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Abstract: Simultaneously high-rate and high-safety lithium-ion batteries (LIBs) have long been the
research focus in both academia and industry. In this study, a multifunctional composite membrane
fabricated by incorporating poly(vinylidene fluoride) (PVDF) with magnesium carbonate hydroxide
(MCH) nanofibers was reported for the first time. Compared to commercial polypropylene (PP)
membranes and neat PVDF membranes, the composite membrane exhibits various excellent proper-
ties, including higher porosity (85.9%) and electrolyte wettability (539.8%), better ionic conductivity
(1.4 mS·cm−1), and lower interfacial resistance (93.3 Ω). It can remain dimensionally stable up to
180 ◦C, preventing LIBs from fast internal short-circuiting at the beginning of a thermal runaway
situation. When a coin cell assembled with this composite membrane was tested at a high temper-
ature (100 ◦C), it showed superior charge–discharge performance across 100 cycles. Furthermore,
this composite membrane demonstrated greatly improved flame retardancy compared with PP and
PVDF membranes. We anticipate that this multifunctional membrane will be a promising separator
candidate for next-generation LIBs and other energy storage devices, in order to meet rate and
safety requirements.

Keywords: magnesium carbonate hydroxide nanofiber; composite membrane; lithium-ion batteries;
high rate; high safety

1. Introduction

The development of energy storage devices has been on a fast track due to the rapid
growth of renewable and clean energy sources. Lithium-ion batteries (LIBs) are the most
well-established and studied energy storage devices, thanks to their favorable characteris-
tics including good cycle performance, high working voltage, high energy density, power
density, and environmental friendliness [1–4]. However, concerns about the safety of elec-
tric vehicles still persist due to potential hazards such as short circuits and fires caused in
LIBs [5]. As a result, there is a pressing need to enhance both energy/power density and
safety in battery technology.

The technical key constituents of LIBs primarily include positive electrode materi-
als, negative electrode materials, separators, electrolytes, and assembly technology [6,7].
Among these, the separator is a pivotal component that plays a crucial role in the perfor-
mance of the battery. It serves three key functions: (1) preventing direct contact between
the positive and negative electrodes, which can cause short circuits; (2) facilitating the
transportation of lithium ions between the positive and negative electrodes; and (3) storing
electrolytes and ensuring the free passage of lithium ions through the electrolyte in order
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to complete the electrode reaction [8–11]. Polyolefin microporous membranes, specifically
polyethylene (PE), polypropylene (PP), and sandwiched PP/PE/PP membranes, have
emerged as common separator materials in LIBs due to their low cost, exceptional tensile
strength, and strong chemical and electrochemical stability [12]. However, these mem-
branes possess certain limitations, including poor electrolyte wettability and low thermal
stability. Poor electrolyte wettability may cause various problems such as capacity dete-
rioration, poor rate performance, and even encouraging lithium dendrites. Low thermal
stability may lead to severe shrinkage at high temperatures, which increases the risks
of thermal runaway situations [13,14]. To mitigate these risks, researchers have made
numerous attempts to develop an ultimate solution. Robust polymers have emerged as
promising candidates for LIBs separators, with a notable focus on poly(vinylidene fluoride)
(PVDF) [15–19], polyimide (PI) [20–22], and poly(acrylonitrile) (PAN) [23,24]. PVDF, in
particular, possesses exceptional electrochemical and thermal stability. In addition, the β

crystalline phase of semicrystalline PVDF (TTTT molecular configuration) displays a high
dielectric constant and polarity, which promotes efficient dissociation and transportation
of lithium ions within the electrolyte, thereby leading to higher ionic conductivity [25].
Despite its favorable properties, pure PVDF membranes still cannot fulfill the thermally
safe requirements for contemporary commercial applications. Researchers have taken
advantage of adding fillers to enhance their performance. A promising approach involves
utilizing the intrinsic characteristics of nanoparticles or nanosheets, including SiO2 [26,27],
Al2O3 [28,29], Mg(OH)2 [30,31], Ni(OH)2 [32,33], and others, to bolster the electrolyte
wettability and thermal stability of membranes. However, nanoparticles/nanosheets tend
to aggregate, resulting in pore blockages and uneven membranes thickness. Moreover,
in cases of various abuse conditions resulting in combustion, commercial membranes are
lacking in flame-retardant solutions.

