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Abstract: The proper design of a polysaccharide/hydrocolloid modifier significantly affects the con-
ductivity, self-healing, and viscoelastic properties of nanocomposite hydrogels. Due to the presence
of different functional groups, these hydrogels can participate in the covalent, hydrogen and dynamic
bonding of a system. The improvement of interactions in this system can lead to the development of
high-performance nanocomposite hydrogels. In this study, resilient, self-healing and self-adhesive
conductive nanocomposite hydrogels were produced by multiple and diverse coordination con-
nections between various polysaccharide-based modifiers (Arabic gum, sodium carboxymethyl
cellulose, and xanthan), the poly(vinyl alcohol) (PVA) network and different graphene-based fillers.
Graphene nanoplatelets (GNP), activated carbon black (ACB), and reduced graphene oxide (rGO)
have distinct functionalized surfaces, which were analyzed by X-ray photoelectron spectroscopy
(XPS). Furthermore, the introduction of fillers balanced the hydrogels’ viscoelastic properties and
electrical conductivity, providing the hydrogels with resilience, improved electrical conductivity, and
extreme stretchability (5000%). The self-healing properties were analyzed using time-dependent
measurements in a shear strain mode using an RSO Rheometer. The improvement in electrochem-
ical and conductivity properties was confirmed by electrochemical impedance spectroscopy (EIS).
The obtained conductive nanocomposite hydrogels design opens new possibilities for developing
high-performance polysaccharide-based hydrogels with wearable electrical sensors and healthcare
monitoring applications.

Keywords: conductive hydrogel; polysaccharide; PVA; reduced graphene oxide; self-healing;
graphene nanoplatelets

1. Introduction

The physical information connection between humans and their surroundings is made
through the skin, which allows us to feel temperature, humidity, pressure, and other compli-
cated environmental stimuli. Artificial skin-like materials that mimic the sensory qualities
of human skin are a popular topic of study, with applications ranging from human motion
detection [1], individualized health diagnostics [2], human–machine interfaces [3], and
implantable biomedical devices [4]. Good conductivity, excellent stretchability, flexibil-
ity, autonomous self-healing, and self-adhesive characteristics are critical components for
robotic skin-like materials. However, simultaneously designing and preparing multifunc-
tional materials with such a wide range of applications remains difficult.

Traditional conductive materials have questionable reliability in the long term, and
they are sensitive to damage during their lifetime. The enhancement of conductive materi-
als by the self-healing properties of hydrogels has been recognized as a promising strategy
to prolong their durability as sensing devices [5]. Hydrogels are three-dimensional (3D)
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networks of hydrophilic polymer cross-linked with varying quantities of water [6,7]. Due to
their excellent biocompatibility and hydrophilic characteristics, hydrogels are investigated
for various applications, including biomaterials [8] and environmental remediation [9].
Because of their molecular similarities to natural soft tissues, conductive hydrogels are
among the most promising hydrogels [10] and have a wide variety of biological applica-
tions. Excellent mechanical characteristics of conductive hydrogels, such as flexibility and
stretchability, are required for practical use under repetitive strain conditions. Because
of its suitable mechanical properties, large surface area, biocompatibility, and flexibility,
cellulose nanocrystals (CNCs) with native crystalline structures demonstrate considerable
potential in boosting the mechanical performances of composites as nanofillers. Chen et al.
recently reported a conductive nanocomposite organo-hydrogel with super stretchabil-
ity and self-healing capabilities made from a cellulose nanofibril-based polyacrylamide
(PAAm) network via boronic ester linkages [11]. Lin et al. used reversible dynamic bonds
to incorporate Ag/TA@CNC nanocomposites (cellulose nanocrystals (CNCs) decorated
with tannic acid (TA) and silver nanoparticles) nanocomposites into a polyvinyl alcohol
(PVA) matrix to fabricate a biomimetic hydrogel with excellent mechanical strength and a
fast self-healing ability [12]. TA can be also used for the introduction of hydrogen bonds in
two subsequent crosslinking steps of the imine production of carboxyl methyl chitosan,
oxidized cellulose nanofibers, and chitin nanofibers [13]. This conductive hydrogel had
good printability, biocompatibility, and strain sensing ability. Gehong et al. synthesized
supramolecular polymer network by combining conductive polyaniline (PANI) and hy-
drophobic association poly(acrylic acid) (HAPAA) hydrogel matrix, called (PAAN) [14].
This way, both mechanical and electrical properties were significantly improved without
affecting self-healing capability.

