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Abstract: Changes in consumer lifestyles have raised awareness of a variety of food options and
packaging technologies. Active and smart packaging is an innovative technology that serves to
enhance the safety and quality of food products like fruit, vegetables, fish, and meat. Smart packaging,
as a subset of this technology, entails the integration of additives into packaging materials, thereby
facilitating the preservation or extension of product quality and shelf life. This technological approach
stimulates a heightened demand for safer food products with a prolonged shelf life. Active packaging
predominantly relies on the utilization of natural active substances. Therefore, the combination of
active substances has a significant impact on the characteristics of active packaging, particularly
on polymeric blends like polylactic acid (PLA) as a matrix. Therefore, this review will summarize
how the addition of natural active agents influences the performance of smart packaging through
systematic analysis, providing new insights into the types of active agents on physical–mechanical
properties, colony reduction, and its application in foods. Through their integration, the market for
active and smart packaging systems is expected to have a bright future.

Keywords: colony reduction; food shelf life; mechanical properties; natural additive; PLA; smart packaging

1. Introduction

The rise in plastic food packaging waste due to the large number of industries involved
in the production of fast food has led several countries to encourage their packaging
industries to improve the efficiency of the food supply chain in order to reduce food
spoilage and waste. To address this situation, the incorporation of active agents such as
antimicrobial and antioxidant compounds into packaging materials has emerged as a viable
solution for extending food shelf life, reducing food losses, and increasing food industry
profitability [1–3]. Active packaging, also known as smart packaging, is designed to detect
and alert producers to spoilage or other potential problems in packaged food [4–6]. These
systems, which are classified as direct (humidity, time–temperature, freshness, damage,
and biosensor) and indirect (traceability and tracking), serve as quality indicators to ensure
food safety [7–9].

In order to maintain the product’s nutrients, protection, and quality throughout the
distribution chain and to ensure that it reaches consumers for final use and consumption,
it is crucial to extend the shelf life of food products through the control of microbial and
chemical processes both inside the product and on the product’s surface [10]. Food can be
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stored and kept fresh for a long time in packaging with high barrier properties, which make
it impermeable to gases and moisture [11,12]. High barrier properties also prevent chemical
oxidation and lower microbial spoilage, which is primarily caused by the presence of
aerobic microorganisms. The information that markers provide on microorganism activity
varies due to chemical differences, reactions, or microbiological developments that occur
as a result of time and processing. When metabolites produced by microbial growth
interact with chemical compounds, they produce both a visual signal and information
about degradation [13,14].

Utilizing plant extracts like curcumin, garlic, tea, and propolis in active packaging sys-
tems presents a multifaceted approach for the extension of the shelf life of food ingredients.
As shown in Figure 1, their antioxidant properties prevent oxidation, their antibacterial
properties reduce microbial growth, and their active release mechanisms ensure a con-
tinuous protective effect. The anti-bacterial and antioxidant food packaging system is
currently being developed to examine interactions among food components, packaging,
and the environment in order to improve product quality, safety, and shelf life [15–17].
However, the deployment of antimicrobial and antioxidant agents as packaging materials
must rigorously adhere to established guidelines, particularly those concerning toxico-
logical repercussions. Antibacterial agents of various types, including organic synthetic
antibacterial agents, inorganic antibacterial agents, and natural antibacterial agents, are
now used in food preservation [18–20]. The three types of natural antibacterial agents are
animal-derived antibacterial agents (such as protamine, propolis, and chitosan), microbial-
derived antibacterial agents (such as lysozyme, nisin, and natamycin), and plant-derived
antibacterial and antioxidant agents (such as plant essential oils, tea polyphenols, and
Chinese herbal medicines) [21,22].
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Natural antimicrobial and antioxidant agents are extracted and purified from raw natu-
ral sources, as depicted in Figure 2. This is due to their chemical constituents, encompassing
compounds like anthocyanins, catechins, vitamin A, and beta-carotene. Additionally, plant-
derived materials mostly possess both antibacterial and antioxidant characteristics [23–25].
These constituents are frequently employed in the formulation of active packaging mate-
rials. As packaging systems with active features undergo diverse storage and processing
circumstances, the degradation of food items within can lead to the creation of metabolites
like volatile amines and organic acids; thus, plant extracts are deemed safer compared to
synthetically produced preservatives due to their origin as secondary metabolites within
plants, as indicated in Table 1. Moreover, the robust antibacterial activity exhibited by plant
extracts has been demonstrated, effectively inhibiting a range of foodborne pathogens such
as E. coli, Salmonella typhi, Staphylococcus aureus, and Bacillus cereus. This serves to affirm
their enhanced versatility across a spectrum of applications [26–28].
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Table 1. Common natural extract plants usually used to develop smart packaging.

