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Abstract: Self-sustained chaotic jumping systems composed of active materials are characterized
by their ability to maintain motion through drawing energy from the steady external environment,
holding significant promise in actuators, medical devices, biomimetic robots, and other fields. In
this paper, an innovative light-powered self-sustained chaotic jumping system is proposed, which
comprises a liquid crystal elastomer (LCE) balloon and an elastic substrate. The corresponding
theoretical model is developed by combining the dynamic constitutive model of an LCE with Hertz
contact theory. Under steady illumination, the stationary LCE balloon experiences contraction and
expansion, and through the work of contact expansion between LCE balloon and elastic substrate,
it ultimately jumps up from the elastic substrate, achieving self-sustained jumping. Numerical
calculations reveal that the LCE balloon exhibits periodic jumping and chaotic jumping under steady
illumination. Moreover, we reveal the mechanism underlying self-sustained periodic jumping of the
balloon in which the damping dissipation is compensated through balloon contact with the elastic
substrate, as well as the mechanism involved behind self-sustained chaotic jumping. Furthermore, we
provide insights into the effects of system parameters on the self-sustained jumping behaviors. The
emphasis in this study is on the self-sustained chaotic jumping system, and the variation of the balloon
jumping modes with parameters is illustrated through bifurcation diagrams. This work deepens the
understanding of chaotic motion, contributes to the research of motion behavior control of smart
materials, and provides ideas for the bionic design of chaotic vibrators and chaotic jumping robots.

Keywords: liquid crystal elastomer; balloon; self-sustained chaotic jumping; bifurcation diagram;
steady illumination

1. Introduction

Active materials have received extensive attention on account of their specific re-
sponsive properties. These materials include hydrogels, ionic gels, dielectric elastomers,
thermosensitive polymer materials, and notably liquid crystal elastomers (LCEs) [1–8].
Furthermore, these materials have led to the engineering of diverse modes of self-sustained
motion modes, each characterized by their own unique dynamics. These motion modes
span from vibration [9–11], bending [12–15], rolling [16,17], torsion [18,19], stretching and
contraction [20,21], to even swimming [22], oscillating [23–25], buckling [26–30], jump-
ing [31–33], rotating [34], valving, or reversing [35,36]. Intricate nonlinear feedback mecha-
nisms, including phenomena such as self-shading [26], the coupling of large deformations
with chemical reactions [1,2], and the generation of photothermal surface tension gradi-
ents [37,38], make these self-sustained motion modes possible.

In recent years, LCEs, as a notable category of smart materials, have garnered sub-
stantial attention owing to their distinctive structural characteristics. Constituted by inter-
connected liquid crystal monomers, LCEs are remarkably responsive to external stimuli,
such as light [6], heat [39], electricity [40], and magnetism [41]. When encountering these
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stimuli, LCEs undergo phase transitions or alterations in their molecular structures, bring-
ing about significant macroscopic deformations [42]. Remarkably, upon withdrawal of
the external stimuli, LCEs can revert to their original state. Thus, LCEs can be applied in
many fields, such as soft robots [43], energy harvesting devices [44,45], wireless micro-nano
machines [35], motors [46], active machines [47–49], etc.

Self-sustained motion systems actively harness external energy sources to maintain
their non-equilibrium and sustained motions [50–55]. They typically behave with consider-
able robustness in terms of frequency and amplitude depending on the characteristics of the
system parameters [6–8,56,57]. However, only very few scholars are currently conducting
research on the phenomenon of self-sustained chaos; for instance, Xu et al. [33] proposed a
self-sustained chaotic floating system that utilizes LCE balloons equipped with self-shading
coatings under steady illumination. Similarly, Kumar et al. [58] engineered a self-sustained
chaotic actuator based on LCE films doped with azobenzene and showcased the optically
responsive behavior that drives the film motion under continuous illumination. Further
research on self-sustained chaotic motion is essential as it contributes to the development of
various fields, such as heart beating simulation and bionics [59], heart and brain chaos anal-
ysis [60,61], cardiovascular disease prevention [62], encrypted images [63], autonomous
separation and stirrer [64,65], etc.

In order to open up a large number of application areas and functionalities, it is
a necessity to build more self-sustained chaotic systems relying on active materials, so
as to reveal their complex chaotic mechanisms and behaviors. This paper is dedicated
to exploring and analyzing a distinct class of self-sustained chaotic jumping systems
constituting an LCE balloon and an elastic substrate. Under steady illumination, the LCE
balloon in our study underwent a transition from a static state to a self-sustained jumping
state by actively drawing light energy from the surrounding environment. Different from
the previous self-sustained floating system composed by a nonlinear spring and an LCE
balloon [33], in which the damping dissipation of the system is compensated by the work
of buoyancy varying with the radius of the balloon, this unique self-sustained mechanism
proposed in this work leverages the contact expansion work of the balloon against an
elastic substrate to counteract the damping dissipation, thereby sustaining its motion. The
proposed self-jumping system is more adaptable and can move in different terrains and
environments, including jumping on uneven ground. The movement of the system is more
efficient, allowing it to move quickly and be able to cover longer distances in a shorter
time. In addition, the system offers the capability to switch between periodic jumping and
chaotic jumping via systematic adjustments of key parameters. This research facilitates a
more profound comprehension of chaotic phenomena and broadens the application scope
of chaos theory.

The remainder of this paper is structured as follows. Section 2 derives the dynamic
governing equation based on the balloon jumping model and presents the solution method.
In Section 3, two motion modes of the LCE balloon together with their mechanisms are
introduced, and their mechanisms are explained. In Section 4, the effects of different system
parameters on the motion modes are examined. Finally, Section 5 summarizes this paper.

2. Model and Theoretical Formulation

In this section, a self-sustained chaotic jumping system is proposed, as illustrated in
Figure 1, which comprises an LCE balloon and an elastic substrate and operates under
illumination due to the self-shading effect. Based on the Hertz contact theory, the dynamic
constitutive model of LCE, and the ideal gas equation, the governing equation for the
self-sustained jumping of the LCE balloon and the deformation theory of the LCE balloon
are acquired.
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Figure 1. Schematics of the self-jumping LCE balloon under steady illumination. (a) Reference 

state of the stress-free LCE balloon with radius 0r . (b) The stress-free balloon is first inflated to the 

state with the painting radius pr
 and then painted by opaque powder coating. (c) Initial state of 

the LCE balloon attained after further inflation with initial radius 1r . (d) Current state of the LCE 

balloon under steady illumination with variable radius ( )r t . (e) Schematic of a self-jumping bal-

loon with the variable radius ( )r t  under illumination. 