While attempts to enhance the safety of LIBs have yielded some success, they tend
to focus on singular concerns. Here, we propose an innovative way of addressing multi-
ple functions simultaneously by incorporating magnesium carbonate hydroxide (MCH)
nanofibers into the PVDF matrix and utilizing a non-solvent-induced phase separation
(NIPS) technique to produce a MCH/PVDF composite membrane. Our research delves
into the comprehensive effects of different MCH nanofiber compositions on morphology,
electrolyte affinity, lithium ion conductivity, lithium dendrites’ suppression, the thermal
stability of composite membrane, and the electrochemical performance of the assembled
LiFePO4/membrane/Li half-cells.

2. Experimental
2.1. Materials

PVDF (Solef 6010) was purchased from Solvay Co. (Tavaux, France). N,N-dimethylformamide
(DMF, analytical grade), magnesium acetate (Mg(CH3COO)2·4H2O), and carbamide (CH4N2O)
were brought from Sinopharm Chemical Reagent (Shanghai, China) Co., Ltd. N-methyl-2-
pyrrolidone (NMP, analytical grade) and 1 mol/L LiPF6 (in EC:DEC = 1:1 v/v) were brought
from Suzhou Duoduo Chemical Technology (Suzhou, China) Co., Ltd. All chemicals were
used without further purification and modification.

2.2. Synthesis of Magnesium Carbonate Hydroxide Nanofibers

A solution was prepared by mixing 500 mg Mg(CH3COO)2·4H2O and 2.4 g CH4N2O
with 100 mL of water and stirring for 5 min at room temperature (25 ◦C). Next, the mixture
solution was heated in a reactor at 180 ◦C for 2 h, then cooled to room temperature. The
pure magnesium carbonate hydroxide (MCH) nanofibers were then obtained by filtering
and drying the products at 110 ◦C for 12 h.

2.3. Preparation of Composite Membranes

This study used the non-solvent-induced phase separation (NIPS) method to create
composite membranes, as shown in Figure 1. MCH nanofibers were mixed into DMF
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and sonicated for 20 min. PVDF was then added to the suspension and dissolved under
magnetic stirring at 50 ◦C for 3 h to make a blended slurry. The blended slurry was evenly
mixed by ball-milling. After degassing at 30 ◦C for 2 h, the slurry was cast onto a glass plate
using a doctor blade. The plate was immersed in deionized water, and the solvent (DMF)
in the solution underwent an exchange with the non-solvent (water), resulting in liquid–
liquid phase separation. This led to a phase transition of the original stable solution, hence
the polymer thin layer solidified into a porous membrane [34]. MCH/PVDF composite
membranes were obtained after drying in a vacuum oven at 60 ◦C for 12 h. Weight ratios of
MCH nanofibers of 10 wt%, 30 wt%, and 50 wt%, respectively, were used to investigate the
effect of MCH nanofiber content on various properties of composite membranes. Samples
with different amounts of MCH were sequentially denoted PM-10, PM-30, and PM-50,
respectively. The samples used for comparison were a commercial PP membrane (Celgard
2500, Charlotte, NC, USA) and a neat PVDF membrane.
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2.4. Characterizations

X-ray diffraction (XRD, Ultima IV, Tokyo, Japan) was carried out to analyze the
crystalline structure of nanofibers at diffraction angles, within the range of 5−80◦. The
morphologies and microstructures of the composite membranes were analyzed with a
scanning electron microscope (SEM, JSM-6390LV, Tokyo, Japan) at an accelerating voltage
of 15 kV, along with energy-dispersive spectroscopy (EDS).

Contact angles were measured using the sessile drop method with 5 µL electrolyte on a
contact angle meter (Theta Flex, Gothenburg, Sweden). Electrolyte uptake was determined
by weighing the membranes before and after 2 h of soaking, and calculating the uptake
ratio using Equation (1):

η =
M2 −M1

M1
× 100% (1)

where M1 and M2 are the weights of the membrane before and after soaking, respectively.
Membrane porosity was determined using the n-butanol soaking method, and calculated
by following Equation (2).

