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Abstract: TiO2 has great potential for application in UV photodetectors due to its excellent photo-
electric response. In this work, composite nanomaterials of TiO2 nanotube arrays (TiO2 NTAs) and
polyaniline (PANI) were successfully prepared on titanium sheets using an anodic oxidation electro-
chemical method. The results showed that the TiO2 NTA/PANI composite materials had excellent
UV photosensitivity and responsiveness and good stability and reproducibility. This was mainly
attributed to the p–n heterostructure formed inside the TiO2 NTA/PANI composites that hindered
the recombination of photogenerated electron–hole pairs and improved their utilization of UV light.
This work provides a theoretical basis for the application of metal oxides in UV photodetectors, which
is important for the development of UV photodetectors.

Keywords: polyaniline; titanium dioxide; ultraviolet photodetector

1. Introduction

UV photodetectors have emerged as an increasingly popular topic in science research
in recent years [1,2]. Due to their excellent performance with a high sensitivity, wide linear
range, and good stability, UV photodetectors in the mid-ultraviolet and near-ultraviolet
wavelength bands are widely used in important fields, including military and defense [3],
biomedicine [4,5], environmental monitoring [6], and light wave communication [7]. The
focus of study has steadily shifted to the utilization of UV radiation from fires or sunlight
for ozone hole and fire monitoring. UV photodetectors have notable advantages over
conventional infrared and other types of photodetectors, including an outstanding photo-
sensitivity and accuracy, good concealment, a high military value, and quick presentation
of detection data [8–10]. The preparation of wide-band semiconductor arrays, which is
complex and expensive, the material’s poor stability, and the devices’ inadequate perfor-
mance are just a few of the issues that remain unresolved despite the extensive research
on UV photodetectors [11–13]. High-performance, high-stability, high-reliability UV pho-
todetectors, particularly UV detectors that can operate in extreme and harsh conditions, are
extremely important to meet the needs of various fields, and the accuracy and reliability
of UV photodetectors have a significant influence on practical applications. Due to their
benefits, several semiconductor materials with various bandwidths are currently employed
as substrate materials for UV photodetectors [14–20]. TiO2 is one of today’s most popular
wide-bandwidth semiconductors due to its benefits of a strong chemical stability, low
toxicity, and environmental friendliness [21–23]. Rutile TiO2 and anatase TiO2 have band-
widths of around 3.0 and 3.2 eV, respectively [24]. The heterojunction formed by combining
the two crystal phases can reduce the forbidden bandwidth and produce a mixed crystal
effect [25], which can somewhat facilitate the separation of photogenerated electron–hole
pairs. This is because the two crystal phases have different valence band energies. In
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ultraviolet photodetection, the aforementioned good optoelectronic features have received
a lot of attention [26,27]. Among them, TiO2 NTAs have a highly ordered structure that
can offer numerous charge transport channels, a greater specific surface area, and more
UV light interaction sites, opening up a wide range of possibilities for the development of
UV photodetectors with a higher performance and efficiency [28–32]. TiO2, on the other
hand, has a very high internal charge complex rate as an n-type metal oxide semiconductor,
and TiO2-based photodetectors need an external voltage to provide potential difference
excitation for proper operation, which results in large device sizes and severely restricts
their application in real life [33]. TiO2TiO2TiO2TiO2TiO2TiO2TiO2P-type conductive poly-
mers like polyaniline (PANI) have a high electrical conductivity and good electrochemical
characteristics. They absorb light well, move carriers quickly, have a high capacitance, are
easy to fabricate, and are environmentally friendly [34–37]. Photogenerated carriers can
be prevented from combining in p–n heterojunctions because their internal electric fields
cause photoelectrons and holes to flow in different directions [38,39]. Mixing the n-type
metal oxide semiconductor TiO2 with the p-type conductive polymer PANI creates a p–n
hetero-junction [40–42]. The heterojunction’s automatically produced potential difference
can push photogenerated electron–hole pairs apart and induce a photocurrent, giving UV
photodetectors [43–45] a high UV sensitivity.