2.1. Governing Equation of Self-Jumping System 
Figure 1 plots the nonlinear dynamics model of the LCE balloon, where the variable 

radius of the balloon is ( )r t  and the mass m  of the balloon remains constant. In re-
sponse to the steady illumination, a stationary LCE balloon positioned on an elastic sub-
strate experiences a repetitive cycle of contraction and expansion, eventually leading to 
the jump from the elastic substrate. The damping effect is counteracted by the work gen-
erated when the balloon comes into contact with the elastic substrate and expands. This 
interaction results in a self-sustained jumping motion of the balloon. The pre-processing 
steps for the LCE balloon are described in Figure 1a–d. In Figure 1a, we consider the 

stress-free state of the balloon as the reference state. In this state, we use 0r  to represent 

the radius, Lρ  to denote the mass density of the LCE balloon and 0h  to represent the 

thickness of the stress-free balloon. As shown in Figure 1b, a certain amount of gas pn  is 

inflated into the LCE balloon to enlarge its radius up to the painting radius pr
, and then 

an opaque powder coating is applied to its surface. In Figure 1c, the balloon reaches 
equilibrium after further inflation, which is treated as the initial state, where the amount of 

gaseous substance for the gas inside the balloon is 1n  and the balloon radius is 1r . Figure 
1d depicts the current state of the balloon during its motion under steady illumination, 

where the balloon radius is ( )r t . Assuming that the LCE material is incompressible, the 
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Figure 1. Schematics of the self-jumping LCE balloon under steady illumination. (a) Reference state
of the stress-free LCE balloon with radius r0. (b) The stress-free balloon is first inflated to the state
with the painting radius rp and then painted by opaque powder coating. (c) Initial state of the LCE
balloon attained after further inflation with initial radius r1. (d) Current state of the LCE balloon
under steady illumination with variable radius r(t). (e) Schematic of a self-jumping balloon with the
variable radius r(t) under illumination.

2.1. Governing Equation of Self-Jumping System

Figure 1 plots the nonlinear dynamics model of the LCE balloon, where the variable
radius of the balloon is r(t) and the mass m of the balloon remains constant. In response
to the steady illumination, a stationary LCE balloon positioned on an elastic substrate
experiences a repetitive cycle of contraction and expansion, eventually leading to the jump
from the elastic substrate. The damping effect is counteracted by the work generated when
the balloon comes into contact with the elastic substrate and expands. This interaction
results in a self-sustained jumping motion of the balloon. The pre-processing steps for
the LCE balloon are described in Figure 1a–d. In Figure 1a, we consider the stress-free
state of the balloon as the reference state. In this state, we use r0 to represent the radius,
ρL to denote the mass density of the LCE balloon and h0 to represent the thickness of the
stress-free balloon. As shown in Figure 1b, a certain amount of gas np is inflated into the
LCE balloon to enlarge its radius up to the painting radius rp, and then an opaque powder
coating is applied to its surface. In Figure 1c, the balloon reaches equilibrium after further
inflation, which is treated as the initial state, where the amount of gaseous substance for the
gas inside the balloon is n1 and the balloon radius is r1. Figure 1d depicts the current state
of the balloon during its motion under steady illumination, where the balloon radius is r(t).
Assuming that the LCE material is incompressible, the volume of the LCE balloon stays
constant at VL. Considering that the balloon thickness is much smaller than the radius,
the thickness of the LCE balloon can be calculated as h = VL

4πr2 . Since the LCE balloon
contracts in the presence of illumination and expands in the absence of illumination, when
the variable radius r(t) > rp, the opaque powder coating is held open and the balloon
contracts; when the variable radius r(t) ≤ rp, the opaque powder coating remains closed
and the balloon expands. When the balloon is in contact with the elastic substrate and
expands, the negative work dissipated by the system damping is compensated, and the
self-sustained jumping can be achieved via adjusting the system parameters.

As shown in Figure 1e, two kinds of force analysis are present for the balloon due
to the influence of Hertz contact force. When the balloon is in contact with the elastic
substrate, it is mainly subjected to Hertz contact force FH , gravity mg, and air resistance
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Ff = −β
.
y, where β is the air damping coefficient and

.
y denotes the velocity of the LCE

balloon. When the balloon is not in contact with the elastic substrate, it is only subjected to
gravity mg and air resistance Ff . Therefore, the Hertz contact force FH can be described as
follows [66]:

FH = 0 y > r(t)

FH = 4
3 Er

1
2 d

3
2 y ≤ r(t)

(1)

where E is the equivalent elastic modulus, and d refers to the indentation depth expressed
as d = r(t)− y(t) for y ≤ r(t).

The dynamic governing equation of the LCE balloon can be stated as follows:

m
..
y = −mg + Ff + FH (2)

where
..
y denotes the acceleration of the LCE balloon. Generally, the force of air resistance

depends on the aerodynamic drag coefficient and frontal area, which are characteristic of
the object, the density of the medium, and the square of the velocity [67]. For the sake
of simplification, the jumping of the LCE balloon studied in this paper is assumed to be
at a low speed, and the air resistance is assumed as Ff = −β

.
y, where β and

.
y are the air

damping coefficient and velocity of the LCE balloon, respectively.
Therefore, Equation (2) can be rewritten as

..
y = −g − β

.
y

m y > r(t)

..
y = −g − β

.
y

m + 4
3

Er
1
2 (r−y)

3
2

m y ≤ r(t)

(3)

2.2. Dynamic of the Spherical LCE Balloon

To simplify the model, we ignore the effect of gravitational acceleration. Figure 2a
draws a schematic diagram of LCE balloon deformation under the current state. We take
a volume element as shown in Figure 2b for force analysis. It is evident that the volume
element is mainly subjected to the internal gas pressure Pin, the external pressure Pext, the
damping force, and the Laplace pressure PL from the surface tension. According to the
Newtonian dynamics, the governing equation for the dynamics of the LCE balloon can be
formulated as

