg 9.1%, 10.09% for the HAp/Alg 16.7%, 9.12% 
for the HAp/Alg 23.1%, 10.81% for the HAp/Alg 28.6% and 9.63% for the HAp/Alg 33.3%. 
These results imply that alginate plays a role in thermal stability improvement. 
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(d) HAp/Alg 16.7%, (e) HAp/Alg 23.1%, (f) HAp/Alg 28.6%, and (g) HAp/Alg 33.3%.

4. Conclusions

In this study, the HAp-Alg composites were successfully synthesized, and their struc-
tural phase, functional group, morphology, elemental composition, and thermal stability
were explored. The XRD results show that the crystal system of HAp was hexagonal, and
the crystallite size of HAp, HAp/Alg 33.3% was 4.80 nm; 5.60 nm, respectively. Moreover,
the functional group, such as PO3−

4 , OH−, COO, and C–H, were revealed by FTIR analysis.
The porous spherical-shaped particles can be observed, and the distribution particle range
of HAp/Alg 33.3% was spread from 400 to 1100 nm. Furthermore, the EDS spectrum of the
synthesized composite is shown, which exhibited the peak of Ca, C, P, and O elements. The
attendance of the C element indicated that alginate had interacted with hydroxyapatite in
the synthesized composite. At last, the TGA-DTA thermogram shows no more weight loss
up to 750 ◦C. It can be concluded that the prepared composite HAp/Alg has high thermal
resistance, so it might be applied in many advanced applications such as bioimaging and
drug carrying.
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