Plant Active Components

Jamun β-humulen, α-guaiene, Caryophyllene, α-humulene, β-elemene
Propolis dihydrochrysin, pinostrobin, caryophyllene and chrysin
Green tea epigallo-catechin gallate
Clove eugenol, eugenyl acetate and caryophyllene
Turmeric α-turmerone, β-turmerone and ar-turmerone

Cinnamon cinnamaldehyde, camphor, cinnamyl-acetate, caryophyllene, trans α-bergamotene, caryophillene oxide,
linalool, geraniol, bornyl acetate, eugenol, γ-elemene, α-copaene, guaiol, and α-cubebene

Lemon limonene, p-mentha-3,8-diene, β-pinene,
γ-terpinene, myrcene, sabinene, myrcene, and geranial

Cymbopogon myrcene, limonene, citral, geraniol,
citronellol, geranyl acetate, neral, and nerol

Thymol p-cymene, γ-terpinene and thymol
Eucalyptus 1,8-cineol and α-pinene

Oregano rosmarinic acid, linalool, thymol, carvacrol, tannins, flavonoids, triterpenes, phenol carvacrol, and
thymol.

Syzygium aromaticum eugenyl acetate, eugenol, and β-caryophyllene

Nowadays, there is a high demand in the consumer market for healthy, organic, and
wholesome products with a “clean” label. As a result, research into smart packaging to
improve the quality and safety of food ingredients is critical. Therefore, food packaging
has become part of modern civilization and is developed using biopolymers materials. A
biopolymer is an organic polymer containing monomeric units of an organic substance
that are covalently linked together. It possesses biodegradability, which means it can be
naturally broken down into the soil by microorganisms, and it emits organic byproducts
such as CO2 and H2O that are beneficial to the environment. Therefore, disparities in the
biodegradability and composting potential of biodegradable plastics play a vital role in
promoting environmentally friendly disposal practices. One crucial difference lies in the
fact that biodegradable plastics can break down under specific circumstances and within
different timeframes [29].

In the context of active packaging, a range of polymers have been utilized as ma-
trixes for developing innovative solutions. Natural biopolymers, sourced from renewable
materials, include starch, cellulose, chitosan, and proteins, which are known for their
inherent biodegradability and compatibility with living systems. Conversely, synthetic
polymers such as polyethylene, polypropylene, and polyethylene terephthalate offer adapt-
able mechanical properties and high barrier capabilities [30–32]. Furthermore, chemically
engineered synthetic biodegradable polymers like polylactic acid (PLA), polyhydroxyalka-
noates (PHA), polybutylene adipate terephthalate (PBAT), polyglycolic acid (PGA), and
polyvinyl alcohol (PVA) present customized degradation patterns, harmonizing ecological
considerations with packaging effectiveness. This diverse array of polymers, encompassing
both natural and synthetic origins, forms the cornerstone for active packaging systems
endowed with a variety of functions aimed at augmenting product shelf life, ensuring
safety, and addressing environmental concerns [33]. Whereas biopolymers are completely
obtained from renewable resources, these are manufactured from non-renewable resources
(fossil-sourced chemicals). Despite extensive efforts to enhance their properties using
various techniques, biopolymer-derived materials frequently lack the performance charac-
teristics of traditional plastics in terms of strength, flexibility, and barrier qualities [34,35].

PLA is one of the most promising biopolymers for a variety of food applications, and it
can be converted into smart packaging through commercial manufacturing processes [36].
PLA is frequently suggested as a raw material for packaging and beverages because it
offers better mechanical strength and durability and has a good appearance compared with
other polymers such as polyurethane, polystyrene, and polypropylene [37,38]. PLA has
several desirable properties, including high transparency, clarity, and insolubility with air,
ethanol, methanol, and aliphatic carbon [39]. The main disadvantages of PLA, especially



Polymers 2023, 15, 4103 5 of 21

for flexible food packaging applications, are its brittleness and heat distortion temperature,
as well as its low water vapor barrier properties [40,41].

PLA can be made using two common methods as shown in Figure 3: Direct Polycon-
densation (DP) and Ring-Opening Polymerization (ROP) [42].
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Many researchers have previously investigated the development of active packaging
based on PLA containing antioxidant and antimicrobial active agents. A study by [43]
evaluated PLA blends containing 3% and 6% thymol to produce smart packaging films for
antifungal activity against Aspergillus spp. and Penicillium spp. The addition of thymol
significantly increased the thermal and barrier properties of the film, allowing it to extend
the shelf life of bread packaging by up to 9 days compared to commercial polypropylene
plastic [43]. Further study by [44] also produced a different film that was UV blocking
and reduced microbial activity. Modification was made with the addition of curcumin
so that the packaging film showed significant antibacterial activity against E. coli. The
packaging films also had strong UV inhibition capabilities and physical properties. Another
study by [45] also produced active films using additives made from Syzygium cumini peel
extract. The 2,2-azinobis-3-Ethylbenzothiazoline-6-Sulfonic Acid (ABTS) and 2,2-diphenyl-
1-picrylhydrazyl (DPPH) methods were used to verify the samples’ antioxidant activity.
Due to the high concentration of phenolic hydroxyl groups in the film’s structure and the
addition of more than 30% extract, the antioxidant properties of the film were increased,
enabling it to scavenge free radicals by donating phenolic hydrogen atoms, thus improving
food shelf life.