Pin − Pext − PL − α
dr
dt

= ρLh
d2r
dt2 (4)

where d2r
dt2 and dr

dt correspond to the radial acceleration and velocity, respectively. Addi-
tionally, ρ and h are used to represent the mass density and thickness of the LCE balloon,
while α signifies the damping coefficient associated with the radial deformation of the LCE
balloon.
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Figure 2. Schematics of force analysis of the LCE balloon. (a) Schematic diagram of LCE balloon
deformation under the current state. (b) Force analysis of a small volume element.
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On the assumption that the gas inside the balloon follows the ideal gas model with
equation of state PinV = n1RT and V can be described as V = 4

3 πr3, we can consequently
express the internal pressure of the balloon as follows:

Pin =
3n1RT
4πr3 (5)

where n1 stands for the amount of gaseous substance, R denotes the ideal gas constant, and
T represents the thermodynamic temperature of the ideal gas.

The Laplace pressure arising from membrane tension can be stated as

PL =
2σh

r
(6)

where the principal stress σ on the balloon surface can be represented as σ = Ee f f ε.
Therefore, the Laplace pressure can be rewritten as

PL =
2Ee f f εh

r
(7)

Substituting Equations (5) and (7) into Equation (4) yields

3n1RT
4πr3 − Pext −

2Ee f f εh
r

− α
dr
dt

= ρLh
d2r
dt2 (8)

in which

ε =
r − r0(1 + εL)

r0(1 + εL)
(9)

with εL being the effective light-driven strain of the LCE balloon. εL = −C0φ(t) is present,
where φ(t) is the number fraction of bent cis isomers induced by light-driven trans-to-cis
excitation and C0 is the contraction coefficient, which is positive when the LCE balloon
contracts. Generally, the trans-to-cis isomerization of LCE can be induced by UV or laser
with a wavelength less than 400 nm [68]. Therefore, the cis number fraction depends on the
thermal excitation from trans to cis, thermal relaxation from cis to trans, and photo-driven
trans-to-cis isomerization. Compared with the photo-driven trans-to-cis isomerization, the
thermal excitation from cis to trans is usually negligible [68].

To proceed with our discussions, we focus on determining the cis number fraction φ(t)
within the LCE balloon. It can be characterized as follows [68,69]:

∂φ

∂t
= η0 I(1 − φ)− φ

T0
(10)

where T0 is the thermal relaxation time from cis to trans, I refers to the light intensity, and
η0 denotes the light absorption coefficient. By solving Equation (10), the cis number fraction
φ(t) is obtained:

φ(t) =
η0T0 I

η0T0 I + 1
+

(
φ0 −

η0T0 I
η0T0 I + 1

)
exp

[
− t

T0
(η0T0 I + 1)

]
(11)

where φ0 represents the initial cis number fraction.
There exist three distinct cases for the cis number fraction, and we enumerate each of

them sequentially. For case I, which pertains to the LCE balloon under illumination with
an initial cis number fraction φ0 = 0, Equation (11) can be simplified as

φ(t) =
η0T0 I

η0T0 I + 1

{
1 − exp

[
− t1

T0
(η0T0 I + 1)

]}
(12)
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For case II, where the LCE balloon in the illumination state is switched from the dark
state with a transient cis number fraction of φ0 = φdark, Equation (11) can be simplified as

φ(t) =
η0T0 I

η0T0 I + 1
+

(
φdark −

η0T0 I
η0T0 I + 1

)
exp

[
− t2

T0
(η0T0 I + 1)

]
(13)

For case III in which the LCE balloon in the dark state (I = 0) is switched from the
illumination state with a transient cis number fraction of φ0 = φillum, Equation (11) can be
simplified as

φ(t) = φillum exp(− t3

T0
) (14)

Following Equations (12)–(14), the cis number fraction can be easily estimated, accord-
ing to which the effective light-driven strain εL can be obtained. Then, when the external
pressure Pext is given, the balloon radius r(t) can be derived by Equation (8).

2.3. Nondimensionalization

To provide a general description of the jumping phenomenon while eliminating
dimensional effects, we opt for a dimensionless approach to the system parameters. For
the governing equation of jumping system, the corresponding dimensionless parameters

are as follows: y = y
r0

,
.
y =

.
yT0
r0

,
..
y =

..
yT0

2

r0
, r = r

r0
, E = ET0

2r0
m , β = βT0

m , t = t
T0

, and g = gT0
2

r0
.

Equation (3) can be expressed dimensionlessly as

..
y = −g − β

.
y y > r

(
t
)

..
y = −g − β

.
y + 4

3 Er
1
2 (r − y)

3
2 y ≤ r

(
t
) (15)

For the governing equation of the balloon vibration, the corresponding dimensionless
parameters are as follows: PL = PL

Ee f f
, Pext =

pext
Ee f f

, n1 = 3n1RT
4πEe f f r0

3 , VL = VL
4πr0

3 , α = αr0
Ee f f T0

,

ρL = ρr0
2

Ee f f T0
2 , and I = η0T0 I.

Equation (8) can be nondimensionalized as

d2r

dt2 =
n1

ρLVLr
−

pextr
2

ρLVL
− 2

r − 1 − εL
rρL(1 + εL)

− αr2

ρLVL

dr
dt

(16)

For case I, applying the dimensionless approach to Equation (12) results in

φ(t) =
I

I + 1

{
1 − exp

[
−t1

(
I + 1

)]}
(17)

In the context of case II, Equation (13) can be made dimensionless as follows:

φ(t) =
I

I + 1
+

(
φdark −

I
I + 1

)
exp

[
−t2

(
I + 1

)]
(18)

For case III, the dimensionless representation of Equation (14) is

φ(t) = φillum exp(−t3) (19)

Up to this point, we can obtain the radius of the balloon by using Equation (16). Next,
by substituting the radius of the balloon into Equation (15), we calculate the displacement
of the balloon. Since Equation (15) lacks an analytical solution, we need to employ the
fourth-order Runge–Kutta method for solving it. The Runge–Kutta method is as follows:

y
(
t + h

)
= y(t) +

1
6
(L1 + 2L2 + 2L3 + L4) (20)
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where 
L1 = h f (t, y)
L2 = h f (t + 1

2 h, y + 1
2 L1)

L3 = h f (t + 1
2 h, y + 1

2 L2)
L4 = h f (t + h, y + L3)

(21)

and h represents the time interval; we adopt a time step of h = 0.0001 in the computation.