P =
M2 −M1

ρ×A×D
× 100% (2)

where ρ is the density of the n-butanol solvent. M1 and M2 are the weights of the membrane
before and after soaking for 2 h, and A and D are the area and thickness of the membrane,
respectively.

The thermal decomposition behavior of the membranes was analyzed using thermo-
gravimetry (TG, STA8000, Shelton, CT, USA) under a nitrogen atmosphere, heating from
room temperature to 800 ◦C at a rate of 10 ◦C·min−1. Thermal shrinkage behavior was
determined by heating the membranes at various temperatures for 2 h, and the resulting
shrinkage ratio was calculated using Equation (3).

TSR =
S0 − S1

S0
× 100% (3)

where S0 and S1 are the areas of membranes before and after heat treatment, respectively.
The limiting oxygen index (LOI) value of various membranes was measured using the

oxygen index test instrument (FTT0077, West Sussex, UK), according to the GB/T 2406.2
standard [35].
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2.5. Electrochemical Measurements

The cathode materials were prepared by mixing LiFePO4, PVDF, and Super P pow-
ders in an 8:1:1 weight ratio with NMP solvent. The electrochemical performance of the
LiFePO4/membrane/Li half-cells with various membranes was evaluated using CR2032
coin cells. The electrolyte used in this study was 1 mol/L LiPF6 (in EC: DEC = 1:1 v/v).
Cells were assembled in an argon-filled glove box with low moisture (<0.1 ppm) and
oxygen (<0.1 ppm). Charge/discharge cycling performance and C-rate capability were
tested using a Neware Battery Testing System (BTS-4000, Shenzhen, China) over a voltage
range of 2.5–4.2 V at 25 ◦C and 100 ◦C, respectively.

To assess the electrochemical stability of the membranes, linear sweep voltammetry (LSV)
was performed. Stainless steel working electrodes were sandwiched with the membranes and
lithium metal counter electrodes before testing at a scan rate of 0.1 mV·s−1 at 25 ◦C.

The electrochemical impedance spectroscopy (EIS) method was used to measure
the bulk resistance (Rb) of the SS/membrane/SS cell. The measurements were taken at
a voltage amplitude of 5 mV and in a frequency range of 0.1–500 kHz at 25 ◦C. Using
Equation (4), we calculated the ionic conductivity (σ).

σ =
D

Rb ×A
(4)

where D is the thickness of the membrane, A is the surface area, and Rb is the bulk resistance,
respectively.

The lithium ion transference number was evaluated via chronoamperometry and EIS.
Specifically, the resistance of the Li/membrane/Li cell before and after polarization was
tested via AC impedance. The polarization was completed for 2500 s under a voltage of
10 mV, and it was calculated using the following Equation (5):

tLi+ =
IS(∆V − I0R0)

I0(∆V − ISRS)
(5)

where ∆V is 10 mv, and I0, IS, R0, and Rs represent the initial current, the steady-state
current, the initial resistance, and the steady-state resistance, respectively.

The charge transfer resistance (Rct) of the Li/membrane/Li cell at different tempera-
tures (30, 35, 40, 45, and 50 ◦C) was determined using EIS. The measurements were carried
out at different temperatures with a voltage amplitude of 5 mV and a frequency range of
0.1 Hz–500 kHz. We used the Arrhenius equation (Equations (6) and (7)) to calculate the
activation energy required for lithium ion transport at the interfaces of the electrode and
electrolyte-absorbing membrane. (

1
Rct

)
= Ae

−Ea
RT (6)

ln
(

1
Rct

)
= ln A− Ea

R
× 1

T
(7)

where A is a pre-exponential factor, Rct represents the interfacial impedance (Ω), T is
the temperature (K), and R is 8.314 J K−1 mol−1; Ea is the activation energy for lithium
ion transport.

3. Results and Discussion
3.1. Characterization of Magnesium Carbonate Hydroxide (MCH) Nanofiber

The size, morphology, and crystalline structure of the as-prepared MCH nanofibers
were analyzed using SEM and XRD. The XRD profile in Figure 2a reveals that all reflection
peaks correspond to 4MgCO3·Mg(OH)2·5H2O (JCPDS card No. 29-0858). Figure 2b shows
that the MCH nanofibers have fibrous structures with diameters ranging from 150 to
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450 nm. The formation of these MCH nanofibers can be expressed through the following
major chemical reactions:

CO (NH2)2 + H2O→ CO2 + NH+
4 + OH−

Mg2+ + CO2+OH− → 4MgCO3·Mg(OH)2·5H2O
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Figure 2. (a) XRD profile and (b) SEM image of MCH nanofibers.