Drawing from the Scopus database based on Figure 4, it is evident that over the
past decade, the field of smart packaging has evolved into a nascent discipline within the
development of packaging. This surge in interest within the smart packaging sector has
risen by an impressive 140%. This advancement notably revolves around the exploration
of natural extracts and is termed “smart packaging + natural extract”. However, until
the present, other studies have solely focused on the single properties of packaging ma-
terials or bioactive agents, but this review uniquely combines these elements to reveal a
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synergistic relationship. By investigating the intricate interplay between PLA and antibac-
terial/antioxidant agents derived from natural extracts, this paper delves into uncharted
territory, exploring how the combined influence of these components not only influences
the physical–mechanical characteristics of the packaging material but also its efficacy in
reducing microbial colonies and preserving perishable foods.
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packaging + natural extract”.

The novelty of this review paper lies in its ability to present a holistic perspective,
showcasing how the introduction of antibacterial and antioxidant agents from natural
sources can bring multifaceted improvements to PLA-based smart packaging. This study
underscores the profound impact of these agents on the packaging material’s strength,
flexibility, and barrier properties, while concurrently unveiling their potential to inhibit
microbial growth and oxidative deterioration. Moreover, this review paper transcends
traditional boundaries by pioneering a comprehensive examination of PLA-based smart
packaging as an integrated ecosystem. As industries worldwide seek sustainable and
effective packaging strategies, the findings and insights presented in this paper herald
a significant advancement, setting a precedent for future research at the crossroads of
materials in science, biochemistry, and food technology.

2. The Effects of Antibacterial and Antioxidant Agents from Natural Extracts on
Physical–Mechanical Properties
2.1. Tensile Properties

The term “rough handling” emphasizes the importance of tensile strength in the
plastic packaging industry, which determines its ability to withstand and protect itself from
external pressure. Therefore, the tensile test is one of the most important parameters for
evaluating the mechanical performance of polymer blends, particularly in the production
of smart packaging. Tensile strength is the maximum force that a material can withstand,
and elongation at break is where the material’s extensibility is measured. Among all
biopolymers, PLA—an aliphatic polyester derived from renewable resources, specifically
starch fermentation—caught the interest of researchers as a potential packaging material.

In spite of possessing commendable mechanical, thermal, and biodegradable char-
acteristics, their practical applications encounter limitations stemming from inadequate
flexibility, limited impact resilience, suboptimal barrier properties, and a constrained pro-
cessing range. Attempts to enhance these characteristics have been undertaken through
diverse methodologies, including blends with alternative biopolymers, chemical adap-
tations, and the incorporation of responsive additives [46,47]. As depicted in Table 2,
variations in the tensile properties of intelligent packaging based on PLA hinge on the
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specific active agent employed. Typically, the tensile strength of PLA blends spans approxi-
mately 40 MPa to 70 MPa. Evidently showcased in Table 2 is the noteworthy decline in all
resultant tensile strength values. The active agent, which is from the essential oil group,
decreases the tensile strength value due to a heterogeneous internal structure with lower
cohesiveness [48,49]. The tensile strength of the resulting film also decreases due to the
plasticizing effect of essential oils. Essential oils are highly hydrophobic, so they affect
the hydrophilic/hydrophobic balance of the film [50,51]. Based on the previous works, it
can be concluded that the tensile properties of PLA smart packaging are influenced by the
amount of active agent, type of active agent, and specific formulation of the PLA blend.

Table 2. Tensile Properties of PLA based Smart Packaging.

PLA/Active Agent
Composition (%)

Active Agent Tensile Strength (MPa) Elongation at Breaks (%)
Referencea b a b

98/2 green tea extract 12.52 10.29 260.11 121.95 [52]
95/5 carvacrol 26.8 16.4 267.3 194.9 [53]
97/3 clove essential oil 43.30 11.8 2.60 30.7 [54]
98/2 mango peel extract 57.77 46.48 6.77 14.31 [55]
99/1 thyme essential oil 2.90 3.90 11.33 23.19 [56]
95/5 mediterranean propolis extract 36.80 26.2 2.9 3.0 [57]
91/9 thyme essential oil 64.16 49.81 3.08 175.99 [58]
95/5 thymol 29.6 4.02 176.4 76.61 [59]
98/2 rice straw extract 34 34 6 3.4 [60]

99.5/0.5 pomegranate peel extract 88.7 67.92 47.3 69.04 [61]
a control sample, b sample with active agent.

Essential oils can also reduce the oxygen permeability of the film by forming a more
porous microstructure. The mechanical properties of the film modify due to the devel-
opment of structural discontinuities, which results in flexibility and lower resistance to
cracking. Elongation at break shows a different pattern. The incorporation of PLA with
essential oils into the film results in a slight increase in the data’s average elongation at
break value.