3. Two Jumping Modes and Mechanisms

In accordance with the above theoretical model, this section proposes two motion
modes through numerical calculation and explains the mechanisms underlying the two
motion modes.

3.1. Two Jumping Modes

Figure 3 shows the time history curves, phase diagrams, and Poincare maps with
different light intensities. Video S1 demonstrates periodic jumping of the LCE balloon.
Video S2 demonstrates chaotic jumping of the LCE balloon. The parameters, except for
light intensity, are set to C0= 0.4, VL= 0.8, Pext= 0.3, β= 0.05, n1 = 0.6, ρL = 1, α = 0.1,
E = 10, 000, g = 0.8, and Rp = 1.2. The time history curve in Figure 3a contains two
different peaks, indicating that the balloon jumps alternatively at two distinct amplitudes.
As displayed in Figure 3b, there appear only two regular trajectories on the phase diagram,
suggesting that the balloon motion is regular. There are also only two discrete points on
the Poincare map in Figure 3c. The above calculation outcomes show that the balloon is
in a periodic jumping at this time. As presented in Figure 3d, the balloon lacks a stable
amplitude on the time history curve, the trajectories on the phase diagram are complex and
disordered in Figure 3e, and the points on the Poincare map have no regularity in Figure 3f.
Such calculation results imply that the balloon is in a chaotic jumping. To elucidate the
origin of both sustained periodic jumping and chaotic jumping, we will delve into the
mechanisms underlying these two self-sustained jumping modes in the following section.
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Figure 3. Two typical motion modes: periodic jumping and chaotic jumping. (a) Time history curve
with I = 0.47. (b) Phase diagram with I = 0.47. (c) Poincare map with I = 0.47. (d) Time history
curve with I = 0.51. (e) Phase diagram with I = 0.51. (f) Poincare map with I = 0.51.

3.2. Mechanisms of the Two Jumping Modes

In this section, we further explore the mechanisms of self-sustained periodic jumping
and chaotic jumping of the LCE balloon. Figure 4 provides several relevant data plots
explaining the mechanism of periodic jumping for the LCE balloon, with the following
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system parameter values: C0= 0.4, VL= 0.8, Pext= 0.3, β= 0.05, n1 = 0.6, ρL = 1, α = 0.1,
E = 10, 000, g = 0.8, I = 0.47, and Rp = 1.2. As shown in Figure 4a, the cis number fraction
of the balloon varies over time under steady illumination. The balloon radius also varies
as the cis number fraction varies. As the powder coating on the balloon surface is turned
on or off, the cis number fraction varies periodically with time, which induces a periodic
increase or decrease in the balloon radius, as depicted in Figure 4b. As a consequence,
when the balloon is in contact with the elastic substrate and expands, the Hertz contact
force can compensate for the damping dissipation of the system, thus maintaining a stable
self-sustained jumping. From the previous section, when the light intensity is 0.47, the
balloon sustains a periodic jumping, which means that the balloon contacts the elastic
substrate twice in one period. As illustrated in Figure 4c, when t = 4788− 4802, the balloon
contacts the elastic substrate twice, and the positive work done by the Hertz contact force is
Spositive = 0.53. In Figure 4d, the air resistance does negative work of Snegative = 0.53 over
the same time span. Therefore, the balloon will jump periodically when the net work of the
Hertz contact force is identical to the negative work of the damping dissipation over the
same time span.
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Figure 4. Mechanism of the periodic self-sustained jumping of the LCE balloon. (a) Time variation of
cis number fraction in time span t = 4774–4802. (b) Time variation of balloon radius in time span
t = 4774–4802. (c) Dependence of Hertz contact force on balloon displacement with I = 0.47 in time
span t = 4788–4802. (d) Dependence of air resistance on balloon displacement with I = 0.47 in time
span t = 4788–4802.

Figure 5 illustrates several informative data plots that elucidate the process of chaotic
jumping in the LCE balloon, with the corresponding system parameter values being
C0= 0.4, VL= 0.8, Pext= 0.3, β= 0.05, n1 = 0.6, ρL = 1, α = 0.1, E = 10, 000, g = 0.8,
I = 0.51, and Rp = 1.2. It is apparent from Figure 5a that when t = 4774 − 4788, the
balloon collides with the elastic substrate several times, and the positive work done by
the Hertz contact force is Spositive = 5.44. As displayed in Figure 5b, the trajectory in the
figure is not continuous due to the selection of the time span, but it does not affect the
analysis. The air resistance performs negative work of Snegative = 0.53 over the same time
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span, namely, Spositive > Snegative. As with the above analysis for t = 4774 − 4788, when
t = 4788 − 4802, the positive work of the Hertz contact force is 1.15, and the negative work
of the air resistance is 1.97, that is, Spositive is less than Snegative. Accordingly, chaos occurs
when the net work of the Hertz contact force is not equivalent to the negative work of the
damping force within the same time span.
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Figure 5. Mechanism of the self-sustained chaotic jumping of the LCE balloon. (a) Dependence of
Hertz contact force on balloon displacement with I = 0.51 in time span t = 4774 − 4788. (b) Depen-
dence of air resistance on balloon displacement with I = 0.51 in time span t = 4774 − 4788. (c) De-
pendence of Hertz contact force on balloon displacement with I = 0.51 in time span t = 4788 − 4802.
(d) Dependence of air resistance on balloon displacement with I = 0.51 in time span t = 4788 − 4802.

4. Effects of System Parameters on Sustained Jumping

In this section, the control variable method is adopted to investigate the effects of
different system parameters on the jumping modes of the LCE balloon, which are system-
atically discussed by plotting time history curves, phase diagrams, Poincare maps, and
bifurcation diagrams.