The titanium substrate, which has a large specific surface area, is highly stable, and can
be easily recycled, is fixed with neatly organized TiO2 nanotube arrays (NTAs). However,
TiO2’s large band gap, UV light responsiveness, and high electron–hole pair recombination
rate require modification via doping to improve the performance. Numerous researchers
have coupled TiO2 NTAs with the conductive polymer PANI to develop high-performance
compounds. Wang et al. [46] produced a TiO2 nanotube array photoelectrode (PANI/TiO2)
wrapped in polyaniline (PANI) nanosheets using anodizing and vacuum-assisted impregna-
tion. Polyaniline nanosheets that are securely wrapped in TiO2 nanotubes exhibit superior
light responsiveness and charge separation efficiency compared to pure TiO2. PANI/TiO2-
0.1 has 0.73 times the photocurrent density of TiO2. PEC p-phenol degrades PANI/TiO2-0.1
27.7% better than TiO2. It was found that the polyaniline/TiO2 photoelectrode synergized
photocatalysis and electrocatalysis. Chen et al. [47] produced a PANI/H-TiO2 nanotube
array composite electrode utilizing constant voltage electrochemical deposition. Before
making the PANI/H-TiO2 nanotube array composite electrode, the researchers anodized a
titanium sheet. They then calcined and hydrogenated the sample in hydrogen, put it in
an acetone solution containing sulfuric acid and aniline, and deposited polyaniline on the
titanium dioxide nanotube array at a continuous voltage. PANI/H-TiO2 nanotubes exhibit
excellent electron transport and charge transfer, as shown by their solution resistance of
0.1554 and charge transfer resistance of 2.723 V cm2. Xie et al. [48] used electrochemical
potentiostatic potential polymerization to construct a PANI-TiO2 nanotube array composite
electrode. The anodized titanium dioxide nanotube array was immersed in a hydrochloric
acid solution with aniline monomer, agitated until completely dissolved, and then polyani-
line was added using the potentiostat method (0.9 V) to the same solution to generate a
composite electrode. They observed arrays of disordered polyaniline nanowires around
TiO2 nanotubes, which possessed a unique microstructure, a high specific surface area,
a fast ion transport channel, and long-term cycle stability. An excellent electrochemical
performance was exhibited by the composite. After recombining the TiO2 nanotube array
and PANI, the material’s specific surface area, stability, and charge separation efficiency
improved. Future photoelectric detection materials could benefit from this substance.

This study examines photodetectors and suggests combining TiO2 nanotube arrays
with a p-type conjugated conductive polymer PANI using a two-step electrochemical
method to increase the material’s spectral response range and ultraviolet light absorption.
This analysis relies on previous research. A good p–n heterojunction interface inside the
device improves the ultraviolet photodetectors’ response time, sensitivity, and stability,
accelerates photogenerated electron–hole pair separation, suppresses carrier recombination,
and boosts quantum efficiency.
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2. Experimental Section
2.1. Chemicals

Aniline (C6H7N, AR) was purchased from Alfa Aesar (Shanghai, China). Anhydrous
ethanol (C2H5OH, AR) and hydrofluoric acid (HF, AR) were purchased from Tianjin Damao
Chemical Reagent Co., Ltd. (Tianjin, China). Concentrated sulfuric acid (H2SO4, AR) and
acetone (CH3COCH, AR) were purchased from Guangzhou Chemical Reagent Factory
(Guangzhou, China). Titanium flakes were purchased from Shaanxi Baoji Erlitai Products
Co., Ltd. (Baoji, China).

2.2. Preparation of TiO2 NTAs

The titanium sheet was polished with sandpaper until the surface had a metallic luster,
and then it was evenly cut to a thickness of 0.5 mm, a length of 20 mm, and a width of
10 mm. Then, the sheet was placed in acetone, anhydrous ethanol, and deionized water
for ultrasonic cleaning for 30 min each, and then it was removed and dried for spares. A
two-electrode system was adopted, where the pre-treated titanium sheet was placed on the
electrode clamp as the anode, the platinum sheet was used as the cathode, a DC regulated
power supply was used as the external power supply, and a hydrofluoric acid solution with
a mass fraction of 1.5% was used as the electrolyte. After connecting the parts of the device,
the samples were anodized at 20 V for 8 min, removed and rinsed in deionized water until
the electrolyte was removed from the surface, and then dried. Finally, the samples were
put into a muffle furnace with a heating rate of 5 ◦C/min and annealed at 600 ◦C for 3 h to
produce the desired TiO2 NTAs.