3.2. Morphology of Composite Membranes

The microstructure of the MCH/PVDF composite membranes was analyzed using
SEM. Figure 3 shows that all membranes have micropores on their top surfaces. The
uniformity of these micropores was improved upon the addition of MCH nanofibers.
Specifically, at a MCH nanofiber content of 50%, the pore size distribution of the composite
membrane was the most uniform, with a size of 0.75 µm (Figure S1). Additionally, EDS
mapping of fluorine (F) and magnesium (Mg) elements on the surface of PM-50 membranes
indicated that MCH nanofibers were uniformly dispersed throughout the membrane
(Figure S2).
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The cross-sectional view in Figure 3 reveals a highly interconnected, porous structure in
all membranes, characterized by finger-like pores on the top layer and dense micropores on the
bottom layer. This asymmetrical morphology is a direct result of the phase inversion process,
which greatly enhances the membrane’s porosity and ability to absorb liquid electrolytes.

The pore structure of the membranes created by the phase inversion method is sig-
nificantly influenced by diffusion kinetics and thermodynamics during the membrane
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formation process [30]. The thermodynamic aspect relates to the phase equilibrium within
a polymer solution component system, while the kinetic factor pertains to the mutual
diffusion and convection of components [36]. Analysis of SEM cross-sections indicates that
as the amount of MCH nanofibers increased in the composite membranes, finger-like pores
decreased, while spongy micropores increased. Notably, at a MCH nanofiber content of
50%, through the composite membrane, spongy micropores were uniformly distributed.
The pore size distributions at the cross sections of different membranes are shown in
Figure 3i–l. Although the average pore size of PM-50 composite membrane is the same
as that of PM-10, the pore size distribution analysis indicates that the range of pore size
in the PM-50 composite membrane is much narrower than that in the PM-10 membrane.
This is because as the MCHs nanofiber content increases, the amount of DMF solvent
required in the mixture increases, resulting in a gradual decrease in the concentration of
the casting solution, which gradually slows the polymer precipitation rate (i.e., the rate of
conversion from solvent to non-solvent); the diffusion exchange between the solvent and
non-solvent leads to the solution entering a thermodynamically unstable state, resulting
in liquid phase separation [37]. According to Strathmann et al., a slow conversion rate
leads to the formation of a spongy and uniform micropores structure [38]. A concentrated
distribution of pore size would be beneficial to the formation of a uniform concentration
gradient of lithium ions near the electrode side.

3.3. Porosity and Electrolyte Uptake of Membranes

For membranes to facilitate the efficient transport of lithium ions between the cathode
and anode, they must exhibit excellent electrolyte wettability [39]. One significant consider-
ation in achieving optimal liquid electrolyte absorption is the degree of porosity. Figure 4a
illustrates a comparison of membrane porosity levels and corresponding electrolyte uptake.
Composite membranes exhibit significantly higher porosity levels than PP (50.5%) and
PVDF (53.1%). As the MCH nanofiber content increased in the composite membranes,
their porosity levels also increased, with PM-50 (85.9%) exhibiting the highest porosity,
followed by PM-30 (74.4%) and PM-10 (70.2%), respectively. Generally, higher porosity
correlates with greater liquid electrolyte absorption, which is evident from the increas-
ing trend of membrane electrolyte uptake observed in Figure 4a. The PM-50 membrane
exhibits the highest electrolyte uptake ratio (539.8%) of all tested samples. This increase
can be attributed to its spongy microporous structures formed by the addition of MCH
nanofibers within the composite membrane, which promotes excellent compatibility with
liquid electrolytes. We believe that the improved electrolyte affinity of the membranes is of
great significance in enhancing the charging–discharging performance of LIBs.
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The contact angle test results in Figure 4b were obtained to further evaluate the elec-
trolyte absorption capabilities of various membranes. Due to its inherent low affinity with
electrolytes, the PP membrane exhibited minimal absorption (contact angle: 53.7◦), which
remained relatively constant after 5 s. In contrast, the PM-50 membrane demonstrated
exceptional electrolyte absorption abilities, with a contact angle of only 13.19◦, and the elec-
trolyte quickly infiltrated into the PM-50 membranes in 5 s. Spongy microporous structures
within the membrane can enhance electrolyte uptake and solvated ion migration [40]. Ad-
ditionally, strong interactions between the organic electrolyte and polar functional groups
of PVDF also contribute to enhanced affinity between the membranes and electrolytes [41].

