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Abstract: Oil well cement is prone to corrosion and damage in carbon dioxide (CO2) acidic gas
wells. In order to improve the anti-corrosion ability of oil well cement, polymer resin was used as
the anti-corrosion material. The effect of polymer resin on the mechanical and corrosion properties
of oil well cement was studied. The corrosion law of polymer anti-corrosion cement in an acidic
gas environment was studied. The long-term corrosion degree of polymer anti-corrosion cement
was evaluated using an improved neural network model. The cluster particle algorithm (PSO) was
used to improve the accuracy of the neural network model. The results indicate that in acidic gas
environments, the compressive strength of polymer anti-corrosion cement was reduced under the
effect of CO2, and the corrosion depth was increased. The R2 of the prediction model PSO-BPNN3
is 0.9970, and the test error is 0.0136. When corroded for 365 days at 50 ◦C and 25 MPa pressure of
CO2, the corrosion degree of the polymer anti-corrosion cement was 43.6%. The corrosion depth of
uncorroded cement stone is 76.69%, which is relatively reduced by 33.09%. The corrosion resistance
of cement can be effectively improved by using polymer resin. Using the PSO-BP neural network to
evaluate the long-term corrosion changes of polymer anti-corrosion cement under complex acidic gas
conditions guides the evaluation of its corrosion resistance.

Keywords: oil well cement; resin; corrosion; artificial neural network; particle swarm optimization;
carbon dioxide

1. Introduction

The cement sheath used to seal the formation is prone to be corroded by acidic gas in
oil and gas wells and geologically sealed wells containing acidic gas, leading to strength
reduction, structural damage, and cement integrity failure [1,2]. The damage to cement
casing will affect the quality of cementing. Even wellbore collapse occurs severely, causing
severe economic losses and environmental pollution [3,4]. The corrosion resistance of
cement slurry under acidic corrosive gas can be effectively improved by adding anti-
corrosion materials to improve the performance of cement slurry.

To study the corrosion of cement, Liaudat et al. [5] studied the corrosion mechanism
of cement in a CO2 environment and found that the degradation of cement structure
and strength is caused by the loss of hydrochemical products in a CO2 environment.
Kuo et al. [6] studied the changes in oil well cement in corrosive environments and con-
cluded that the reaction between calcium hydroxide and CO2 in cement decreases cement
strength. Yin et al. [7] studied the corrosion changes in cement and proposed a carbonated
water corrosion model for Portland cement slurry, which agrees with experimental data.
Cement has a relatively high degree of corrosion in acidic gas environments. In terms of
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building cement, the damage caused by corrosion can be reduced by adding anti-corrosion
coatings or using other materials. However, in the case of oil well cement, the anti-corrosion
performance can only be improved by adding additives. Polymer resin is a type of polymer
material, and experimental research has found that adding a certain amount of polymer
resin can effectively enhance the anti-corrosion ability of cement slurry. Peng et al. [8]
studied the use of water-based modified epoxy resin to improve the corrosion resistance of
oil well cement, and the study showed that the corrosion resistance of cement paste with
the addition of modified epoxy resin was significantly improved. Qu et al. [9] studied the
chlorine corrosion resistance of superhydrophobic anion exchange resin cement mortar
in chloride environments. Resin anti-corrosion cement mortar is expected to extend the
service life of reinforced concrete in chloride salt environments. Tan et al. [10] considered
using organic anti-corrosion resin composite anti-corrosion agents to improve the corrosion
resistance of cement slurry. Using slag and resin as anti-corrosion agents can effectively
reduce the degree of corrosion in cement slurry. Guo et al. [11] used four different dosages
of water-based epoxy resin as polymer cement repair materials. The flexural toughness of
epoxy resin-modified OPC mortar is significantly improved, and the compressive strength
is preserved. Aguiar et al. [12] used epoxy resin surface treatment to improve the carbon-
ation resistance of concrete. Epoxy resin exhibits better performance than siloxane resin.
Resin-based polymers are compatible with water, and their application in cement slurry
anti-corrosion has great application value. However, there is currently limited research
on the long-term anti-corrosion performance of polymer resin on cement slurry for well
cementing. Studying the impact of polymer resin on the long-term corrosion performance
of cement slurry is of great significance for the application of polymer resin in acidic and
complex gas wells and geological storage wells.