2.3. Preparation of TiO2 NTAs/PANI Composite Nanomaterials

TiO2 NTAs were composited with PANI using an electrochemical method at room
temperature. A three-electrode system was used at room temperature, and an aniline
sulfuric acid solution with a mass fraction of 0.8% was used as the electrolyte using a
1 mol/L dilute sulfuric acid solution. The TiO2 NTA samples prepared above were placed
on the electrode clamp as the anode, a platinum sheet electrode was used as the cathode,
and a saturated mercuric glycol solution was used as the reference electrode. The electrodes
were immersed in electrolyte and reacted for 1 h at a constant potential of 0.9 V using a
potentiostat in an electrochemical workstation (CHI660D), with a sample interval of 0.1 s.
The samples were taken out at the end of the reaction, and the surfaces of the samples were
rinsed clean of the electrolyte with deionized water and dried to obtain the TiO2 NTA/PANI
composite nanomaterials. The preparation flow diagram of the TiO2 NTA/PANI device is
shown in Figure 1a,b.

2.4. Characterization

The micromorphology of the samples was evaluated using scanning electron mi-
croscopy (SEM, JSM-7001F). The crystal structure of the samples was investigated by X-ray
diffraction (XRD, PW3040/60) and the molecular structure was investigated using a Raman
spectrometer (LabRAM Aramis, Villeneuve d’Ascq, France).

2.5. Photoelectric Measurements

The photoelectric properties were tested using a UV-visible spectrophotometer (UV
2450, Shimadzu, Kyoto, Japan), a handheld dual-wavelength UV lamp (ENF260C, Spec-
tronics, Underwood, QLD, Australia), a fluorescence spectrometer (FLS1000, Edinburgh,
UK), and an electrochemical workstation (CHI660D, Shanghai, China).
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Figure 1. Schematic diagram of TiO2 NTA/PANI device preparation (a); device structure diagram (b).

3. Results and Discussion
3.1. Regulation of Process Parameters

The titanium sheet served as the anode, the aluminum sheet served as the cathode,
and the electrolyte was a solution of hydrofluoric acid with a mass fraction of 1.5%. The
reaction was conducted at room temperature for 8 min using the anodic oxidation method.
Figure 2a–c displays the SEM images of the products obtained at oxidizing voltages of 15 V,
20 V, and 25 V, respectively. TiO2 NTAs were not generated on the surface of the titanium
sheet when the oxidation voltage was as low as 15 V, but rather a laminated blade-like
structure was observed. When the oxidation voltage was 20 V, TiO2 NTAs with smooth
surfaces, large tube diameters, homogeneous morphologies, and stability were effectively
manufactured. The TiO2 NTAs shattered and their surfaces became granular when the
oxidation voltage reached 25 V, demonstrating that the voltage was too high at that point.
A voltage of 20 V was therefore chosen as the subsequent reaction voltage. Other reaction
conditions remain unchanged. SEM images of the samples obtained by oxidizing titanium
sheets at room temperature for different durations are shown in Figure 2d–f, representing
oxidation times of 5 min, 8 min, and 10 min, respectively. When the reaction was carried out
for 5 min, it can be clearly observed that a large and uniform pore-like structure appears on
the surface of the titanium sheet, and this phenomenon was considered to be a precursor to
the nanotube array structure, even though it did not form a complete TiO2 NTA structure.
When the reaction was carried out for 8 min, it was observed that complete and uniform
TiO2 NTAs were obtained on the surface of the titanium sheet, with a uniform diameter
and smooth mouth, which were the target products. With an increase in the reaction time
to 10 min, the tube diameter was slightly reduced, and there was a local rupture of the tube
mouth. Therefore, 8 min was chosen as the reaction time in subsequent experiments.
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1.5% HF (h), 2% HF (i).