Incorporating conductive polymers in the hydrogel matrix, such as polypyrrole [15],
polythiophene [16], and polyaniline [17], is a common technique for creating conductive
hydrogels. However, conductive polymers are naturally hydrophobic and incompatible
with hydrophilic polymer matrixes, resulting in conductive component aggregation and
nonuniform dispersion. Inadequate weak contacts between the two elements generally
resulted in a poor mechanical performance of the hydrogel and poor accommodation of
enormous strains, preventing realistic prospects in the field of wearable strain sensors [18].
As a result, new conductive components are required to produce conductive nanocomposite
hydrogels. Therefore, nanomaterials, such as metal nanoparticles or nanowires [19], carbon-
based nanomaterials [20], and MXene nanosheets [21] are used in synthesis of conductive
hydrogels. Because of its superior mechanical qualities, excellent electrical conductivity,
and large specific surface area, graphene is suitable for creating conductive nanocomposite
hydrogels. However, because of its naturally hydrophobic characteristics and exceptional
chemical durability, the homogeneous dispersion of graphene in hydrophilic hydrogel net-
works is difficult. The optimization of surface functionalities that enable proper interactions
with the polymer matrix and conductivity is necessary. Thus, nanocomposite hydrogel is a
promising material for soft bioelectronics. Intuitively conductive hydrogels (e.g., highly
stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics [22], on-
skin paintable bio-gel for long-term high-fidelity electroencephalogram recording [23])
are attracting the attention of researchers thanks to their combination of properties. An
appropriate understanding of the structure-property relationship of such systems is a
critical factor in developing advanced conductive hydrogels for sensing applications.

Therefore, this study aimed to improve self-healing properties and conductivity
through the addition of different polysaccharide modifiers, such as Arabic gum (AG),
sodium carboxymethyl cellulose (Na-CMC), and xanthan. Conductive fillers (graphene
nanoplatelets (GNP), conductive activated carbon black (ACB), and reduced graphene
oxide (rGO)) were selected as they present different surface characteristics that can react
differently in the systems with reversible dynamic bonding. Their structure and surface
were characterized by X-ray diffraction analysis (XRD) and X-ray photoelectron spec-
troscopy (XPS). The size distribution of fillers was determined by Litesizer 500. Self-healing
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properties were quantified by time-dependent rheological behavior tested using an RSO
Rheometer. Finally, electrochemical properties and conductivity were characterized by
electrochemical impedance spectroscopy (EIS).

2. Materials and Methods
2.1. Materials

Activated conductive carbon black (ACB) C-NERGY Super C45 derived from TIMCAL:
density = 1.86 g/cm3, BET surface area = 45 m2/g, and particle size 100–200 nm. Graphene
nanoplatelet aggregates (GNP) are aggregates of sub-micron platelets with a diameter of
less than 2 µm and a thickness of a few nanometers, a bulk density of 0.2 to 0.4 g/cm3,
an oxygen content of <2 wt.%, and carbon content of >98 wt.%. BET with a surface area
of 750 m2/g was supplied as a black powder from Strem Chemicals, Inc. A two-stage
technique including oxidizing graphite to graphene oxide (GO) and then reducing it to
graphene flakes was used to produce reduced graphene oxide (rGO). rGO was supplied by
Advanced Graphene Products, Zielona Gora, Poland. According to the specification, rGO
contains carbon: >80%, oxygen: <18%, hydrogen: <1.8%, sulfur: <0.2%; and has a flake
size > 100 µm, BET specific surface area 500–700 m2/g, average bulk density 12 g/dm3,
and number of layers < 7. The distance between the layers is 0.350–0.390 nm.