Currently, the evaluation of the corrosion degree of cement slurry is mainly based on
indoor experiments. Due to the long cycle and complex conditions of corrosion experiments,
it is challenging to study the long-term corrosiveness of cement, observe the long-term
corrosion changes in cement, and understand the long-term corrosion resistance of cement
systems. Prediction is an effective method for predicting long-term changes based on early
patterns. Regression models are commonly used to predict changes in cement properties,
but their prediction accuracy could be higher. Finding a prediction method with higher
accuracy and better response to cement corrosion changes is significant for oil and gas well
development and oil well corrosion evaluation under acidic conditions.

With the development of computer technology, neural network algorithms have been
widely applied to complex nonlinear systems based on human brain structures [13,14].
Hao et al. and Shiratori et al. [15,16] proposed an improved prediction model based on neu-
ral networks for simultaneously predicting electricity consumption and coal consumption
during cement calcination, which has high accuracy. Terzic et al. [17] validated the optimal
output of mechanochemical activation of pyrophyllite using an artificial neural network
model with high prediction accuracy. Tsamatsoulis et al. [18] established an ANN model to
predict changes in cement strength. The optimized prediction model has high accuracy and
can be well applied in practice. Brown et al. [19] highlighted some recent effects to connect
the ML and nanoscience communities and discussed the challenges and opportunities of
artificial intelligence in nanoscience. Neural network models are widely used in complex
problems and can better reflect actual changes. However, the BP model has a low conver-
gence speed, is prone to falling into local minimization, and has low accuracy in long-term
prediction [20]. Clustering particle algorithms can utilize individuals in a population to
obtain the optimal solution, typically used to optimize neural network models [21–23].
However, the application of artificial intelligence in oil well cement corrosion is relatively
limited, and there are still significant difficulties in establishing more accurate models based
on actual situations.

In order to study the corrosiveness of polymer resin-modified oil well cement in acidic
gas wells and evaluate the long-term corrosion degree of polymer anti-corrosion cement
slurry, experimental research was conducted on the corrosion changes in polymer anti-
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corrosion cement slurry in corrosive environments. A corrosion prediction model based
on the BP network was established by selecting three main influencing factors: corrosion
temperature, pressure CO2, corrosion time, and corrosion depth as model parameters. The
BP model was optimized using a particle swarm optimization algorithm and compared
with regression models and traditional BP network models to verify the correctness of
the corrosion prediction model. The long-term corrosion depth of polymer anti-corrosion
cement slurry was predicted, and the long-term corrosion resistance of polymer anti-
corrosion cement slurry was evaluated. The research results can be used to evaluate the
long-term corrosion resistance of polymer anti-corrosion cement slurry in complex acidic
gas wells.

2. Materials and Methods
2.1. Materials

Grade-G oil well cement was used as the primary material to prepare cement samples
purchased from China Gezhouba Special Cement Factory. The chemical composition of the
oil well cement is shown in Table 1. The filtrate reducer, retarder, dispersant, and reinforcer
were used to adjust the performances of the oil well cement. The products were purchased
from Jingzhou Jiahua Technology Co., Ltd. (Jingzhou, China). The reinforcer and resin
were produced in the laboratory.

Table 1. Chemical composition of G-class oil well cement.

Component CaO SiO2 Fe2O3 Al2O3 MgO Na2O + K2 Others

Content (%) 64.2 22.5 4.4 4.1 1.6 0.38 2.82

The filtrate reducer is one of the AMPS-type water-soluble polymers that can be used
to reduce the water loss of the oil well cement slurry. The dispersant is an aldehyde
ketone condensation polymer that is mainly used to adjust the surface charge of the cement
particles to obtain cement slurry with appropriate rheological properties. The retarder
consists of polymers with carboxylic and sulfonic acid groups that were mainly used
to regulate the thickening time of cement slurry. Polymer resin was obtained from the
laboratory and is a bisphenol A-type epoxy resin, which is mainly used to improve the
corrosion resistance of cement. The solid phase accounts for 50% of resin materials.