Figure 2g–i corresponds to electrolytes at hydrofluoric acid mass fractions of 1%, 1.5%,
and 2%, respectively. When the electrolyte was hydrofluoric acid at 1% concentration, TiO2
NTAs were observed, but their walls were granular and slightly thinner than those of the
target product. When the electrolyte was hydrofluoric acid at a concentration of 1.5%,
complete TiO2 NTAs could be observed, and the tube wall was smoother, with a moderate
thickness which was uniform and stable. When the electrolyte was 2% hydrofluoric acid, the
tube wall was further thickened, and it can be observed that its thickness affected the size of
the tube aperture, with the possibility of affecting the surface of the TiO2 NTs when in full
contact with UV light. Therefore, during the preparation of TiO2 NTAs by anodic oxidation,
the concentration of the electrolyte can directly affect the wall thickness of the resulting
TiO2 NTs, tending to thicken as the concentration of the electrolyte increases. Considering
the aim of increasing the photoelectric conversion efficiency of the UV photodetector by
ensuring the material is in contact with UV light as much as possible, a hydrofluoric acid
solution with a mass fraction of 1.5% was selected as the electrolyte.

3.2. Characterization of TiO2 NTA/PANI Nanocomposites

Figure 3a,c shows the top view of the TiO2 NTAs, which shows that the TiO2 NTAs
were perpendicular to the substrate of the titanium sheet, and each one of them was separate
and independent with a relatively uniform size. The diameter of the tubes was about 25 nm,
the tube wall was smooth, and the thickness was uniform. In addition, a cross-sectional
view of TiO2 NTAs is shown in Figure 3c, and we can observe that the thickness of the array
structure is relatively uniform and its thickness is about 1.5 µm. In this way, the top-down
nanotube array structure can generate a large specific surface area and expand the area
of the p–n junction dissipation region, which provides favorable conditions for sufficient
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contact with ultraviolet light in the subsequent application of ultraviolet spot detectors.
The bottom view of the sample is shown in Figure 3b, where it can be further observed that
the TiO2 NTs have uniform and independent tube diameter sizes, smooth bottoms, and
tight overall structures. Figure 3d shows the structure of the TiO2 NTA/PANI composite
material. When the TiO2 NTAs were electrochemically composited with PANI, it could be
observed that the mouth of the tubes, the tubes, and the inter-tube area were uniformly
covered with PANI particles, showing an excellent composite effect.
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Figure 3. SEM images of TiO2 NTAs (a–c), TiO2 NTA/PANI nanocomposite (d).

Figure 4a shows the XRD pattern of TiO2 NTA/PANI composite nanomaterials.
The TiO2 NTAs obtained under these conditions were binary, mixed, crystalline-type
NTAs doped with rutile and anatase, and the contact interface between them forms an
anatase/rutile (A/R) heterojunction. The intensity and number of peaks showed that the
peaks were predominantly rutile peaks. Apart from the characteristic peaks of titanium
flakes, there were no other impurity peaks in this sample. The Raman spectra of TiO2
NTA/PANI nanocomposites are shown in Figure 4b. Among them, the peaks at 141, 233,
443, and 611cm−1 are characteristic rutile TiO2 peaks [49], also indicating that the rutile
type dominated the samples obtained by the above preparation method.

The intrinsic structural peaks of PANI can also be observed at 1196 cm−1 around
the C-H plane bending vibration (benzene structure), 1293 cm−1 around the protonated
structure, 1376 cm−1 around the C-N+ stretching vibration (semiquinone ring), 1569 cm−1

around the C=C stretching vibration (quinone structure), and 1621 cm−1 around the C-C
stretching vibration in the benzene ring (benzene structure). A C-C stretching vibration in
the benzene ring (benzene structure) occurs near 1621 cm−1 [46,50].
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3.3. Optoelectronic Property Testing of TiO2 NTA/PANI Nanocomposites

The UV-Vis absorption spectra of TiO2 NTAs and TiO2 NTA/PANI nanocomposites are
shown in Figure 5a. It can be seen that the absorption of pure TiO2 NTAs and TiO2/PANI
nanocomposites in the UV region in the range of 200 nm~400 nm was significantly higher
than that in the visible region of 400 nm~600 nm, especially after the combining TiO2 NTAs
and PANI. The absorption of the composite material in the UV region increased by 20%
compared to that of the pure TiO2 NTs, exhibiting a more effective detection of UV light.
The detection effect of UV light was more significant.

Figure 5b shows the voltametric characterization curves of TiO2 NTA/PANI nanocom-
posites under UV irradiation at different wavelengths. The samples were irradiated under
365, 312, and 254 nm UV light and were subjected to photocurrent testing under dark
conditions as a blank control. From this, it can be observed that the devices had obvious
rectification characteristics, which proved that TiO2 effectively formed a p–n heterojunction
after being combined with PANI using an electrochemical method. Meanwhile, it was
not difficult to observe that its current under UV irradiation was higher than that in a
dark environment; at the same voltage, the photocurrent increased with the increase in the
wavelength of irradiated UV light and it had a better sensitivity to UV light.