Poly(vinyl alcohol) (PVA) (87–90% hydrolyzed, average Mw = 30,000–70,000 g/mol),
Arabic gum (AG) from acacia tree (branched polysaccharide of galactose, rhamnose, arabi-
nose, and glucuronic acid as the calcium, magnesium, and potassium salts with average
Mw = ~250,000 g/mol), sodium carboxymethyl cellulose (Na-CMC, average Mw = ~250,000 g/mol,
degree of substitution 0.9), and sodium tetraborate decahydrate (borax) (ACS reagent,
≥99.5%) were all supplied by Sigma Aldrich, St. Louis, MO 63103, USA. Xanthan gum was
food-grade (Bob’s Red Mill Natural Foods, Inc., Milwaukie, OR 97222, USA).

The common functional groups for all the used polysaccharides are hydroxyl and
carboxyl groups. The mutual feature of Na-CMC and AG is that they contain salts,
i.e., they are in the form of ions, and thus are expected to have a higher ionic conductivity.
On the other hand, xanthan gum includes the main chain linked with a
β-1,4-glycosidic bond encompassing a trisaccharide side chain of alpha-D-mannose with
an acetyl group, beta-D-glucuronic acid, and a beta-D-mannose terminal unit attached to a
pyruvate group [24,25].

2.2. Preparation of Conductive Hydrogels

The synthesis process of conductive hydrogel was performed according to the
literature [26]. More precisely, two separate solutions—25 wt.% solution of PVA (2 g
in 8 g of H2O) and 3 wt.% of polysaccharides, Na-CMC or Xan, (0.167 g in 5.33 g of H2O)
—were prepared at 80 ◦C at 600 rpm. In the case of AG, 0.167 g of AG was directly added
to the PVA solution since the AG solution showed a high loss in viscosity when heated.
After the complete dissolution of PVA and polysaccharides, the two solutions were mixed
using a mechanical stirrer at 80 ◦C at 600 rpm. Then, 1–5 wt.% of graphene-based fillers
ACB/GNP/rGO (relative to PVA solid content) were added to the mixture and stirred for
the next 10 min. Finally, a borax solution (0.12 M, 3.33 mL) was added dropwise into the
prepared mixture, and by applying kneading technique, the conductive nanocomposite
hydrogel was finally prepared.

Figure 1 shows a schematic illustration of the synthesis mentioned above, consisting
of dissolving, mixing, and cross-linking processes.
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Figure 1. Schematic illustration of the synthesis process of conductive nanocomposite hydrogels.

2.3. Characterization Methods

The size distribution of ACB, GNP, and rGO was determined by the dynamic light
scattering (DLS) method using a particle analyzer LiteSizer 500 from Anton Paar, Germany.
The measurements were performed in a back-scattering configuration at 25 ◦C in isopropanol.

Powder X-ray diffraction (XRD) tests were recorded on a Bruker D8 Advance instru-
ment (Bruker, Germany). Cu-Kα radiations were employed as an X-ray source
(λ = 0.154 nm). The test was run in the 0–60◦ range at room temperature, with an 0.01◦

increment and 0.5 s/step.
The surface atomic composition of graphite-based fillers was examined by XPS using

a PHI VersaProbe 5000 Scanning X-ray Photoelectron Spectrometer with an Mg Ka X-ray
source (1100 eV). A monochromated Mg X-ray source (1100 eV) was used as a probe for
the experiments. The X-ray beam power was 50.17 W with the step size of 0.05 eV and
detector pass energy of 280 eV. An E-neutralizer (1V) and I-neutralizer (0.11 kV Ar+ ion)
were implemented during the experiment. The compositions were calculated by using the
area under the high-resolution curve and weighted with the respective sensitivity factors
for each elemental species. Peaks were calibrated using the C1s as a reference at 284.6 eV.
The software Casa Xps was used for curve fitting and calibration.