2.2. Methods
2.2.1. Preparation of Cement Samples

The preparation of cement slurry is in accordance with the provisions of the Chinese
standard GB/T 19139–2012 [24]. The cement and various additives were mixed uniformly
at 4000 rpm by a constant speed mixer (TG-3060A, Shenyang Tiger Petroleum Instrument
Equipment Co., Ltd., Shenyang, China) according to the proportion of the experimental
formula. The components of cement samples are shown in Table 2.

Table 2. Components of cement slurry.

Samples Cement Water Reinforcer Dispersant Filtrate Reducer Retarder Resin

M0 100 44 2 0.5 2 0.4 0

M1 100 39 2 0.5 2 0.4 10

The prepared cement slurry was placed in a cylindrical mold with a height of 25.4 mm
and a diameter of 25.4 mm. Then, the mold was placed in a 70 ◦C water bath for constant
temperature curing for 24 h to form an uncorroded solidified cement sample.
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2.2.2. Corrosion Simulation Experiment

A high-temperature and high-pressure corrosion tester (TG-7370D, Shenyang Taige
Petroleum Instrument Equipment Co., Ltd., Shenyang, China) was set according to the
conditions in the experimental scheme design (Table 3), and the uncorroded cement sample
was cured in the high-temperature and high-pressure corrosion tester for the corrosion
simulation test. Corrosion depth and compressive strength were selected as the observa-
tions [25]. The simulation diagram of oil well cement corrosion is shown in Figure 1. In the
experiment, the temperature and pressure of CO2 changes are controlled according to the
range of experimental parameters, respectively, and different times and conditions are ob-
tained. The corrosion depth is determined according to the testing method in Section 2.2.3.

Table 3. Experimental scheme.

Sample
Groups

Factors and Control Scope Observations

Time (d) Temperature
(◦C)

Pressure of
CO2 (MPa)

Corrosion
Depth (mm)

Compressive
Strength (MPa)

100 1~60 50~90 5~25 h P
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Figure 1. The simulation diagram of oil well cement corrosion.

2.2.3. Measurement of Corrosion Degree

The corrosion area was calibrated with the characteristic of phenolphthalein turning
red when encountering alkali. The four boundary thickness values of the sample that did
not turn red were measured with a vernier caliper, and the average value was taken as the
corrosion depth of the cement sample [26]. As shown in Figure 2.

Polymers 2023, 15, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 2. Corrosion of cement sample. 

2.2.4. Test of Compressive Strength 
The performance testing of the cement slurry was carried out in accordance with 

the provisions of the Chinese standard GB/T 19139–2012 [24]. The cement sample was 
removed from the mold and placed under the universal testing machine for a uniaxial 
compression test after the surface was wiped to test the compressive strength [27,28]. 
The universal mechanical testing machine (HY-20080, Shanghai Hengyi Precision In-
strument Co., Ltd., Shanghai, China) was used to evaluate the compressive strength of 
the cement sample. Compressive strength is the maximum stress of the cement slurry in 
the process of compression failure. The sample used was a cylinder with a diameter of 
25.4 mm and a height of 25.4 mm. Three cement stones were tested in each group, and 
the average value was calculated as the experimental result. 

The calculation of compressive strength is 

P = F/A  

where P is the compressive strength of the sample, F is the load force, and A is the bear-
ing area of the sample. 

2.2.5. Analysis of Micromorphology 
The cement sample was dried in the oven at 60 °C for 24 h after the hydration was 

terminated. The surface morphology of the smooth trim sample was observed using the 
emission field scanning electron microscope (SEM). The prepared cement sample was 
crushed, and the smooth part in the middle was taken as the sample. The samples are 
dried in an oven, and the microscopic morphologies of the cement samples are observed 
using a scanning electron microscope (SU8010, Hitachi, Tokyo, Japan). 