Polymers 2023, 15, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 5. UV–vis light absorption spectra (a) and I–V curves (b) of TiO2 NTAs and TiO2 NTA/PANI 
nanocomposite. 

Repeatability and the response speed are important factors when examining the per-
formance of UV photodetector devices. The characteristic photocurrent–time response 
curves of pure TiO2 NTAs and TiO2 NTA/PANI nanocomposites are shown in Figure 6a, 
indicating a good stability and repeatability. We used the electrochemical workstation 
(CHI660D), selected amperometric i–t curve parameters, and set the initial voltage to 0V, 
the sampling interval to 0.1 s, the running time to 400 s, the quiet time to 0 s, and the 
sensitivity to 1 × 10−4. Under the conditions of no applied voltage and darkness, it could 
be observed that there was almost no current generation for both samples. After turning 
on the UV light source and selecting an UV irradiation wavelength of 365 nm, the materi-
als were in full contact with the UV light and both of them instantly generated a photo-
current in a very short time. When the current was stabilized and the UV light power 
supply was turned off, the current was then restored to the initial level in a very short 
time. The photocurrent generated by TiO2 NTA/PANI nanocomposites was three orders 
of magnitude larger than that of the pure TiO2 NTAs. As shown in Figure 6a,c, the re-
sponse time of the pure TiO2 NTA device was 4.6 s/4.1 s when the light source was 
switched, while the response time of the TiO2 NTA/PANI nanocomposite device was 1.15 
s/0.75 s, its photocurrent reached the desired level in a very short time, and its sensitivity 
to UV light and the response rate were much higher than those of the former. The charac-
teristic photocurrent–time response curves of TiO2 NTA/PANI nanocomposites under 
three different wavelengths of UV irradiation (254, 312, and 365 nm) with an applied volt-
age of characteristic are shown in Figure 6b, from which we can observe that the TiO2 
NTAs had a high sensitivity to UV light and a fast response rate after being effectively 
composited with PANI. At the same time, we can see that in the UV region, the longer the 
wavelength used to irradiate the sample, the larger the generated photocurrent. 

In Figure 6c, we hypothesize that the heterojunction between pure TiO2 and the cur-
rent collector is the reason that pure TiO2 materials also produce a photocurrent. In our 
test, the TiO2, Ti substrate, and FTO contacts make up the majority of the heterojunctions 
that may interact with photogenerated electrons. A faint photocurrent can form because 
FTO is a fluorine-doped SnO2 (tin dioxide) film that forms a very weak heterojunction at 
the point where it comes into contact with the TiO2 nanotube layer. Additionally, between 
the TiO2 nanotube layer and the substrate Ti sheet layer, there will be a metal/semicon-
ductor metal oxide heterojunction that has the potential to create an integrated electric 
field [51–53]. A weak photocurrent is observed at 0 V bias in pure metal–oxide–semicon-
ductor devices, which is consistent with many other similar device architectures. Further-
more, based on the SEM findings, we hypothesize that the TiO2 nanotube layer and the 
FTO layer have significantly less stratum areas than the TiO2 NTA/PANI device, resulting 

Figure 5. UV–vis light absorption spectra (a) and I–V curves (b) of TiO2 NTAs and TiO2 NTA/PANI
nanocomposite.