The viscoelastic properties of conductive nanocomposite hydrogels were analyzed on
a rheometer at 25 ◦C (Brookfield RSO oscillatory Rheometer supplied by Venktron, UAE)
in conical plate mode. Amplitude sweep measurements were performed in a shear strain
mode with a start amplitude of 0.06%, end amplitude of 200.00%, frequency of 10 Hz, and
for 30 steps; they showed the yield and flow point of hydrogels. Time-dependent behavior
was evaluated in 5 blocks in a shear strain mode, alternating the amplitude of 1% and 200%
at 10 Hz during 60 s for each block. Frequency Sweep measurements were also performed
in a shear strain mode with 0.10% amplitude, starting from 0.10 Hz until 10 Hz and 30 steps.

Electrochemical impedance spectra (EIS) were recorded in the frequency range of 100 kHz
−10 mHz with a potential amplitude of 10 mV on BioLogic’s VSP-300 channel potentiostat.
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3. Results

Considering the unstable nature of the surface of graphene-based fillers, the appropri-
ate characterization and comparisons were performed by a particle size analyzer Litesizer
500, XRD, and XPS. These methods provide a comprehensive and detailed analysis of sur-
face characterization, which will enable a better understanding of interactions in conductive
nanocomposite hydrogels.

Figure 2 shows particle size distribution and XRD diffractograms. The lowest diameter
was found for GNP particles (71.4 nm), where the second peak can be attributed to the
appearance of agglomerates in isopropanol, which is expected due to the high affinity of
nanoparticles to form aggregates [27–29] due to the weak dispersibility of graphene on
isopropanol [30]. According to the manufacturer’s specification, the particle diameter size
of ACB particles falls into the expected range of 100–200 nm. According to the manufacturer,
rGO should have a flake size > 100 µm, but it was measured at 200–600 nm with a peak at
360.8 nm. All the used particles had larger diameters than human skin pores, where no
penetration was expected [31].
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and (b) XRD patterns.

In order to gain a better understanding of the chemical bonding between carbon and
oxygen functionalities, high-resolution XPS of the C 1 s peak of both rGO and GNP samples
was deconvoluted into three chemically shifted segments at binding energies of 284.6, 286,
and 288.2 eV, respectively, Figure 3b [32,33].
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The non-oxygenated carbon of C–C/C–H, representing the graphene structure, was
designated as the first peak C1 [34]. The XRD measurement corroborates this claim, as
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shown in Table 1. The interaction of carbon atoms with oxygen in either hydroxyl (C–OH) or
epoxide (C–O) functional groups are responsible for the second peak C2 at 286 eV. Carbon
functionalized C3 in COOH is related to the carbonyl (>C=O) peak. The intensity of the
carbonyl peak was a bit higher in GNP than in the rGO samples, indicating a higher content
of COOH complexes. This functional group is often found at the edges of the graphene
sheets, while the epoxy group evolves at the basal plane of the graphene sheets, resulting
in in-plane defects and disorders [35]. The ratio of the C1 peak intensity to the sum of the
(C2 + C3) peak intensities was smaller in rGO (1.3) than in GNP (4), indicating a higher
content of oxygen functionalities in rGO. This result suggests that the rGO sample has a
denser epoxy network at the basal plane and a higher quantity of carbonyl connected at the
edges of the graphene sheets than GNP, which could be related to the rGO sample’s harsher
oxidation reaction [36]. ACB showed only C1 and C2 peaks with higher oxygen contents.

Table 1. Chemical composition (atomic %) determined using XPS.

C, % O, % N, % Si, % C1
(C-C/C-H), %

C2
(C-O-C/C-O-H), %

C3
(O=C-OH), % C1/C2 + C3, %

Binging energy, eV 285 532 399 99 284.6 286.4 288.9 /

ACB, % 73.9 26.1 / / 40 60 / 0.7

rGO, % 65.3 29.1 1.7 3.8 56 34 10 1.3

GNP, % 95.5 4.5 / / 79.5 7.6 12.9 4

Lower oxygen values can suggest a higher conductivity but also incompatibility with
hydrogels, and thus the appearance of aggregates. Presented ratios can indicate the better
compatibility of ACB and rGO with hydrogels due to higher oxidation levels.