4.1. Effect of Light Intensity

This section mainly discusses the effect of light intensity on the self-sustained jumping
of the LCE balloon. Apart from light intensity, the other system parameters are assigned
the following values: C0= 0.4, VL= 0.8, Pext= 0.3, β= 0.05, n1 = 0.6, ρL = 1, α = 0.1,
E = 10, 000, g = 0.8, and Rp = 1.2. Figure 6 provides the time history curves, phase
diagrams, and Poincare maps for two different dimensionless light intensities, while
Figure 7 presents the bifurcation diagram corresponding to light intensity varying from
0.45 to 0.55. Video S3 shows the effect of light intensity on the jumping mode of the LCE
balloon. When the light intensity is 0.45, two peaks appear on the time history curve
in Figure 6a, indicating that the balloon alternates between two stable amplitudes. The
trajectory in the corresponding phase diagram depicted in Figure 6b exhibits repetitive
motion along a specific course. And the corresponding Poincare map in Figure 6c is
displayed as two discrete points, which are located at specific locations in phase space. The
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above phenomena suggest that the balloon is in a periodic jumping at this time. It can be
observed from Figure 6d that the balloon has no stable amplitude when the light intensity
is 0.52, i.e., the balloon is unable to maintain a steady jumping. Many complex trajectories
appear on the corresponding phase diagram in Figure 6e, and these trajectories have no
apparent periodicity. There appear many discrete points on the corresponding Poincare
map in Figure 6f with no obvious periodicity. These phenomena reflect that the balloon is
in a chaotic jumping at this time.
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The aforementioned transition in the jumping modes is attributed to variations in light
intensity, which directly affect the balloon radius, consequently altering the magnitude of
the Hertz contact force. Chaos occurs when the work done by the Hertz contact force differs
from the energy dissipated by damping. According to Figure 7, when the light intensity is
between 0.45 and 0.5, the balloon maintains a periodic jumping. However, when the light
intensity exceeds 0.5, the balloon predominantly exhibits a chaotic jumping.

4.2. Effect of Contraction Coefficient

In this section, we delve into the effect of contraction coefficients on the self-sustained
jumping of the LCE balloon, with other system parameters set as follows: I = 0.5, VL= 0.8,
Pext= 0.3, β= 0.05, n1 = 0.6, ρL = 1, α = 0.1, E = 10, 000, g = 0.8, and Rp = 1.2. The
time history curves, phase diagrams, and Poincare maps for two dimensionless contraction
coefficients are found in Figure 8, accompanied by Figure 9, which is the corresponding
bifurcation diagram as the contraction coefficient ranges from 0.35 to 0.45. Video S4
demonstrates the effect of the contraction coefficient on the jumping mode of the LCE
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balloon. The analysis of the calculation outcomes is similar to Section 4.1. As observed in
Figure 8a–c, when the contraction coefficient is 0.39, the balloon alternates between two
stable amplitudes, and the corresponding phase diagram and Poincare diagram indicate
that the balloon is in a periodic motion mode. For Figure 8d–f, when the contraction
coefficient is 0.42, the balloon is unable to maintain a steady jump, and the corresponding
phase diagram and Poincare diagram suggest that the balloon is in a chaotic jumping mode.
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Figure 8. Effects of different dimensionless contraction coefficients on the self-sustained jumping of
the balloon. (a) Time history curve at C0= 0.39. (b) Phase diagram at C0= 0.39. (c) Poincare map at
C0= 0.39. (d) Time history curve at C0= 0.42. (e) Phase diagram with C0= 0.42. (f) Poincare map at
C0= 0.42.
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With the increase in the contraction coefficient, the magnitude of the balloon defor-
mation also increases. This alters the magnitude of the Hertz contact force. If the work
performed by the Hertz contact force is not equal to the damping dissipation, chaos occurs.
As shown in Figure 9, when the contraction coefficient increases to 0.4, the jumping mode
of the balloon is predominantly chaotic.

4.3. Effect of Balloon Volume

In this section, we examine how the balloon volume influences the self-sustained
jumping of the LCE balloon, in which the other system parameters are set as follows:
C0= 0.4, I = 0.5, Pext= 0.3, β= 0.05, n1 = 0.6, ρL = 1, α = 0.1, E = 10, 000, g = 0.8, and
Rp = 1.2. Figure 10 provides the time history curves, phase diagrams, and Poincare maps
for two distinct dimensionless balloon volumes, and the bifurcation diagram corresponding
to balloon volume varying from 0.7 to 0.9 is depicted in Figure 11. Video S5 shows the effect
of balloon volume on the jumping mode of the LCE balloon. The outcome analysis remains
similar to Section 4.1. According to Figure 10a–c, when the balloon volume is 0.7, the



Polymers 2023, 15, 4651 12 of 24

balloon maintains a stable amplitude, with two regular trajectories on the corresponding
phase diagram and only two points on the Poincare map. These are all indicative of the
periodic jumping of the balloon. As observed in Figure 10d–f, the lack of a stable amplitude,
the irregular trajectories on the corresponding phase diagram, and the several irregular
points on the Poincare map indicate that the balloon is experiencing a chaotic jumping.
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The change in the balloon radius increases with the increase in the balloon volume,
thus changing the magnitude of the Hertz contact force. When the net work is not equal
to the damping dissipation, chaos emerges. As illustrated in the bifurcation diagram of
Figure 11, when the balloon volume grows to 0.8, the jumping mode of the balloon is mostly
chaotic.