Repeatability and the response speed are important factors when examining the
performance of UV photodetector devices. The characteristic photocurrent–time response
curves of pure TiO2 NTAs and TiO2 NTA/PANI nanocomposites are shown in Figure 6a,
indicating a good stability and repeatability. We used the electrochemical workstation
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(CHI660D), selected amperometric i–t curve parameters, and set the initial voltage to
0 V, the sampling interval to 0.1 s, the running time to 400 s, the quiet time to 0 s, and
the sensitivity to 1 × 10−4. Under the conditions of no applied voltage and darkness, it
could be observed that there was almost no current generation for both samples. After
turning on the UV light source and selecting an UV irradiation wavelength of 365 nm,
the materials were in full contact with the UV light and both of them instantly generated
a photocurrent in a very short time. When the current was stabilized and the UV light
power supply was turned off, the current was then restored to the initial level in a very
short time. The photocurrent generated by TiO2 NTA/PANI nanocomposites was three
orders of magnitude larger than that of the pure TiO2 NTAs. As shown in Figure 6a,c,
the response time of the pure TiO2 NTA device was 4.6 s/4.1 s when the light source
was switched, while the response time of the TiO2 NTA/PANI nanocomposite device
was 1.15 s/0.75 s, its photocurrent reached the desired level in a very short time, and its
sensitivity to UV light and the response rate were much higher than those of the former.
The characteristic photocurrent–time response curves of TiO2 NTA/PANI nanocomposites
under three different wavelengths of UV irradiation (254, 312, and 365 nm) with an applied
voltage of characteristic are shown in Figure 6b, from which we can observe that the TiO2
NTAs had a high sensitivity to UV light and a fast response rate after being effectively
composited with PANI. At the same time, we can see that in the UV region, the longer the
wavelength used to irradiate the sample, the larger the generated photocurrent.

In Figure 6c, we hypothesize that the heterojunction between pure TiO2 and the current
collector is the reason that pure TiO2 materials also produce a photocurrent. In our test, the
TiO2, Ti substrate, and FTO contacts make up the majority of the heterojunctions that may
interact with photogenerated electrons. A faint photocurrent can form because FTO is a
fluorine-doped SnO2 (tin dioxide) film that forms a very weak heterojunction at the point
where it comes into contact with the TiO2 nanotube layer. Additionally, between the TiO2
nanotube layer and the substrate Ti sheet layer, there will be a metal/semiconductor metal
oxide heterojunction that has the potential to create an integrated electric field [51–53]. A
weak photocurrent is observed at 0 V bias in pure metal–oxide–semiconductor devices,
which is consistent with many other similar device architectures. Furthermore, based on
the SEM findings, we hypothesize that the TiO2 nanotube layer and the FTO layer have
significantly less stratum areas than the TiO2 NTA/PANI device, resulting in a reduced
built-in electric field. The built-in electric field of pure TiO2 is much weaker than the built-in
electric field of TiO2 NTA/PANI devices, so the photocurrent is smaller when testing the
photocurrent of pure TiO2 devices. In conclusion, even pure TiO2 devices have an internal
electric field when testing the photocurrent, which can generate a photocurrent.

Responsivity (R) is a key parameter that determines the sensitivity of a photodetector
device. The greater the R, the higher the sensitivity, expressed by the following formula [54]:

R = ∆I/P

∆I is the difference between the photocurrent and the dark current and P is the
optical power. Under 365 nm light irradiation (light intensity is 310 µW/cm2), the effective
irradiation area was about 1 cm2, and when the bias voltage was 0 V, the calculated R
value of the TiO2 NTA device was 0.002 A/W. TiO2 NTA/PANI devices had R values of
0.026 A/W when irradiated with 365 nm light. Obviously, TiO2 NTA/PANI had a bigger
R, indicating that the device had the best responsivity. When changing the wavelength of
irradiating ultraviolet light, it can be calculated that the R value of TiO2 NTAs/PANI at
254 nm was 0.005 A/W at 254 nm and 0.008 A/W at 312 nm, both of which are less than the
R value at 365 nm. In summary, the TiO2 NTA/PANI device had good spectral selection
responsiveness, high detection rate, and responsivity.
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Figure 7 shows the PL spectra of TiO2 NTAs and TiO2 NTA/PANI nanocomposites.
After excitation with ultraviolet light of different wavelengths, pure TiO2 has a strong
luminous intensity, which is a typical optical characteristic of TiO2 semiconductors and
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confirms that the prepared TiO2 has good photoexcitation properties. At the same time, it
can be clearly observed from Figure 7 that when TiO2 NTAs were loaded with PANI, the
luminous intensity was significantly weakened, indicating that the presence of PANI can
transfer photogenerated electrons and thereby effectively inhibiting the recombination of
photogenerated electron–hole pairs and improving the charge separation efficiency. At the
same time, this also confirms the existence of the built-in electric field at the interface of
TiO2 NTA and PANI.
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The heterojunctions in the anatase/rutile binary mixed-crystal TiO2 NTAs prepared
in this work can promote the transfer, separation, and migration of internal electrons
and holes, which can effectively enhance the photosensitivity and photoresponsivity by
suppressing carrier recombination and achieve better photoelectrochemical performances
than those of the single-crystal TiO2 devices [55,56]. Meanwhile, the p–n heterojunction
formed by electrochemically combining TiO2 NTAs with PANI can improve the utilization
of UV light in UV point detector devices, which offers the possibility of improving the
photoelectric efficiency, response speed, and UV sensitivity of the devices.