The presence of hydroxyl groups in the structure of ACB and rGO can also participate
in cross-linking reactions with borax and contribute to improved self-healing efficacy. The
presence of carboxyl groups, on the other hand, in the structure of rGO can take part in
the esterification reaction during the hydrogel synthesis. Higher covalent bonding, such as
ester bonds, can improve the mechanical properties of a hydrogel.

To evaluate the self-healing properties of synthesized hydrogels, the amplitude sweep
measurements were first performed in a shear strain mode (0.06–200.00%, 10 Hz). The
obtained results of the yield and flow point of hydrogels are presented in Figure 4. In a
low strain region, both the storage modulus (G′) and loss modulus (G”) remain constant
values up to the yield point. The yield point for PVA represents the reduction in G values.
At the same time, for all other samples with a polysaccharide modifier, this was the value
at which an increase in storage modulus occurred.

Nevertheless, all the tested samples exhibited a significant decrease in G′ values for
strains higher than 1%. The flow point represents the value of intersections of G′ and G”
curves when the hydrogel network starts to flow. According to the results presented in
Table 2, the flow of hydrogels is higher, indicating improved self-healing properties. With
the further increase in strain, the values significantly decrease due to the disintegration and
collapse of the hydrogel network.

Table 2. Yield and flow point values from strain-dependent oscillatory shear rheology of the PVA
based hydrogels at a fixed frequency (10 Hz).

Sample Yield Point, % Flow Point, %

PVA 4.00 98.17
PVA/AG 0.42 17.84
PVA/CMC 0.08 31.18
PVA/Xan 0.30 25.15
PVA/Xan + 1 wt.% ACB 0.22 30.18
PVA/Xan + 3 wt.% ACB 0.10 27.51
PVA/Xan + 5 wt.% ACB 0.08 26.91
PVA/Xan + 5 wt.% GNP 0.06 22.34
PVA/Xan + 5 wt.% rGO 0.06 25.09
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Thus, the time-dependent behavior of hydrogels was evaluated in five blocks in a
shear strain mode, alternating the amplitude of 1% and 200%, as shown in Figure 4. This
measurement gave an insight into the self-healing efficacy since the 200% strain caused
hydrogels to disintegrate, and then 1% enabled the self-healing and recovery of viscoelastic
properties. Neat PVA hydrogel showed inconsistent self-healing results, i.e., the first
recovery was even higher than the initial recovery, but the later recovery was lower than
the first one, Figure 4a. Moreover, while performing the test, it was observed that some
parts of PVA hydrogel went out of the disc surface and could not integrate again with
the bulk material. Similar G recovery variations were found for PVA/CMC hydrogel,
Figure 4c. The PVA/AG hydrogel exhibited the highest initial values, but they became
lower each time after a high strain cycle, Figure 4b. The most consistent values and 100%
recovery of G′ values were found for PVA/Xan sample. The reasons for the superior self-
healing properties of PVA hydrogel due to the addition of xanthan gum as a polysaccharide
modifier are its branched structure, functional groups that participate in dynamic bonding,
and its shear-thinning properties [37]. Since the self-healing capability was one of the most
important features of these materials, electrical properties were more focused on composite
hydrogels based on PVA/Xan.

The influence of different polysaccharide modifiers and filler of PVA hydrogels on
rheological properties in a frequency sweep test is presented in Figure 5. The storage
modulus (G′) represents the hydrogel strength [26], and this is affected by all the changing
parameters (constituents and ratios in composition). Figure 5a shows similar final values of
G′ at 10 Hz but much lower values for PVA/CMC. The same case was found for the loss
modulus (G”). Figure 5b shows the positive impact of ACB addition on PVA/Xan hydrogel,
where the increase in G′ at 10 Hz compared to neat PVA/Xan was 59.6% for 1 wt.%, 99.2%
for 3 wt.%, and 127.6% for 5 wt.% of ACB. A smaller difference is observed for the G”
values. All types of fillers (ACB, GNP, and rGO) improved the G′ values of neat PVA/Xan
hydrogel, as shown in Figure 5. One observed phenomenon is that rGO significantly
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improves rheological properties at low frequencies, but at higher frequencies, such as 10 Hz,
it becomes lower than both ACB and GNP but still higher than neat PVA/Xan. Compared
to the literature, G′ obtained in this study is more than 30 times higher and performed at
the same rate of 10 Hz [26].