2.2.6. PSO Algorithm 
Particle swarm optimization is based on the bird swarm search. The optimization 

problem was set as particles, the potential solution in the D dimension space of the par-
ticle was searched, the fitness function judged the potential solution, the optimal solu-
tion was updated by iterative search, and the running stopped when the maximum 
number of iterations or the best potential solution is found in the particle swarm optimi-
zation algorithm [29,30]. The PSO principle is shown in Figure 3. 

Figure 2. Corrosion of cement sample.



Polymers 2023, 15, 4441 5 of 14

The calculation of corrosion degree is

Pc = h/r × 100%

where Pc is the corrosion degree of oil well cement; h is the corrosion depth; and r is the
radius of the oil well cement sample, which is 12.7 mm in this article.

2.2.4. Test of Compressive Strength

The performance testing of the cement slurry was carried out in accordance with
the provisions of the Chinese standard GB/T 19139–2012 [24]. The cement sample was
removed from the mold and placed under the universal testing machine for a uniaxial
compression test after the surface was wiped to test the compressive strength [27,28]. The
universal mechanical testing machine (HY-20080, Shanghai Hengyi Precision Instrument
Co., Ltd., Shanghai, China) was used to evaluate the compressive strength of the cement
sample. Compressive strength is the maximum stress of the cement slurry in the process of
compression failure. The sample used was a cylinder with a diameter of 25.4 mm and a
height of 25.4 mm. Three cement stones were tested in each group, and the average value
was calculated as the experimental result.

The calculation of compressive strength is

P = F/A

where P is the compressive strength of the sample, F is the load force, and A is the bearing
area of the sample.

2.2.5. Analysis of Micromorphology

The cement sample was dried in the oven at 60 ◦C for 24 h after the hydration was
terminated. The surface morphology of the smooth trim sample was observed using the
emission field scanning electron microscope (SEM). The prepared cement sample was
crushed, and the smooth part in the middle was taken as the sample. The samples are dried
in an oven, and the microscopic morphologies of the cement samples are observed using a
scanning electron microscope (SU8010, Hitachi, Tokyo, Japan).

2.2.6. PSO Algorithm

Particle swarm optimization is based on the bird swarm search. The optimization
problem was set as particles, the potential solution in the D dimension space of the particle
was searched, the fitness function judged the potential solution, the optimal solution
was updated by iterative search, and the running stopped when the maximum number
of iterations or the best potential solution is found in the particle swarm optimization
algorithm [29,30]. The PSO principle is shown in Figure 3.
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2.3. Model Simulation

The neural numbers of hidden layers were selected as 3, 7, 10, and 12, respectively,
and the three-layer BP neural network of 3-3-1, 3-7-1, 3-10-1, and 3-12-1 was established in
the MATLAB 2021a software. The PSO algorithm was used to optimize the initial weights
and thresholds of the BP neural network. The network algorithm flow chart is shown in
Figure 4.
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The number of hidden layer neurons h was selected according to the following for-
mula [31,32].

H =
(m + n)

2
+α

where m is the number of neurons in the input layer, n is the number of neurons in the
output layer, and α is the random value in [0, 10].

The normalization formula was used to standardize the sample data. The calculation
formula is as follows [33,34]:

x=
xi − xmin

xmax − xmin

where x is the normalization result and xmax and xmin are the maximum and minimum
values of the data, respectively.

The error between the output and the actual value is

Ei= Oi − yi

The overall mean square error (MSE) of the network output is

Et =
1
n

n

∑
i=1

(O i − yi)
2

where i is the number of trainings; Oi is the network output value of the ith training; yi is
the actual value of the sample for i-th training; and N is the number of training samples.