The increased elongation at break observed in the films is also a result of the essential
oil loading’s plasticizing effect, which reduces stiffness and increases film flexibility by
allowing more chain mobility. However, essential oil concentrations greater than 10%
by weight cause an antiplasticization phenomenon in which the interaction between the
plasticizer and polymer molecules is stronger, inhibiting macromolecule mobility and
leading to a very brittle film [52–54]. The addition of anthocyanin-rich plant extracts
such as pomegranate also reduced the film’s tensile strength, but only by 15–20%, be-
cause it was able to maintain denser film through interfacial adhesion [55–57]. Thus,
when producing smart packaging, the chosen combination of polymeric materials and
active agents must have similar properties in order to achieve better interfacial adhesion.
Thus, using a hydrophilic polymer matrix and hydrophilic agents—or hydrophobic and
hydrophobic—results in a strong bond between the materials [58]. A matrix and active
agents with similar properties also imply better dimensional stability and maintain their
mechanical properties.

When conducting research, it might be challenging to figure out the appropriate
quantity of active agent to add in order to achieve optimal interaction between the additive
and the matrix while avoiding phase separation and filler particle agglomeration. Table 2
also shows that the addition of an active agent between 0.5% wt and 20% wt has plasticizing
properties because it contains a lot of aromatic ring structures that inhibit the polymer
network from being arranged closely, providing more flexibility and higher elongation
at break value. By weakening the chain’s structure, the plasticizing effect also reduces
cohesiveness and increases deformability and flexibility, partially replacing the stronger
polymer–polymer interactions. Unless nanofiber is added, which can lengthen polymer
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chains, as research by [59] found, nanofibers that have outside forces, such as rigidity and
durability of the film, provide in situ polymerization and come to form covalent bonds
while monomers or polymer chains interact with the filler materials.

2.2. Water Vapour Transmission Rate (WVTR)

The WVTR value is a standard measure of how easily moisture can penetrate the film,
the packaging’s ability to withstand different humidity levels at different temperatures, and
the ability to keep the quality of the food ingredients inside until it reaches the consumer.
For food products, moisture migration can lead to undesirable texture changes or a loss
of flavor. Controlling moisture through proper packaging helps preserve the product’s
sensory qualities. Moisture also causes packaging materials to warp, labels to detach, and
colors to fade, affecting the overall appearance and appeal of the product; therefore, a
consistent WVTR value ensures that products maintain a consistent weight, volume, and
overall quality, helping manufacturers deliver products that meet consumer expectations.
Typically for solid polymers, the transmission of water vapor follows a simple mechanism
whereby water vapor penetrates the film by adsorbing on the surface and dissolving rapidly,
thereby establishing an equilibrium that spreads through the film and causes desorption
on the surface.

The use of PLA as a potential material for food packaging is greatly limited by the
higher water vapor transmission rate (WVTR) of the films. Since PLA-based films indicate
high WVTR, according to previous studies, strengthening strategies using natural extracts
and essential oils have been known to improve the barrier properties of PLA-based films.
However, based on Table 3, the additive incorporation must be considered because it
changes the balance of the film’s hydrophilicity and hydrophobicity [60,61]. The main
factors that influence WVTR are differences in the physical properties of the matrix and
additive, operating conditions, the diffusion coefficient, the solubility of water molecules,
and the three-dimensional structure formed by hydrogen bonding [62]. The types of
molecules and the compatibility of additives with the matrix are important factors affecting
dispersion and physical and/or chemical interactions with the polymer matrix, along with
chemical structure and polarity. The WVTR value in the film, however, is also influenced
by other variables, including the crystallinity of the polymer, as well as the absorption of
molecules inside in the matrix [63–65].

Table 3. Effect of different film composition on WVTR.

Film Composition WVTR (g/m2/s × 10−4) Effect on Film Properties Referencea b

PLA-Cinnamon
essential oil 0.345 0.793

• cinnamon essential oil is hydrophobic and creates pores that
absorb more moisture [66]

PLA-Betel leaf
ethanolic extract 0.410 0.30

• betel leaf ethanolic extract boosts molecular cross-linking,
which reduces hydrophilic functional groups and slows
water migration

[67]

PLA/PBAT-
Peppermint
essential oil

0.916 1.036

• peppermint essential oil reduces the structural cohesiveness
of the mixed film, allowing moisture to pass through the film
more easily

[68]

PLA-Rosemary
essential oil 1.70 1.58

• the strong hydrophilicity of the biopolymer is attributed to a
slight decrease in the water vapor barrier properties [69]

PLA-Carvacrol
essential oil 0.045 0.043

• carvacrol essential oil (CEO is primarily made up of nonpolar
hydrocarbon atoms (C-H) in the liquid phase, which makes
nonpolar permeant molecules able to move around

[70]
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Table 3. Cont.