3.4. Thermal Stability and Flame-Retardant Capacity of Membranes

The thermal stability of separators strongly impacts battery safety, as they must
maintain their integrity and prevent physical contact between electrodes during tempera-
ture variations [42]. Traditional polyolefin membranes commonly exhibit severe shrink-
age when subjected to high temperatures, thereby leading to significant safety concerns.
It is generally recommended that membrane thermal shrinkage rates remain below 5%
at higher temperatures to avoid short-circuiting within batteries [43]. Figure 5a shows
the PP, PVDF, and PM-50 membranes after thermal treatments at different temperatures
(25 ◦C, 150 ◦C, and 180 ◦C) for 2 h. Figure 5b displays the resulting thermal shrinkage
ratios. Notably, the PM-50 membrane exhibits exceptional dimensional stability at up to
180 ◦C, with only minimal shrinkage, while PP and PVDF membranes experience irre-
versible structural damage; i.e., PP membrane shrinkage reached 100%, PVDF membrane
shrinkage was 29.4%, and PM-50 membrane shrinkage only measured 3.5%.
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In order to more directly prove the flame retardancy of composite membranes,
Figure 5c shows camera images of PP, PVDF, and PM-50 membranes in burning tests.
Apparently, when the PP membrane was close to the fire source, it shrank immediately
and quickly burned within 5 s, and the PVDF membrane also shrank severely and became
transparent liquid at 2 s. However, when the composite membrane was closed to the
flame, the flame was extinguished immediately, and it still kept its original form quite
well after 10 s. This phenomenon is mainly attributed to the fact that MCH nanofibers in
composite membranes can decompose to generate water and CO2 (Figure S3), as shown in
the following reaction formula:

At 100 ◦C:

4MgCO3·Mg(OH)2·5H2O→ 4MgCO3·Mg(OH)2 + 5H2O

At 350~400 ◦C:

4MgCO3·Mg(OH)2 → Mg3O (CO3)2 + 2MgO + 2CO2 ↑ +H2O ↑

At 400~600 ◦C:
Mg3O (CO3)2 → 3MgO + 2CO2 ↑

The MCH nanofibers release water vapor that dilutes the concentration of combustible
gas within the flame area. This process facilitates the formation of a carbonized layer
on the membrane surface, thereby preventing further oxidation. As MCH nanofibers
decompose, they release CO2 gas that forms a dense, non-combustible layer of MgO on the
membrane surface. This layer helps prevent combustion while also removing heat through
an endothermic process, reducing the risk of flame propagation and achieving effective
flame retardancy.

To evaluate the flame-retardant capabilities of the membranes, we also conducted
limiting oxygen index (LOI) tests, and present the results in Figure 5d. The LOI value
represents the minimum oxygen volume percentage that can support material combustion,
and serves as an indicator of flammability. Combustible materials typically have LOI
values of 22–27%, with higher values indicating lower combustibility. As expected, the LOI
value of the PP membrane is 18.1%, which indicates that PP is a flammable material. In
contrast, the PM-50 membrane could be certificated as a flame-retardant material with a
high LOI value of 38.3% (GB/T 2406-93 [44]). Such enhanced flame-retardant capabilities
in composite membranes will undoubtedly improve the safety of LIBs.

3.5. Electrochemical Properties

Safety concerns can arise in LIBs due to the decomposition of oxidative electrolytes on
electrodes, which can be evaluated by measuring the electrical current when increasing
the voltage, in order to determine the voltage limit for the cell [10]. An LSV analysis was
therefore used to assess the electrochemical stability of cells with PP, PVDF, and PM-50
membranes. Figure 6a demonstrates that cells with a composite membrane exhibit a similar
voltage window to cells with a commercial PP membrane. This indicates that cells with
a composite membrane can stably operate within the charge–discharge voltage range
(i.e., 3–5.5 V).