3.4. Internal Electron Transfer Mechanism of TiO2 NTA/PANI Materials

A space charge zone will arise at the interface as a result of electrons and holes being
transported during the recombination of the two due to the various heights of the Fermi
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energy level. PANI is a p-type semiconductor that primarily conducts holes with a band
gap of 2.80 eV and a Fermi level that is in close proximity to the valence band [57]. With a
band gap of 3.2 eV and a Fermi level that is quite close to the conduction band, TiO2 is an
n-type semiconductor that primarily conducts electrons [58]. Figure 8 shows a schematic
representation of the energy band at the PANI/TiO2 nanocomposite’s PANI/TiO2 interface.
As shown in the picture, when a p–n heterojunction between PANI and TiO2 is created,
since PANI is primarily conducted by holes and TiO2 is primarily conducted by electrons,
holes will transfer from TiO2 to PANI and electrons will pass from PANI to TiO2. A built-in
electric field will be created by the transfer of electrons and holes. The built-in electric field
runs in the opposite direction from where electrons are moving. The Fermi energy level
at the interface of PANI and TiO2 will then be flat, as holes and electrons attain dynamic
equilibrium. The energy band structure at the contact is twisted as a result of the creation of
the internal electric field. The p–n heterojunction is created by the formation of an electron
accumulation layer on the PANI side and an electron depletion layer on the TiO2 side [59].
Photovoltaic heterojunction UV photodetectors are built around this.

Polymers 2023, 15, x FOR PEER REVIEW 12 of 15 
 

 

 
Figure 8. The contact potential differences of (a) PANI and (b) TiO2. (c) Schematic diagram of inter-
face electron transfer. 

4. Conclusions 
In this work, TiO2 NTA/PANI composite nanomaterials were successfully grown on 

titanium sheets by applying an anodic oxidation electrochemical method, and their pho-
toresponsivity properties were further investigated. The findings demonstrated that a 
good p–n heterostructure evolved within the TiO2 NTA/PANI composites, which pro-
duced a clear rectification effect in their voltametric characteristic curves. They also 
demonstrated a high reaction rate, a strong UV photosensitivity, and good repeatability. 
This was primarily caused by the development of a p–n heterostructure, which prevented 
the combination of photogenerated electron–hole pairs and increased the device’s quan-
tum efficiency and ability to use UV light. This provides a theoretical foundation and tech-
nical direction for the use of innovative UV photodetectors. 

Author Contributions: Conceptualization, C.L. and P.H.; methodology, W.W.; software, F.F.; vali-
dation, P.H., M.T. and F.F.; formal analysis, C.L. and P.H.; investigation, M.T.; resources, W.W.; data 
curation, C.L. and F.F.; writing—original draft preparation, P.H.; writing—review and editing, Y.F.; 
visualization, P.H.; supervision, Y.F.; project administration, W.W.; funding acquisition, W.W. All 
authors have read and agreed to the published version of the manuscript. 

Figure 8. The contact potential differences of (a) PANI and (b) TiO2. (c) Schematic diagram of
interface electron transfer.



Polymers 2023, 15, 4400 12 of 14

4. Conclusions

In this work, TiO2 NTA/PANI composite nanomaterials were successfully grown on
titanium sheets by applying an anodic oxidation electrochemical method, and their pho-
toresponsivity properties were further investigated. The findings demonstrated that a good
p–n heterostructure evolved within the TiO2 NTA/PANI composites, which produced a
clear rectification effect in their voltametric characteristic curves. They also demonstrated a
high reaction rate, a strong UV photosensitivity, and good repeatability. This was primarily
caused by the development of a p–n heterostructure, which prevented the combination
of photogenerated electron–hole pairs and increased the device’s quantum efficiency and
ability to use UV light. This provides a theoretical foundation and technical direction for
the use of innovative UV photodetectors.
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