Film Composition WVTR (g/m2/s × 10−4) Effect on Film Properties Referencea b

PLA-PEG 6.28 6.44

• PEG is hydrophilic; as the contact angle value rises, the
hydrophilic properties also rise proportionally, and the
contact angle value decreases water permeability

[71]

PLA/PBSA 0.175 0.129
• PBSA crystalizes to create diffusion pathways for oxygen gas

molecules, thus increasing the barrier of films [72]

PLA/PBAT-Trans-
cinnamaldehyde 0.154 0.169

• PLA and trans-cinnamaldehyde have an intense interaction,
leading to a plasticizing effect and an increase in free volume,
which increases WVTR

[73]

PLA-Pea Starch 0.22 0.27

• higher pea starch loading makes it easier for water molecules
to saturate the bilayer films’ surface through hydroxylated
PS/PLA chains and then enter the films through the spaces
between starch molecular chains

[74]

PLA-Chitosan 3.75 0.085

• chitosan is hydrophilic and has poor water vapor barrier
properties; a higher amount of it causes the WVTR
to increase

[75]

PLA/PHB-
Cinnamaldehyde 0.26 0.69

• cinnamaldehyde aldehyde group’s hydrophilicity resulting
in higher WVTR [76]

PLA-Oregano
Essential Oil 0.112 0.135

• the WVTR of PLA composite films explains how the
presence of oregano essential oil makes the average film pore
size larger

[77]

3. The Effects of Antibacterial and Antioxidant Agents from Natural Extracts on the
Microstructure of Smart Packaging

The microstructure of smart packaging materials can be engineered to create effective
barriers against external factors such as moisture, oxygen, light, and contaminants [78].
By carefully tailoring the microstructure, packaging materials can prevent the ingress of
these detrimental elements, thereby safeguarding the sensory characteristics, nutritional
value, and overall quality of the packaged food. This preservation is especially important
for perishable and sensitive products. Smart packaging’s microstructure can be designed
to slow down the deterioration processes that occur in food over time [79]. For instance,
incorporating oxygen-absorbing or moisture-absorbing materials at the microstructural
level can reduce the rate of oxidative reactions and microbial growth, effectively extending
the shelf life of the product. This is not only economically beneficial but also contributes to
reducing food waste.

Integrating active agents within the microstructure of smart packaging allows for
controlled and targeted release. This is particularly advantageous when active compounds
such as antimicrobial agents or antioxidants are incorporated. The microstructure can
facilitate the gradual release of these compounds, providing continuous protection against
spoilage microorganisms and oxidative reactions, thereby maintaining food safety and
quality [80]. A common attempt has been used by previous researchers to enhance com-
patibility and facilitate interactions between polymeric blends in the production of smart
packaging systems (Figure 5).

Microstructure modification also encompasses changing the configuration and charac-
teristics of materials at the microscopic scale with the aim of attaining targeted enhance-
ments in the functionality of food packaging. This process has the potential to augment
properties such as barrier capabilities, adhesion, compatibility, and the holistic performance
of the packaging system. The roles of compatibilizers, surface modification, polymer
blending, and chemical modification are as follows:

• Compatibilizers are additives used to improve the compatibility between two or more
polymers with differing properties. In food packaging, where different polymers
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may need to work together, compatibilizers help create a cohesive structure and
improve properties like adhesion, mechanical strength, and barrier performance.
Compatibilizers achieve this by promoting interfacial interactions between polymers
that would otherwise induce phase separation or have weak interactions.

• Surface modification encompasses the adjustment of material surface characteristics to
amplify adhesion, wettability, and harmonization with additional substances. Surface
modification assumes paramount significance in optimizing the interplay between
packaging materials and the contents. Methodologies such as plasma treatment, layer-
by-layer (LbL) assembly, and chemical grafting engender the introduction of functional
groups onto the surface, fostering an augmented propensity for adhesion or coating.
This in turn elevates the packaging material’s barrier properties, print quality, and
holistic performance.

• Polymeric blending techniques offer effective ways to improve adhesion and compat-
ibility between hydrophilic or hydrophobic polymer materials in smart packaging
systems.

• Chemical modification involves changing the chemical structure of the polymer to
achieve desired properties. Functional groups can be introduced to improve compati-
bility, adhesion, or specific interactions. In food packaging, chemical modification can
adapt the properties of the packaging material to meet specific requirements.
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Figure 5. Microstructure modification of smart packaging based on PLA.

Surface modification has been extensively explored and applied in active packaging
research, as is evident from existing publications. Surface modification techniques offer a wide
range of applications in active packaging (enhancing barrier properties, incorporating functional
groups for controlled release or antimicrobial effects, minimizing disruption to the overall
structure while significantly improving adhesion, and compatibility). Surface modification
also complements other techniques, such as incorporating antimicrobial agents, antioxidants,
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or moisture absorbers. Therefore, component selection and blending methods should be
considered in order to achieve desired compatibility while maintaining the essential properties
of the packaging material. In-depth characterization and testing are crucial to ensure the
successful integration of blended polymers in functional packaging solutions.

4. The Effects of Antibacterial and Antioxidant Agents from Natural Extracts on
Colony Reduction

The use of antibacterial agents is paramount for thwarting the formation of biofilms,
which are intricate microbial communities that adhere to surfaces and are enveloped within
a protective matrix. This multifaceted process initiates with the attachment of bacteria to a
surface, setting the stage for biofilm development. Active components present in substances
such as essential oils and plant extracts, for instance, possess the capability to modify the
structural composition of bacterial cell membranes. A study by [81] indicated that the
transformative action renders bacterial attachment to surfaces more challenging. More-
over, the biofilm matrix, comprising extracellular polymeric substances (EPS), furnishes
a safeguarding shield for bacteria within the biofilm community. This defensive layer is
susceptible to degradation or disruption by antibacterial agents, thereby compromising the
biofilm’s structural integrity and rendering it more vulnerable to removal.