Polymers 2023, 15, x FOR PEER REVIEW 8 of 14 
 

 

The influence of different polysaccharide modifiers and filler of PVA hydrogels on 

rheological properties in a frequency sweep test is presented in Figure 5. The storage mod-

ulus (G’) represents the hydrogel strength [26], and this is affected by all the changing 

parameters (constituents and ratios in composition). Figure 5a shows similar final values 

of G’ at 10 Hz but much lower values for PVA/CMC. The same case was found for the loss 

modulus (G″). Figure 5b shows the positive impact of ACB addition on PVA/Xan hydro-

gel, where the increase in G’ at 10 Hz compared to neat PVA/Xan was 59.6% for 1 wt.%, 

99.2% for 3 wt.%, and 127.6% for 5 wt.% of ACB. A smaller difference is observed for the 

G″ values. All types of fillers (ACB, GNP, and rGO) improved the G’ values of neat 

PVA/Xan hydrogel, as shown in Figure 5. One observed phenomenon is that rGO signifi-

cantly improves rheological properties at low frequencies, but at higher frequencies, such 

as 10 Hz, it becomes lower than both ACB and GNP but still higher than neat PVA/Xan. 

Compared to the literature, G’ obtained in this study is more than 30 times higher and 

performed at the same rate of 10 Hz [26]. 

 

Figure 5. Viscoelastic properties of hydrogels with a dependence on the frequency sweep of hydro-

gels with (a) different polysaccharide modifiers, (b) different percentages of fillers, and (c) different 

fillers. 

One of the potential applications of synthesized hydrogels is artificial skin to simu-

late human skin abilities. Figure 6a represents hydrogels as the tip of a touch screen pen 

that imitates the human finger. This property indicates the potential in robotics, flexible 

electronics, and human–machine interactions. The visual presentation of self-healing ca-

pability without external stimuli is shown in Figure 6b. Two different hydrogels were re-

joined for better visualization, neat PVA, and the PVA/Xan + 5 wt.% of ACB. By manual 

stretching, the effective rejoining becomes a significant and flowing phenomenon. Ac-

cording to Table 2, the highest value for a flow point (%) was found for PVA, and one of 

the lowest values was found for PVA/Xan + 5 wt.% ACB (3.6 times higher). Therefore, the 

stretching presented in Figure 6b represents a ~3 times higher stretchability of PVA/Xan + 

5 wt.% ACB sample compared to neat PVA.  

Figure 5. Viscoelastic properties of hydrogels with a dependence on the frequency sweep of hydrogels
with (a) different polysaccharide modifiers, (b) different percentages of fillers, and (c) different fillers.

One of the potential applications of synthesized hydrogels is artificial skin to simulate
human skin abilities. Figure 6a represents hydrogels as the tip of a touch screen pen that
imitates the human finger. This property indicates the potential in robotics, flexible elec-
tronics, and human–machine interactions. The visual presentation of self-healing capability
without external stimuli is shown in Figure 6b. Two different hydrogels were rejoined for
better visualization, neat PVA, and the PVA/Xan + 5 wt.% of ACB. By manual stretching,
the effective rejoining becomes a significant and flowing phenomenon. According to Table 2,
the highest value for a flow point (%) was found for PVA, and one of the lowest values was
found for PVA/Xan + 5 wt.% ACB (3.6 times higher). Therefore, the stretching presented in
Figure 6b represents a ~3 times higher stretchability of PVA/Xan + 5 wt.% ACB sample
compared to neat PVA.