A total of 100 sample groups were obtained from the experiment. An amount of
80 groups were used as training samples, 10 groups as validation samples, and 10 groups
as test samples. The target error and the maximum iterations are selected as the boundary
conditions. The parameters of the prediction model are shown in Table 4.
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Table 4. PSO-BP model parameter settings.

Variable Parameter

Input parameter Pressure of CO2, Temperature, Time
Network structure 3-3-1, 3-7-1, 3-10-1, 3-12-1

Variable Parameter Variable Parameter

Total number of samples 100 Output parameters Corrosion depth

Training methods Gradient descent
(L-M) Particle dimension 16, 36, 51, 61

Number of training samples 80 Learning rate of BP 0.01

Weight correction method Error
backpropagation

Number of test
samples 10

Maximum iterations of BP 2000 Inertial factor 0.7
Number of hidden layers 1 Particle swarm size 100

Maximum iterations of PSO 100 Target error (MSE) 0.001
Number of validation samples 10 Minimum position −1
Learning parameters of PSO 0.05 Maximum position 1

Minimum speed −0.1 Maximum speed 0.1

3. Results
3.1. The Effect of Polymer Resin on the Properties of Oil Well Cement

Figure 5 shows the effect of polymer resin on the compressive strength and corrosion
resistance of oil well cement. In the corrosion process, the condition is 80 ◦C × 20 MPa.
After adding a certain amount of polymer resin, the strength of the cement slurry decreases
to a certain extent. However, the corrosion depth of cement paste under acidic CO2
conditions is significantly reduced compared to that of blank cement paste. When the
amount of polymer resin added is 10%, oil well cement still has high compressive strength
and excellent corrosion resistance. Resin polymers are dispersed in the cement slurry,
forming a polymer film that blocks the connection between hydration products and reduces
the strength of the cement. However, at the same time, polymer films protect cement
hydration products from acidic gas corrosion, enhancing their corrosion resistance.
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3.2. Corrosion Law of Polymer Anti-Corrosion Cement Slurry

The corrosion changes in polymer anti-corrosion cement slurry under CO2 acidic
conditions were experimentally studied, and the experimental results are shown in Figure 6.
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In Figure 6a, the 7-day compressive strength of polymer anti-corrosion cement is
5.9 MPa less than that of uncorroded cement samples. As shown in Figure 6b, the corrosion
depth and corrosion time increase, and the compressive strength decreases after a period
of growth with the increase in corrosion time. According to Figure 6c,d, the corrosion
depth and compressive strength of polymer anti-corrosion cement increase in the corrosive
environment with the increase in corrosion time, corrosion temperature, and pressure
of CO2.

3.3. Establishment of Corrosion Prediction Model

Four PSO-BP neural networks with a different number of hidden layer neurons were
constructed based on the experimental data and network structure topology. The test sam-
ples were trained in the network and compared with the actual value [35]. The appropriate
network structure is selected via error verification. The experimental results are as follows.

The results in Table 5 show that the established prediction model has high accuracy.
The PSO-BPNN1 and PSO-BPNN2 networks have significant testing errors, resulting in
significant deviations between the test and actual values.

Table 5. Training results of different PSO-BPNN network structures.

Model Structure R2 Best Validation Error
(MSE) Iterations Test Error

(MSE)

PSO-BPNN1 3-3-1 0.9880 0.0024 19 0.0197
PSO-BPNN2 3-7-1 0.9955 0.0062 14 0.0163
PSO-BPNN3 3-10-1 0.9970 0.0022 4 0.0136
PSO-BPNN4 3-12-1 0.9953 0.0007 19 0.0216
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3.4. Evaluation of Long-Term Corrosion Degree of Polymer Anti-Corrosion Cement
3.4.1. Prediction of Corrosion Depth

In order to study the applicability of the PSO-BP model in predicting the long-term
corrosion of cement, REG, BPNN, and PSO-BPNN3 are used to predict the long-term
corrosion depth, respectively. The prediction results are as follows.