Staphylococcus aureus, Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella
Typhimurium are sources of biofilm-forming bacteria behind global instances of foodborne
illnesses [82]. These virulent microorganisms can contaminate a spectrum of foods, span-
ning from ready-to-eat vegetables to processed meat products. There is mounting concern
in public health circles about these microorganisms due to their stature as enteric pathogens.
Associated with worldwide afflictions like diarrheal disease, peritonitis, colitis, bacteremia,
infant mortality, and urinary tract infections, these pathogens inflict substantial economic
burdens due to treatment costs. In the context of biofilm growth, where bacteria adhere to
surfaces, an avenue to curtail the pathogenic influence of Gram-positive bacteria involves
impeding their adherence to both living and non-living surfaces [83].

Usually in food spoilage, an active agent is released into the Staphylococcus aureus,
Listeria monocytogenes, Escherichia coli O157:H7, or Salmonella typhimurium membrane
structure due to the presence of moisture in the air, which increases lipophilicity and
hydrophobicity, which then causes membrane expansion, increased membrane fluidity
and permeability, disruption of membrane-embedded proteins, inhibition of respiration,
and changes in bacterial ion transport processes. The active agent destroys the bacterial
cell membrane and binds directly to DNA gyrase, as depicted in Figure 6. DNA gyrase
is an essential part of bacteria that plays an important role in the replication of DNA
and chromosomal segregation. One of the most extensively investigated mechanisms for
killing bacteria is the inhibition of DNA gyrase. The antibacterial activity of a group of
chemical substances that consist of flavonoids, hydrocarbons, and catechins interact with
the outermost layer of the protein of bacteria, thereby preventing its growth.

Secondary metabolites such as alkaloids, flavonoids, steroids, saponins, terpenoids,
and tannins are likely to be responsible for this antibacterial activity in plant extracts
and essential oils [84]. It is important to remember that the compatibility of hydrophilic
compounds and hydrophobic matrices can influence the effectiveness of antimicrobial
properties. As shown in Table 4, the incorporation of plant extracts prevails over essential
oils in terms of bacterial colony reduction. Additionally, it was discovered that due to
variations in the structure of the bacterial cell wall and outer membrane, Gram-positive
bacteria were more susceptible to PLA films containing active essential agents than Gram-
negative bacteria [85].
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Table 4. Inhibitory effects of active agent additions.

Polymers Inhibitory Effect Reference

PLA-pink pepper essential oil
Pink pepper essential oil contains myrcene, which has antimicrobial action against
S. aureus and L. monocytogenes, resulting in an inhibitory effect of 30 and 62%for
L. monocytogenes and S. aureus, respectively, on day 21 of storage.

[86]

PLA-d-Limonene essential oil Regardless of irradiation source or d-limonene loading, PLA/limonene films
demonstrated 99.99% efficiency against Escherichia coli. [87]

PLA-Polyphenols quercetin The antibacterial level of reducing bacterial colonies against Escherichia coli films
based on PLA increased to 87.8% with the addition of the polyphenol quercetin. [88]

PLA-Ginger Essential Oil
The bacterial growth of the PLA/Ginger Essential Oil composite film was
gradually stopped because of the presence of α-zingiberene and
β-sesquiphellandrene.

[89]

PLA-Carvacrol essential oil Carvacrol-containing films inhibited the growth of Rhizopus sp. and Penicillium sp. [90]

PLA-Argan essential oil The addition of argan essential oil was able to reduce the bacterial colonies of
E. coli (86.5%), L. monocytogenes (72.2%) and S. Typhimurium (81.9%). [91]

PLA-Persicaria hydropiper
extract

The antibacterial activity of the ethanol extract of Persicaria hydropiper was able
to reduce the growth of S. aureus (12.5%) but was unable to reduce the growth of
E. coli and S. Typhimurium.

[92]

PLA-Oregano essential oil
The growth inhibition of S. Typhimurium, E. coli, and L. monocytogenes was up to
99%, after the addition of oregano oil stopped the growth of pathogenic bacteria
in vitro.

[93]

PLA-Thyme essential oil E. coli growth was slightly inhibited by thyme oil film (2.76%). [94]

PLA-Allium ursinum extract The antimicrobial activity of allium ursinum extract reduced colony growth of
S. aureus (53%) and E. coli (100%) [95]



Polymers 2023, 15, 4103 13 of 21

5. The Effects of Antibacterial and Antioxidant Agents from Natural Extracts on
Natural Perishable Food Shelf Life

Foods are perishable because they have a short shelf life and are extremely sensitive
to factors like humidity, temperature, and other factors. The refrigerator has prolonged
the shelf life of perishable food up until this point, but food deterioration is unavoid-
able. Nowadays, improving packaging systems has become essential for preserving the
quality of food ingredients. Bacterial biofilm formation is regarded as a newly emerging
microbial lifestyle that thrives on all types of surfaces and is present in both natural and
artificial environments.