4.4. Effect of External Pressure

This section mainly focuses on the effect of external pressure on the self-sustained
jumping of the LCE balloon, and the other system parameters are set to C0= 0.4, I = 0.5,
VL= 0.8, β= 0.05, n1 = 0.6, ρL = 1, α = 0.1, E = 10, 000, g = 0.8, and Rp = 1.2. The time
history curves, phase diagrams, and Poincare maps for two distinct dimensionless external
pressures are presented in Figure 12, along with the bifurcation diagram corresponding
to external pressure varying from 0.15 to 0.31 being depicted in Figure 13. Video S6
demonstrates the effect of external pressure on the jumping mode of the LCE balloon.
The analysis is still similar to Section 4.1. It is clearly observed from Figure 12a–c that
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when the external pressure is 0.2, the balloon jumps alternately between two amplitudes,
the trajectories on the phase diagram are regular, and there exist only two fixed points
on the Poincare map. These outcomes imply that the jumping of the balloon is periodic.
Furthermore, in Figure 12d–f, when the external pressure is 0.31, the jumping of the balloon
has no stable amplitude, there appear no repeated trajectories on the corresponding phase
diagram, and the points on the corresponding Poincare diagram are random, all reflecting
that the balloon is in a chaotic jumping.
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Figure 12. Effects of different dimensionless external pressures on the self-sustained jumping of the
balloon. (a) Time history curve at Pext= 0.2. (b) Phase diagram at Pext= 0.2. (c) Poincare map at
Pext= 0.2. (d) Time history curve at Pext= 0.31. (e) Phase diagram with Pext= 0.31. (f) Poincare map
at Pext= 0.31.
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Figure 13. Bifurcation diagram with varying dimensionless external pressure.

The alteration in the jumping modes of the balloon is attributed to variations in the
deformation period of the balloon in response to fluctuations in the external pressure,
which further affects the Hertz contact force. Chaos arises when the net work executed by
the Hertz contact force is not in balance with the damping dissipation of the system. As
displayed in Figure 13, the balloon exhibits periodic jumping when the light intensity is
within the interval of 0.15 and 0.2, as well as the interval of 0.24 and 0.26. The jumping
mode of the balloon switches between periodic and chaotic in the remaining intervals.

4.5. Effect of Damping Coefficient

The focus of this section is on the effect of the damping coefficient on the self-sustained
jumping of the LCE balloon, in which the other system parameters are set to C0= 0.4,
I = 0.5, VL= 0.8, Pext= 0.3, n1 = 0.6, ρL = 1, α = 0.1, E = 10, 000, g = 0.8, and Rp = 1.2.
The time history curves, phase diagrams, and Poincare maps for two distinct dimensionless
damping coefficients are depicted in Figure 14. Similarly, a bifurcation diagram of the
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dimensionless damping coefficient ranging from 0.03 to 0.15 is plotted in Figure 15. Video S7
demonstrates the effect of the damping coefficient on the jumping mode of the LCE balloon.
The outcome analysis remains similar to Section 4.1. According to Figure 14a–c, when the
damping coefficient is 0.15, the amplitude of the balloon is observed to remain stable, the
trajectories on the phase diagram exhibit orderliness, and only four fixed points are present
on the Poincare map. The above observations suggest that the jumping mode of the balloon
is periodic for β= 0.15. As illustrated in Figure 14d–f, when the damping coefficient is
0.04, the jumping of the balloon has no stable amplitude, and there are displayed many
disordered trajectories on the corresponding phase diagram and many random points on
the corresponding phase diagram. These outcomes imply that the jumping mode of the
balloon is chaotic.
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4.6. Effect of Amount of Gaseous Substance 
This section explores how the amount of gaseous substance affects the self-
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follows: 0 =0.4C , 0.5I = , =0.8LV , ext =0.3P , =0.05β , 1Lρ = , 0.1α = , 10,000E = , 
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Figure 14. Effects of different dimensionless damping coefficients on the self-sustained jumping of
the balloon. (a) Time history curve at β= 0.15. (b) Phase diagram at β= 0.15. (c) Poincare map at
β= 0.15. (d) Time history curve at β= 0.04. (e) Phase diagram with β= 0.04. (f) Poincare map at
β= 0.04.
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As the damping coefficient varies, the rate of energy dissipation in the system also
varies. Chaos takes place when the energy input to the system and the energy dissipated by
the system damping are not equal. According to Figure 15, when the damping coefficient
falls within the range of 0.03 to 0.1, the jumping of the balloon predominantly exhibits
a chaotic nature. However, when the damping coefficient lies between 0.1 and 0.15, the
jumping of the balloon mainly shows periodic behavior.

4.6. Effect of Amount of Gaseous Substance

This section explores how the amount of gaseous substance affects the self-sustained
jumping of the LCE balloon, while keeping the other system parameters set as follows:
C0= 0.4, I = 0.5, VL= 0.8, Pext= 0.3, β= 0.05, ρL = 1, α = 0.1, E = 10, 000, g = 0.8,
and Rp = 1.2. Figure 16 presents the time history curves, phase diagrams, and Poincare
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maps for two distinct dimensionless amounts of gaseous substance, accompanied by the
bifurcation diagram for the varying amounts of gaseous substance between 0.57 and 0.61
given in Figure 17. Video S8 demonstrates the effect of the amount of gaseous substance
on the jumping mode of the LCE balloon. The analysis of the calculated results is similar
to Section 4.1. In Figure 16a–c, when the amount of gaseous substance is 0.61, the balloon
jumps alternately between four amplitudes, the trajectories on the phase diagram are
regular, and there are only four fixed points on the Poincare map. These all demonstrate the
periodic jumping of the balloon. Whereas for Figure 16d–f, when the amount of gaseous
substance is 0.57, the jumping of the balloon has no stable amplitude, there are no repeated
trajectories on the corresponding phase diagram, and the points on the corresponding
Poincare diagram are random, all suggesting the chaotic jumping of the balloon.
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Figure 16. Effects of different dimensionless amounts of gaseous substance on the self-sustained
jumping of the balloon. (a) Time history curve at n1 = 0.61. (b) Phase diagram at n1 = 0.61.
(c) Poincare map at n1 = 0.61. (d) Time history curve at n1 = 0.57. (e) Phase diagram with n1 = 0.57.
(f) Poincare map at n1 = 0.57.
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Figure 17. Bifurcation diagram with varying dimensionless amounts of gaseous substance.