Ionic conductivity is a crucial parameter to evaluate membrane performance in LIBs;
it was measured via EIS (Figure 6b) and calculated using Equation (4). Rb is the intercept
on the X axis of a Nyquist plot in a high-frequency range. Cells with MCH/PVDF com-
posite membranes showed higher ionic conductivity when compared to cells with PP and
PVDF membranes, especially, displaying an incremental trend as MCH nanofiber content
gradually increased (Table 1). This increase can be attributed to the higher porosity and
electrolyte uptake of composite membranes.
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Table 1. Resistance (Rb and Rct) and ionic conductivity (σ) of symmetrical SS/membrane/SS cells
with different membranes.

Sample D (µm) Rb (Ω) σ (mS cm−1) Rct (Ω)

PP 25.0 1.7 0.7 204.7
PVDF 41.0 2.6 0.8 195.5
PM-10 45.0 2.0 1.1 190.8
PM-30 51.5 2.3 1.2 159.1
PM-50 49.5 1.7 1.4 93.3
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To examine the compatibility between a membrane impregnated with liquid elec-
trolytes and electrode materials, AC impedance spectra were used to evaluate the interfa-
cial impedance of LiFePO4/membrane/Li cells assembled with different membranes. The
Nyquist plots in Figure 6c show semicircles in the mid-frequency range, representing the
charge transfer resistance (Rct) in the interfacial region [45]. The LiFePO4/PM-50/Li cells
demonstrate the lowest Rct (93.3 Ω) due to their higher porosity and superior electrolyte
wettability. The lower Rct can facilitate the efficient transport of lithium ions between the
electrode and electrolyte, ultimately improving the charging and discharging performance
of the cell.

For LIB systems, increasing the lithium ion transference number (tLi
+) can minimize

anion movement and decrease the polarization effect during battery operation [46,47].
This is significant for achieving high coulombic efficiency and delaying the formation and
growth of lithium dendrites on the cathode’s surface. We evaluated the tLi

+ of PP and
PM-50 membranes using chronoamperometry and AC impedance spectroscopy techniques,
and the results are shown in Figure 6d,e. The calculated results show that symmetric Li/Li
cells with PM-50 membranes have a higher tLi

+ value of 0.81 compared to cells with PP
membranes (tLi

+ = 0.64), indicating that incorporating MCH nanofibers can considerably
enhance lithium ion migration efficiency within electrolyte-absorbing membranes; the spe-
cific relevant values for tLi

+ calculation are shown in Table S1. The results demonstrated the
spongy microporous structure of the MCH/PVDF composite membranes greatly improves
the migration efficiency of lithium ions. Besides, the hydroxyl functional group on the
surface of MCH nanofibers and the lithium salt anion (PF6

−) in the electrolyte can form a
strong binding force through hydrogen bonding, thereby limiting the transfer of anions.
Charge transfer resistance (Rct) at different temperatures was investigated to evaluate the
energy barrier during lithium ion transport at the interfaces of electrode and electrolyte-
absorbing membrane (Figure S4). The activation energy for lithium ion transport can be
obtained from a linear fit of the Arrhenius equation (Equation (7)). The symmetric Li
cell with a PM-50 composite membrane shows an activation energy of 66.5 kJ/mol, lower
than that of the cell with a PP membrane (74.8 kJ/mol) (Figure 6f), demonstrating that
solvated lithium ions can be desolvated and migrate faster at the interfaces of electrodes
and electrolyte-absorbing membranes.

We assembled LiFePO4/membrane/Li half-cells to evaluate their electrochemical
performance with different membranes. Rate capability tests from 0.2 to 10 C (and back
down to 0.2 C) were conducted, and the results are shown in Figure 7a. The PM-50 cell
yielded specific discharge capacities of 152.6, 144.2, 114.2, 99.3, and 77.2 mAh·g−1 at 0.2, 1,
4, 6, and 10 C, respectively. Additionally, when the charging/discharging rate returned to
0.2 C, the discharge capacity could almost be recovered (151.8 mAh·g−1). This excellent rate
capability indicates resilience during charging/discharging cycles. As the C-rate increased,
a much higher discharge capacity was observed in the PM-50 cell compared to cells with
PP and PVDF membranes.