As shown in Figure 7, meat, poultry, egg products, salads, tuna, chicken, potatoes,
and macaroni are the main foods that are commonly infected with bacteria [96]. Foods rich
in protein tend to be decomposed by bacteria. A Gram-positive bacterium can attach to
glass, metal, and plastic as an abiotic surface and host tissue as a biotic surface [97]. The
attachment of those bacteria to surfaces depends on components of the bacterial microbial
surface that recognize adhesive matrix molecules for proteins. To prevent attachment to
the surface through the matrix, the surface must be coated with anti-adhesion agents such
as arylrhodamines, calcium chelators, essential oils, plant extracts, silver nanoparticles,
and chitosan [98].
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Even when optimal conditions are provided during distribution, agricultural products
have a short shelf life from the time of harvest onward, due to quality degradation between
harvest and consumption. If the product is not handled properly, this loss in quality
could be significant. Quality is a key marketing component that is becoming increasingly
crucial for both producers and consumers. Therefore, quality management is crucial in
the distribution of agricultural products. Definitions of quality have been developed in
various research fields as a result of this growing significance. It is inevitable for foodborne
pathogens to form biofilms, which can contaminate food. There have been numerous
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studies, as shown in Table 5, that investigate the use of natural ingredients as natural
preservatives that are safe for use in packaging systems.

Table 5. The effects of active agent additions on perishable food shelf-life quality.

Polymers Methodology Activity References

PLA-Lemon
extract

Lipid Oxidation Assays of almond including
the following: Thiobarbituric acid-reactive

substances (TBARS), Fat extraction, Peroxide
value, p-Anisidine value.

• The phenolic compounds in lemon
extract improved the effectiveness of
the film in preventing lipid oxidation
in almonds kept at 40 ◦C for 30 days
(83.33%).

[99]

PLA-Olive
Pomace Extract

Physicochemical parameters (hardness, weight
loss, and color) were evaluated after 12 days of

storage at 4 ◦C.

• Olive pomace extract maintained or
increased the fruit’s total phenolic
index and antioxidant potency while
having no effect on firmness.

[100]

PLA-Lippia
citriodora

essential oil

The Quality Index Method (QIM) was used to
perform sensory analysis on the rainbow trout
fillet skin appearance (shiny to dull), the color

of the fillets (pink to dark pink), the odor
(freshness, seaweed, sour and rancid), and the

texture (firm, elastic, soft, and very soft).

• A score of “excellent” was given, and
Lippia citriodora essential oil had no
adverse effects on the sensory
qualities of fish fillets.

[101]

PLA-Perilla
essential oil

Kjeldahl distillation was used to determine the
TVB-N content of chicken breast fillets.

• This film increased the shelf life of
chilled chicken by up to 12 days, as
measured by a total volatile base
nitrogen (TVB-N) 28.95 mg/100 mL
assessment.

[102]

PLA-Marjoram
essential oil

The total volatile base nitrogen (TVB-N)
content of meat samples was determined using
the AOAC (Association of Official Analytical

Chemists) method.

• A reduction of 1 log CFU/g of
bacteria in beef was observed
between the group that used
marjoram essential oil.

[103]

PLA-Oregano
essential oil

TVC was calculated to track when minced fish
began to deteriorate microbiologically (TVC

> 7 log cfu/g). Thiobarbituric acid (TBA) based
on Malondialdehyde (MDA) value and

Sensory evaluation (acceptability test) was
performed using a hedonic scale point from 9
(most liked) to 1 (least liked) for minced fish.

• After the sixth day of storage, the
MDA value was concluded to be
useless, because the TVC reached or
exceeded the limit value of
7 log cfu/g.

[104]

PLA-Green tea
extract

Smoked salmon was tested based on fat
extraction to examine its peroxide value,

p-Anisidine value and TBARS.

• Aldehydes were present, as indicated
by the p-anisidine value, and TBARS
demonstrated a 33% reduction in
aldehyde.

[105]

As can be seen in Table 5, the addition of active agents can increase the shelf life
of food ingredients (33% TBARS reduction in aldehyde) in food samples packaged with
active films for 12 days to 30 days, since lipid oxidation is one of the most important
processes causing the deterioration of meat and meat products. Aldehydes, ketones, and
alcohols are just a few of the volatile and nonvolatile compounds that are produced when
the lipids in meat oxidize [106]. These compounds provide meat its rancidity, taste, odor,
and color loss. One of the most important indicators for assessing the freshness of meat
and meat products is TVB-N content. TVB-N is primarily made up of ammonia (NH3),
dimethylamine, trimethylamine, putrescine, and cadaverine, which are created when
putrefactive microorganisms break down protein and non-protein nitrogen components
like nucleic acids. A study by [107] measured TVB-N 28.95 mg/100 mL and explained that
active packaging can preserve the quality of chicken meat because, in accordance with
TVBN standards, chicken breast should not contain more than 60 mg/100 g of TVBN. Many
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factors can influence the migration of bioactive compounds from the film matrix to the food
surface, including the amount of water in the food and the interaction between PLA and
plant extracts or essential oils. Foods rich in water content can cause bioactive substances
to migrate more quickly from the film matrix to the food surface. Additional factors such
as film thickness and hydrophilicity may impact the rate at which bioactive substances
migrate from the film matrix to the food surface [108–111].