The above transition in the jumping modes is attributed to variations in the amount of
gaseous substance, which cause variations in the balloon radius and subsequently alter the
Hertz contact force. The energy imbalance between the energy compensation generated by
the Hertz contact force and the energy dissipated by the system damping is responsible for
the emergence of chaos. It is evident from the bifurcation diagram in Figure 17 that as the
amount of gaseous substance varies, the jumping mode of the balloon experiences frequent
transitions between periodicity and chaos.
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4.7. Effect of LCE Mass Density

In this section, the primary focus is on the influence of LCE mass density on the
self-sustained jumping of the LCE balloon, while the remaining system parameters are set
as follows: C0= 0.4, I = 0.5, VL= 0.8, Pext= 0.3, β= 0.05, n1 = 0.6, α = 0.1, E = 10, 000,
g = 0.8, and Rp = 1.2. In Figure 18, the time history curves, phase diagrams, and Poincare
maps for two distinct dimensionless LCE mass densities can be found, along with the
corresponding bifurcation diagram as the LCE mass density ranges from 0.9 to 1.3 being
provided in Figure 19. Video S9 demonstrates the effect of LCE mass density on the jumping
mode of the LCE balloon. The analysis is still similar to Section 4.1. It is evident from
Figure 18a–c that when the LCE mass density is 1.3, the balloon sustains a stable amplitude,
the phase diagram displays two consistent trajectories, and the Poincare maps exhibits two
fixed points. Summarily, the balloon sustains a stable periodic jumping. As described in
Figure 18d–f, when the LCE mass density is 1.3, there is a lack of a stable amplitude on the
time history curve, no apparent periodicity in the trajectories on the phase diagram, and a
random scattering of points on the Poincare map. These are indicative of a chaotic jumping
of the balloon.
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Figure 18. Effects of different dimensionless LCE mass densities on the self-sustained jumping of 
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Figure 18. Effects of different dimensionless LCE mass densities on the self-sustained jumping of
the balloon. (a) Time history curve at ρL = 1.3. (b) Phase diagram at ρL = 1.3. (c) Poincare map at
ρL = 1.3. (d) Time history curve at ρL = 0.9. (e) Phase diagram with ρL = 0.9. (f) Poincare map at
ρL = 0.9.
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Figure 19. Bifurcation diagram with varying dimensionless LCE mass densities.

The transition of the jumping mode can be understood as the variation rate of the balloon
radius altering with the LCE mass density, thereby affecting the magnitude of the Hertz
contact force. Chaos arises when the negative work dissipated by the system damping is not
balanced by the net work done by the Hertz contact force. In accordance with Figure 19, the
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jumping mode of the balloon is periodic when the LCE mass density is between 1.07–1.1 and
1.2–1.3. In other intervals, the jumping mode of the balloon switches frequently.

4.8. Effect of Beating Damping Coefficient

We will primarily discuss the effect of the beating damping coefficient on the self-
sustained jumping of the LCE balloon in this section, with other parameters being set as
C0= 0.4, I = 0.5, VL= 0.8, Pext= 0.3, β= 0.05, n1 = 0.6, ρL = 1, E = 10, 000, g = 0.8, and
Rp = 1.2. The time history curves, phase diagrams, and Poincare maps for two distinct
dimensionless beating damping coefficients are given in Figure 20, and the bifurcation
diagram as the beating damping coefficient ranges from 0.07 to 0.11 is displayed in Figure 21.
Video S10 demonstrates the effect of beating damping coefficient on the jumping mode
of the LCE balloon. The outcome analysis remains similar to Section 4.1. As illustrated in
Figure 20a–c, when the beating damping coefficient is equal to 0.11, the balloon alternates
between two amplitudes, the phase diagram exhibits a stable periodic trajectory, and there
are only two fixed points on the Poincare map. These observations suggest that the jumping
of the balloon is periodic. According to Figure 20d–f, when the beating damping coefficient
is equal to 0.09, the balloon does not behave with stable amplitudes, and the phase diagram
and Poincare map do not show predictable behavior, indicating that the jumping of the
balloon is chaotic.
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Figure 20. Effects of different dimensionless beating damping coefficients on the self-sustained
jumping of the balloon. (a) Time history curve at α = 0.11. (b) Phase diagram at α = 0.11. (c) Poincare
map at α = 0.11. (d) Time history curve at α = 0.09. (e) Phase diagram with α = 0.09. (f) Poincare
map at α = 0.09.
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Obviously, variations in the beating damping coefficient will affect the magnitude of
the Hertz contact force. The appearance of chaos comes when the net work done by the
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Hertz contact force differs from the negative work dissipated by the system damping. From
Figure 21, it is evident that the jumping mode of the balloon does not exhibit any regularity
with the varying beating damping coefficients.

4.9. Effect of Elastic Modulus

In this section, we primarily discuss the effect of the elastic modulus on the self-
sustained jumping of the LCE balloon, with the remaining system parameters set as
C0= 0.4, I = 0.5, VL= 0.8, Pext= 0.3, β= 0.05, n1 = 0.6, ρL = 1, α = 0.1, g = 0.8, and
Rp = 1.2. Figure 22 illustrates the time history curves, phase diagrams, and Poincare maps
for the two distinct dimensionless elastic moduli, and Figure 23 depicts the bifurcation
diagram of the elastic modulus varying from 5000 to 25,000. The analysis is still similar to
Section 4.1. Video S11 demonstrates the effect of elastic modulus on the jumping mode of
the LCE balloon. As displayed in Figure 22a–c, the jumping of the balloon exhibits stable
amplitudes, and the phase diagram and Poincare map show regular patterns, indicating
that the jumping of the balloon is periodic. From Figure 22d–f, it can be observed that there
are no stable amplitudes in the time history curve, and the phase diagram and Poincare
map show irregular patterns. These observations reveal that the jumping of the balloon is
chaotic.
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Figure 22. Effects of different dimensionless elastic moduli on the self-sustained jumping of the
balloon. (a) Time history curve at E = 15, 000. (b) Phase diagram at E = 15, 000. (c) Poincare map at
E = 15, 000. (d) Time history curve at E = 6000. (e) Phase diagram with E = 6000. (f) Poincare map
at E = 6000.
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Since the elastic modulus affects the stiffness of the elastic substrate and the LCE
balloon, it ultimately influences the magnitude of the Hertz contact force. Chaos occurs
when the net work done by the Hertz contact force is not sufficient to complement the
damping dissipation of the system. From Figure 23, it can be seen that there is no clear
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boundary between the periodic jumping and chaotic jumping of the balloon as the elastic
modulus varies.