We conducted cycling tests of LiFePO4/membrane/Li half-cells at 1C (Figure 7b). The
LiFePO4/PM-50/Li cell exhibited an excellent initial discharge capacity of 137.3 mAh·g−1,
which only slightly increased to 144.0 mAh·g−1 after 100 cycles, achieving over 99% coulom-
bic efficiency (Figure 7b). A stable cycling performance was observed in a cell with a
PM-50 membrane.

Figure 7c shows the charge–discharge voltage profiles of cells assembled with PM-50
at various rates during the first cycle. The potential plateau (~3.4 V) can be attributed to the
Fe2+/Fe3+ redox reaction [48,49]. As indicated in Figure 7d, compared to other membranes,
the LiFePO4/PM-50/Li cell exhibited higher capacity, even at 10 C, due to its superior
ionic conductivity. The cell with PM-50 shows minimal voltage polarization compared to
other cells.
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We also performed a cycling test at 100 ◦C to compare the cycling stability of cells with
different membranes. Figure 7e,f show the discharge capacities and coulombic efficiencies
of the cells as a function of cycle number. LiFePO4/PP/Li half cells experienced significant
capacity fading, unlike cells assembled with PM-50 that exhibited superior capacity reten-
tion and coulombic efficiency. The capacity increased during the first twenty cycles due to
cell activation. Our study provides an opportunity to operate LIBs at high temperatures,
combined with a high-rate performance for future practical use.

The Li/membrane/Li cells were assembled with PP and PM-50, respectively, and
subjected to cycling tests at a current density of 0.5 mA/cm2; therefore, lithium ions were
repeatedly plated and stripped in order to characterize the compatibility of the membranes
with the electrodes. As shown in Figure 8a, the Li/PP/Li cell shows an obvious voltage
fluctuation at 140 h, with the polarized voltage rapidly increasing from 90 mV to 300 mV,
whereas the voltage of the Li/PM-50/Li cell remains stable at 500 h, indicating that the
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composite membrane has excellent interfacial compatibility with the lithium electrode
surfaces. This can mainly be attributed to the homogeneous spongy microporous structure
of the PM-50 composite membrane. Meanwhile, SEM was used to observe the microscopic
morphology of the lithium surface before and after cycling. As shown in Figure 8b, the
lithium metal had a smooth surface before cycling. A lot of dendritic and mossy lithium
dendrites were generated on the electrode surface in the symmetric cell with a PP membrane
after cycling (Figure 8c). In contrast, the electrode surface in the cell with PM-50 was still
relatively smooth (Figure 8d); there was no obvious generation of dendrites. In conclusion,
the PM-50 composite membrane was able to achieve a uniform concentration gradient
and deposition of lithium ions, thus reducing the short-circuiting risks caused by lithium
dendrites’ growth.
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4. Conclusions

We successfully prepared MCH/PVDF composite membranes using the NIPS method,
and investigated their possible applications as separators for LIBs. The addition of MCH
nanofibers into PVDF had a positive impact on the porous morphology, electrolyte affinity
and electrochemical properties of composite membrane. As the content of MCH nanofibers
increased in the polymer matrix, PM-50 composite membranes displayed higher electrolyte
uptake (539.8%), ionic conductivity (1.4 mS·cm−1), a higher lithium ion transference num-
ber (0.81), and a lower activation energy for desolvation (66.5 kJ/mol) and interfacial
resistance (93.3 Ω). An excellent rate (77.2 mAh·g−1 at 10 C) and cycling performance (99%
capacity retention after 100 cycles at 1 C) were observed in the LiFePO4/PM-50/Li half cells.
Cells assembled with PM-50 maintained superior charging–discharging performance after
100 cycles at 100 ◦C, with ~100% coulomb efficiency. Furthermore, the MCH/PVDF compos-
ite membranes exhibited excellent thermal stability and flame retardancy. These findings
suggest that MCH/PVDF composite membranes are a potential separator candidate for
future high-rate and high-safety advanced LIBs, due to their superior overall properties.
Overall, our study sheds light on the future development of high-rate and safe LIBs.
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