6. The Future Trend of Smart Packaging Systems

Rice, poultry and poultry products, dairy, beverages, fruit, frozen foods, candy, and
snacks are the most common food purchased. But fresh meat, vegetables, and fruits are most
popular among workers nowadays as a result of the need for new and natural products as
well as changes in consumer lifestyles, particularly during a global epidemic. However, the
food industry faces the challenge of preserving the freshness of those products over long
periods of storage. Many countries around the world have adopted active packaging tech-
nologies to some extent. The adoption of active packaging is not limited to a specific country
but rather depends on the industry, market demand, and technological advancements.
Countries with advanced food and pharmaceutical industries, such as the United States,
Japan, Germany, and South Korea, have been early adopters of active packaging solutions.
These countries often prioritize research and development in packaging technologies to
improve product safety, shelf life, and consumer experience. However, active packaging
concepts have been embraced to various degrees in other countries as well. According to
the compound annual growth rate (CAGR), the smart packaging market is projected to
reach USD 18.67 billion by 2028, growing at a CAGR of 6.55% during the forecast period
(2023–2028). In 2023, the market was worth more than USD 13.59 billion. The need for
smart and innovative packaging systems is not only limited to foodstuff. The cosmetic and
skincare industry has also started to apply smart packaging for commercialized products.
They focus on promoting product packaging that can be recycled at room temperature as a
marketing strategy to attract consumer interest.

The production of smart packaging faces a common challenge, some of which are
related to the kinetics of agent release, the compatibility of polymers and additives, and
interactions between substances; therefore, it can compete with the characteristics of con-
ventional plastics. Moreover, the implementation of smart packaging will also face the
following techno-economic challenges:

1. Cost
2. Developing and incorporating smart packaging can be expensive, potentially increas-

ing the overall cost of production and affecting product pricing.
3. Compatibility: Ensuring compatibility between different components of smart pack-

aging, such as sensors and communication systems, can be challenging.
4. Data Security: Smart packaging often collects and transmits data, raising concerns

about data security, privacy, and potential breaches.
5. Regulations: Compliance with regulatory standards and certifications can be intricate,

especially in industries like pharmaceuticals and food, where safety is crucial.
6. Consumer Acceptance: Introducing new technology to consumers may require ed-

ucation and demonstration to ensure their understanding and willingness to use
smart packaging.

7. Sustainability: Balancing the integration of electronics with sustainable and recyclable
packaging materials can be challenging.

8. Technical Reliability: Ensuring the reliability and accuracy of sensors and communica-
tion systems over the entire product lifecycle can be complex.

Addressing these challenges requires collaboration among researchers, experts, tech-
nologists, and manufacturers in smart packaging to develop cost-effective, reliable, and
user-friendly smart packaging solutions.
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7. Conclusions

The integration of smart technologies into PLA-based packaging enhances its func-
tionality and value. Smart packaging can incorporate features like sensors and indicators
to monitor various aspects of the packaged product, such as temperature, freshness, and
authenticity. These capabilities offer several benefits, including improved supply chain vis-
ibility, enhanced product safety, and reduced food waste. The influence of natural extracts
and essential oils on PLA-based smart packaging can be examined through their impact on
the material’s physical, mechanical, and structural properties along with interfacial adhe-
sion as well as their role in colony reduction. The efficacy of plant extracts, encompassing
active agent amount, type, and PLA blend formulation will influence physical, mechanical,
and colony reduction; their properties hinge on their chemical bond and interfacial adhe-
sion with the PLA matrix. This interfacial adhesion can be optimized through techniques
such as surface modification, compatibilizers, and encapsulation methods, ensuring a
stable and controlled release of the active agents over time. Achieving effective chemical
bonds and interfacial adhesion between the active agents and the PLA matrix is pivotal for
unlocking the full potential of these enhancements and ensuring the sustained performance
of the smart packaging system. Achieving a strong bond between the active agents and the
PLA substrate is crucial for the consistent and prolonged release of bioactive compounds,
thus prolonging perishable food shelf life. As the field of advanced materials continues
to evolve, this integration holds significant promise for revolutionizing the packaging
industry by providing sustainable, intelligent, and bioactive solutions. In confrontation to
the complex challenges of the twenty-first century, the role of PLA in shaping the future of
packaging emerges as a sign of hope, offering innovative solutions that not only improve
food safety and preservation but also significantly contribute to a greener and more sus-
tainable environment. This review serves as a timely reminder of the exciting possibilities
that await in the field of smart packaging, strengthening PLA’s position as a key player in
the evolution of packaging materials and strategies.
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