Table 6 shows that the predicted values of the traditional BPNN model are relatively
small compared to the regression model, and their change trend is very small, possibly
falling into local minima. The predicted values based on the PSO-BPNN3 model are
generally close to the regression model, indicating no deviation from reality. Regression
models are based on empirical formulas for prediction, and their predicted values have high
reliability, but their accuracy is relatively low. The PSO-BPNN3 model has high accuracy,
and its predicted values can better reflect the actual changes in long-term corrosion of
cementing cement.

Table 6. Prediction of long-term corrosion of oil well cement.

NO.
Corrosive Conditions Prediction of Corrosion Depth (mm)

Pressure of CO2
(MPa)

Temperature
(◦C) Time (d) REG BPNN PSO-

BPNN3

1 25 50 365 5.533 4.070 5.543
2 15 80 365 5.775 4.072 5.867
3 5 90 500 5.838 4.834 6.174
4 15 70 1000 6.624 5.358 6.583
5 20 80 1500 7.381 5.569 7.691

3.4.2. Evaluation of Long-Term Corrosion Degree

In order to study the corrosion degree of cement slurry in long-term corrosive en-
vironments, based on a prediction model, the long-term corrosion prediction depth and
corrosion degree calculation formula were used to evaluate the long-term corrosion degree
of cement sample M0 without adding polymer resin and cement sample M1 with adding
10% polymer resin.

From Figure 7, it can be seen that based on the experimental anti-corrosion cement
slurry system, under corrosion condition 1, when the cement stone M1 is corroded for
365 days, the corrosion degree is 43.6%, and the corrosion degree of M0 is 76.69%. Under
corrosion condition 2, after 365 days of corrosion, the corrosion degree of cement stone M1
is 46.2%. The corrosion degree of the cement sheath is less than 50%, and the structure of
the cement sheath is damaged due to corrosion but still has a certain degree of integrity. The
corrosion degree of M0 is 82.55%, and the corrosion degree is greater than 50%, which has
been significantly corroded. Under corrosion conditions 4 and 5, when the cement stone is
corroded for 1500 days, the corrosion degree of M1 is 52.66% and 61.52%, but the corrosion
degree of M0 is 100%. The sample M1 with polymer resin added still maintains good
structural integrity, while the cement sample M0 without resin addition has completely
corroded. In long-term corrosion, the depth and degree of corrosion of the cement sheath
continue to increase, and its dense structure is damaged, seriously affecting its integrity.
The cement slurry added with polymer resin has a relatively lower corrosion degree and
good corrosion resistance. By predicting the corrosion degree of cement under different
corrosion conditions and times, the long-term sealing ability of the cement sheath can be
evaluated, guiding the anti-corrosion design of cement slurry.
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4. Discussion
4.1. Anti-Corrosive Mechanism of Polymer Resin

The anti-corrosion mechanism of polymer resin in oil well cement is shown in Figure 8.
Polymer resin is dispersed in the cement slurry, forming a polymer film encapsulating
hydration products. When an acidic carbon dioxide gas medium invades the interior of
cement slurry, the hydration products are corroded and damaged by the acidic medium,
leading to the structural damage of cement stone. The hydration products wrapped
in polymer resin films can effectively block acidic media and protect cement hydration
products from damage. At the same time, the resin film encapsulates or fills between
the hydration products, improving the overall density of the cement stone, reducing the
invasion of CO2, and reducing the erosion degree of acidic media on the cement [36].
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4.2. PSO-BP Model

The results in Figure 9 show that the established prediction model has high accuracy.
The PSO-BPNN1 and PSO-BPNN2 networks have significant testing errors, resulting in
significant deviations between the test and actual values. The number of network nodes
cannot effectively reflect the mapping relationship between input and output, ignoring
the characteristics of certain sample data and resulting in significant errors. The error of
PSO-BPNN4 is also relatively large, with good fitting at some data points, but there are
cases where there is a significant deviation at some data points. The PSO-BPNN3 has the
smallest testing error and a slight difference between the predicted and actual values, which
can better reflect the actual situation. When there are fewer hidden layer nodes, it is easy to
cause overfitting. When new sample data is input, the mapping results in output values
that do not match the actual situation, resulting in significant errors in the network [37,38].
According to the results, PSO-BPNN3 has high accuracy and can be used for predicting the
corrosion depth of polymer anti-corrosion cement.
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4.3. Comparison between the PSO-BP Model and the Traditional BP Model