As shown in Figure 6c, we created an LED circuit to visually demonstrate the electrical
healing process of the synthesized hydrogels. To maintain electrical conductivity, the red
LED bulb was first lighted in the circuit connected by the conductive hydrogel flattened on
a copper substrate using a commercial lithium battery of 3V. The LED bulb light turned off
when the conductive hydrogel was split into two parts. After recontacting the two broken
parts, the circuit was restored with the healed conductive hydrogel, and the LED bulb was
instantaneously lighted.

The stretching capability and flexibility of obtained conductive nanocomposite hy-
drogels were very appealing, and thus, these hydrogels were further tested, as shown in
Figure 7. A stretchability of ~5000% was obtained, which is the highest value obtained in
the literature for conductive nanocomposite hydrogels [38–40].
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Figure 7. Extreme stretchability observed for the sample PVA/Xan + 5 wt.% ACB.

Aside from extremely high stretchability, the synthesized hydrogels are moldable to
any necessary shape and any required size, as shown in Figure 8a. The flowability of a
conductive hydrogel based on PVA/Xan enabled good contact with various surfaces such
as the skin, as shown in Figure 8b. The removed hydrogel from the skin showed inverse
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skin surface morphology, as shown in Figure 8c. Self-adhesiveness ability was also tested
on other substrates such as glass, as shown in Figure 8d.
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of the hydrogel contact surface with the skin, and (d) example of adhesion to glass.

To gain an insight into the conductivity of synthesized hydrogels, the electrochemical
impedance spectroscopy (EIS) with different polysaccharide modifiers, fillers, and amounts
of fillers was performed, Figure 9. These results show that PVA and PVA/Xan have similar
conductivity values, while PVA/AG and PVA/CMC showed 16.3% and 33.4% higher
values than PVA, respectively. The reason for this lies in the fact that both polysaccharide
modifiers AG and CMC possess ionic conductivity as their structure includes salts. Na-
CMC has a higher content.

The conductivity in the function of the added amount of ACB filler is presented in
Figure 9d. The values for 1 wt.% and 3 wt.% of added ACB are much higher than neat
PVA/Xan, for 17.7% and 16.7%, respectively. The absence of improvement by the addition
of 3 wt.% ACB may be attributed to aggregates since no homogenization technique has
been used, as demonstrated in the literature [26]. Nevertheless, the conductivity further
increased with further addition of ACB since it was 32.3% higher than PVA/Xan in the case
of the PVA/Xan + 5 wt.%. Figure 9a and b shows Nyquist diagrams for neat PVA/Xan and
conductive nanocomposite hydrogels with 5 wt.% of different fillers (GNP, ACB, and rGO).
The highest conductivity (S) was found for rGO fillers. S for rGO fillers was 29.8% and 6.5%
higher than GNP and ACB, respectively. Very similar electrochemical properties of ACB
and rGO suggest a high potential for using ACB as a cost-effective and conductive filler. It
is worth mentioning that the conductivity results obtained in this study are significantly
higher than those for PVA-modified tannic acid-decorated cellulose nanocrystals with the
addition of partially synthesized rGO [26].
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4. Conclusions

This study designed and presented a conductive nanocomposite hydrogel with ex-
treme stretchability, a rapid self-healing capability, self-adhesive properties, and excellent
adherence to different substrates. Due to the presence of polysaccharide modifiers in PVA-
based hydrogels, the optimization of properties of conductive hydrogels was achievable.
Xanthan gum contributed to the complete recovery of rheological and self-healing proper-
ties. The reasons for the best self-healing properties of PVA hydrogels by the addition of
xanthan gum as a polysaccharide modifier are its branched structure, functional groups
that participate in dynamic bonding, and its shear thinning properties. Arabic gum and
sodium carboxymethyl cellulose improve conductivity due to their ionic structure. Surface
functionalities of fillers that could participate in reversible dynamic bonding contributed to
higher conductivity, such as rGO and ACB. Finally, this hydrogel design presents a unique
technique for manufacturing high-performance hydrogels with tremendous potential as
wearable bioelectronics.
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