4.10. Effect of Gravitational Acceleration

In this section, we discuss the influence of gravitational acceleration on the self-
sustained jumping of the LCE balloon, where the other system parameters are set as:
C0= 0.4, I = 0.5, VL= 0.8, Pext= 0.3, β= 0.05, n1 = 0.6, ρL = 1, α = 0.1, E = 10, 000
and Rp = 1.2. Figure 24 depicts the time history curves, phase diagrams, and Poincare
maps for two distinct dimensionless gravitational accelerations. Additionally, a bifurcation
diagram showing the variation of gravitational acceleration within the range of 0.6 to 1
is plotted in Figure 25. Video S12 demonstrates the effect of gravitational acceleration on
the jumping mode of the LCE balloon. The analysis of the calculated results is similar
to Section 4.1. As observed in Figure 24a–c, the balloon jumps with a stable amplitude,
the phase diagram displays two periodic trajectories, and the Poincare map has only two
fixed points. These demonstrate that the balloon is undergoing a periodic jumping. In
Figure 24d–f, the jumping amplitude of the balloon is not regular, and the trajectories on
the phase diagram and the points’ positions on the Poincare map are unpredictable. It can
be inferred that the jumping of the balloon is chaotic.
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served in Figure 26d–f, when the painting radius is 1.05, the jumping of the balloon has 
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points on the Poincare diagram are random, demonstrating the chaotic jumping of the 
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The above switching of jumping modes is owing to the change in the balloon de-
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Figure 24. Effects of different dimensionless gravitational accelerations on the self-sustained jumping
of the balloon. (a) Time history curve at g = 0.95. (b) Phase diagram at g = 0.95. (c) Poincare map
at g = 0.95. (d) Time history curve at g = 0.6. (e) Phase diagram with g = 0.6. (f) Poincare map at
g = 0.6.
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Due to the variations in gravitational acceleration affecting the upward jumping of
the balloon, which in turn alter the jumping amplitude of the balloon, chaos occurs when
the negative work done by air resistance during the motion is not equal to the net work
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compensated by the system. According to Figure 25, when the gravitational acceleration
varies between 0.81 and 1, the jumping of the balloon is periodic. When the gravitational
acceleration varies between 0.6 and 0.81, the jumping of the balloon is primarily chaotic.

4.11. Effect of Painting Radius

In this section, we will discuss the effect of the painting radius on the self-sustained
jumping of the LCE balloon. Except for the painting radius, the settings for the other
parameters are as follows: C0= 0.4, I = 0.5, VL= 0.8, Pext= 0.3, β= 0.05, n1 = 0.6, ρL = 1,
α = 0.1, E = 10, 000, and g = 0.8. Figure 26 plots the time history curves, phase diagrams,
and Poincare maps for two distinct dimensionless painting radii. Additionally, the bifur-
cation diagram corresponding to the painting radius varying from 0.6 to 1 is provided in
Figure 27. Video S13 demonstrates the effect of the painting radius on the jumping mode
of the LCE balloon. The analysis of the calculation outcomes is similar to Section 4.1. For
Figure 26a–c, when the painting radius is 1.2, the balloon jumps regularly. The trajectories
on the phase diagram are regular, and there are only several fixed points on the Poincare
map. These suggest the periodic jumping of the balloon. As observed in Figure 26d–f,
when the painting radius is 1.05, the jumping of the balloon has no stable amplitude, there
are no repeated trajectories on the phase diagram, and the points on the Poincare diagram
are random, demonstrating the chaotic jumping of the balloon.
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The above switching of jumping modes is owing to the change in the balloon de-
formation period caused by the variation in the painting radius, thus affecting the Hertz
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contact force. The imbalance between the work done by the Hertz contact force and the
damping dissipation is responsible for the occurrence of chaos. As shown in Figure 27, as
the painting radius varies, no clear boundary is present between the periodic and chaotic
jumping of the balloon.

5. Conclusions

A self-sustained jumping system can maintain periodic jumping and chaotic jumping
under constant stimulus, which holds significant promise in actuators, medical devices,
biomimetic robots, and other fields. In this paper, a light-powered self-sustained chaotic
jumping LCE balloon with a self-shading effect is innovatively developed. Owing to the
self-shading effect of the coating, the LCE balloon contracts and expands under steady illu-
mination, thus maintaining a self-sustained jumping. The numerical results demonstrate
that two typical jumping modes of the LCE balloon are present, namely, periodic jumping
and chaotic jumping. The corresponding mechanisms underlying the self-sustained peri-
odic jumping and chaotic jumping are explained according to the relationship between the
work done by the contraction and expansion of the LCE balloon and the energy dissipated
by the system damping. The self-sustained jumping of the LCE balloon can be triggered
by controlling key system parameters, such as the light intensity, contraction coefficient,
balloon volume, external pressure, damping coefficient, etc. By adjusting several system
parameters, we can control the balloon to switch jumping modes. The system can achieve
self-balancing under steady and uniform illumination with full-field stability. Researchers
can conduct relevant experimental studies on the basis of the theoretical research in this
paper and compare with the predictions in this paper. We hope that this research provides
potential applications and aid in the development of novel intelligent material-based robots,
the design of new energy conversion equipment, and so on.
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//www.mdpi.com/article/10.3390/polym15244651/s1, Video S1: Periodic motion mode of the LCE
balloon; Video S2: Chaotic motion mode of the LCE balloon; Video S3: Effect of light intensity on the
jumping mode of the LCE balloon; Video S4: Effect of contraction coefficient on the jumping mode of
the LCE balloon; Video S5: Effect of balloon volume on the jumping mode of the LCE balloon; Video
S6: Effect of external pressure on the jumping mode of the LCE balloon; Video S7: Effect of damping
coefficient on the jumping mode of the LCE balloon; Video S8: Effect of amount of gaseous substance
on the jumping mode of the LCE balloon; Video S9: Effect of LCE mass density on the jumping mode
of the LCE balloon; Video S10: Effect of beating damping coefficient on the jumping mode of the LCE
balloon; Video S11: Effect of elastic modulus on the jumping mode of the LCE balloon; Video S12:
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painting radius on the jumping mode of the LCE balloon.
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