In order to analyze the differences between the PSO-optimized model and traditional
BP model. A traditional BP model (BPNN) was constructed (3-10-1) and compared with
the PSO-BP model. The prediction was conducted with test sample data after the training.
The test errors of the two models were compared. The experimental results are as follows.
It was shown in Table 7 and Figure 10 that the PSO-BP neural network has higher precision,
faster network convergence speed, a smaller error of test sample data, lower deviation, and
higher stability and reliability than the traditional BP model.

Table 7. Training results of PSO-BPNN3 and BPNN.

Model Structure R2 Best Validation Error
(MSE) Iterations Test Error

(MSE)

PSO-BPNN3 3-10-1 0.9970 0.0022 4 0.0136
BPNN 3-10-1 0.9941 0.0028 14 0.0184
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4.4. Comparison between the PSO-BP Model and the Regression Model

An empirical formula-based regression model (REG) was obtained based on experi-
mental data as follows [20]:

h = 2.354 × ln t + 0.0182 × T + 0.2693 ×
√

PCO2 − 2.775

where h is the corrosion depth; t is the corrosion time; T is the corrosion temperature; and√
PCO2 is the pressure of CO2.

The R2 of the fitting function is 0.9746, and the mean square error (MSE) of the test
samples is 0.0339.
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To analyze the difference in accuracy between the PSO model and regression model
in predicting the corrosion of polymer anti-corrosion cement, The PSO-BPNN3 and REG
were used to predict the corrosion depth, respectively, and the results were compared.
The experimental results are as follows. From the results in Figure 11, the accuracy of the
regression model based on empirical formulas is relatively low. The BP neural network
model optimized using PSO has higher accuracy compared to multiple regression models.
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4.5. Micromorphology of Cement Samples

In order to analyze the microstructure changes in oil well cement under corrosion con-
ditions, the micro-morphology of oil well cement before and after corrosion was observed
using a scanning electron microscope. The scanning electron microscope diagram is shown
in Figure 12.
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Figure 12. SEM of cement samples (the pressure in the condition is the pressure of CO2). (a): Uncor-
roded cement sample (7 d × 80 ◦C). (b): Corroded cement sample (7 d × 80 ◦C × 20 MPa).

Figure 12b shows that the corroded cement sample has more pores, and compared
to the pre-corroded cement sample, the structure of the cement sample is relatively loose.
The dense structure of the cement sample is destroyed, reducing its strength in corrosive
environments. In Figure 12a, there are no obvious corrosion pores inside the cement stone
added with polymer resin, and there are many hydrated calcium silicate and calcium
hydroxide crystals wrapped in polymer films with a dense overall structure [39]. By
comparing the microstructure of two types of cement stone after corrosion, it is further
indicated that under acidic conditions, polymer resin can effectively improve the corrosion
resistance of cement stone and ensure its integrity.
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5. Conclusions

(1) Adding polymer resin can reduce the strength of cement to some extent but greatly
enhance the corrosion resistance of oil well cement. Polymer anti-corrosion cement
has lower corrosion than blank cement slurry in long-term corrosion.

(2) The PSO algorithm can accelerate the convergence of BP neural networks and avoid
BP neural networks falling into the local extremum. The PSO-BP model has higher
accuracy in predicting the long-term corrosion depth of cement in complex geological
environments compared to regression models and traditional BP networks.

(3) The artificial neural network prediction model based on PSO optimization performs
well in predicting and evaluating the long-term corrosion degree of polymer anti-
corrosion cement and can guide the design and evaluation of anti-corrosion ce-
ment slurry.
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