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Abstract: Nanoparticle–polymer hybrids are becoming increasingly important because seemingly
contrasting properties, such as mechanical stability and high elasticity, can be combined into one
material. In particular, hybrids made of self-assembled polymers are of growing interest since they
exhibit high structural precision and diversity and the subsequent reorganization of the nanoparticles
is possible. In this work, we show, for the first time, how hybrids of silica nanoparticles and self-
assembled vesicles of polystyrene-block-polyacrylic acid can be prepared using the simple and
inexpensive method of co-precipitation, highlighting in particular the challenges of using silica
instead of other previously well-researched materials, such as gold. The aim was to investigate
the influence of the type of modification and the particle size of the silica nanoparticles on the
encapsulation and structure of the polymer vesicles. For this purpose, we first needed to adjust the
surface properties of the nanoparticles, which we achieved with a two-step modification procedure
using APTES and carboxylic acids of different chain lengths. We found that silica nanoparticles
modified only with APTES could be successfully encapsulated, while those modified with APTES
and decanoic acid resulted in vesicle agglomeration and poor encapsulation due to their strong
hydrophobicity. In contrast, no negative effects were observed when different particle sizes (20 nm
and 45 nm) were examined.

Keywords: nanoparticle–polymer hybrid; synthesis; modification; block copolymer; self-assembly;
encapsulation; co-precipitation; vesicle; fusion

1. Introduction

Self-organized systems are the basis of intelligent life. A well-known example is
our cell membrane, which is precisely constructed from self-assembled phospholipids [1].
Therefore, understanding and controlling self-assembly mechanisms open up many new
possibilities, such as the development of functional nanosystems that require a high degree
of structural precision. Recently, hybrid structures of self-assembled organic materials with
embedded inorganic nanoscale components have become the focus of research because
various advantageous properties can be combined in a single material [1–3]. Furthermore,
it is possible to achieve a high structural diversity and precise arrangement of nanopar-
ticles [3–6] to protect the embedded nanoparticles from unwanted interactions, such as
agglomeration or degradation, with the surrounding medium [4,5]; to achieve controlled
release of the nanoparticles [7]; or to increase thermal and mechanical resistance [8,9]. These
nanoparticle–polymer hybrids are of interest for many potential applications, for example,
in nanoreactors [10], drug delivery systems [11–14], sensors [15], smart materials with
stimuli-responsive properties (such as thermo-responsive [16,17], light-responsive, [18] and
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magnetic-responsive [19–21] properties), water treatment [22], hybrid solar cells [23], and
intrinsic self-healing materials [24].

Many amphiphilic molecules, such as the mentioned phospholipids, are able to self-
assemble into hierarchical structures. Block copolymers were extensively investigated
since they have longer phase transformation times due to their high molecular weights in
comparison to low-molecular-weight amphiphiles. This allows, on the one hand, better
control over the forming mesoscopic structures and, on the other hand, deeper insights
into inter- and intramolecular reorganization processes because the metastable transition
morphologies exist in a larger time window and can, thus, be studied more easily [25–29].

One strategy for triggering the self-assembly of block copolymers is the co-solvent
method. The block copolymer is first dissolved in a solvent that is sufficient for both the
hydrophobic and the hydrophilic parts of the molecule (e.g., dioxane or tetrahydrofuran).
Subsequent addition of a selective solvent (e.g., water), in which one part of the polymer
is insoluble, leads to energetically unfavorable interactions, causing the molecules to self-
assemble with the aim of interfacial minimization. This process is also referred to as
microphase separation since one part of the block copolymer stays in the dissolved form [1].
The resulting morphology of the polymer structure depends on the packing parameter p,
first described by Israelachvili et al. [30] in 1976. It describes the ratio of the volume of the
hydrophobic part of the amphiphilic molecule to the contact area of the hydrophilic part and
the length of the hydrophobic polymer chain. The best-known morphologies are spherical
and cylindrical micelles, lamellar structures, and vesicles [1,29–33]. However, in recent
years, many other morphologies, such as toroidal micelles, Janus vesicles, sunflower-like
vesicles, and helical structures, have been reported [34–43].

Many different factors determine the morphology, such as the type and concentration
of the solvents [44] and the block copolymer [45,46], temperature, and the presence of
additives [6,46,47]. However, often, the thermodynamically stable structure is not im-
mediately available after microphase separation but forms in the further course of the
process, with metastable transition morphologies as intermediate stages. In this context,
it was postulated that among other mechanisms, fusion processes between the structures
play a decisive role [35,48,49]. Although the fusion of membranes depends on the system
(e.g., the type and size of the vesicle), it occurs in specific steps, shown schematically in
Figure 1 [50,51]. First, the membrane surfaces must be brought in contact, which leads
to a localized impairment of the double layer, reorganization, and the fusion of the outer
membranes. This hemifused state (often the so-called stalk-like state) is an intermediate
product. Over time, rearrangement mechanisms lead to the formation and opening of a
fusion pore until the contents of the two vesicles have mixed and, finally, a single large
vesicle is formed [51,52].

To generate nanoparticle–polymer hybrids, a suitable method is required for encap-
sulating the nanoparticles. Wang et al. [53] provided a detailed overview of different
encapsulation methods for creating self-assembled block-copolymer-based structures. One
is the co-precipitation method, which is triggered by either solvent evaporation or sol-
vent exchange and is the most preferred method for preparing hybrid materials from
self-assembled amphiphiles [54]. The focus of this article is solvent exchange, where a
homogeneous solution of stabilized nanoparticles and the block copolymer in a water-
miscible organic solvent (e.g., tetrahydrofuran) is mixed with a selective solvent, such as
water. Both the nanoparticles and the insoluble part of the polymer agglomerate, whereas
the water-soluble part of the polymer remains in solution. This results in non-covalent
attachment of the nanoparticles within the mesoscopic structure [55,56]. This method is
simple, fast, and economical as it usually requires few chemicals, no complex design, and
little energy [57]. The disadvantage of this method, however, is that the particles must be
sufficiently stabilized in the solution to avoid aggregation and, thus, an inhomogeneous
product [58]. Another method of encapsulating nanoparticles into a polymeric matrix uses
interfacial instabilities of emulsion droplets. Unlike the method before, the nanoparticles
and the block copolymer are dissolved in a water-insoluble organic solvent (for example,
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chloroform) and then dispersed in water. The extraction of the organic solvent shrinks the
emulsion droplets until interfacial instabilities result and new interfaces are formed, leading
to the formation of micellar aggregates with encapsulated nanoparticles in the water [59].
With the heating–cooling method, both block copolymers with long hydrophobic blocks
and those with long hydrophilic blocks can be used. Here, a solution of block copolymer
and stabilized nanoparticles is first heated to 110 ◦C for 2 h and then slowly cooled. The
critical micelle concentration (CMC) of the polymer slowly decreases with temperature
until the block copolymers and nanoparticles assemble into hybrids [4]. Another method
of preparing nanoparticle–polymer hybrids is the use of electrostatic interactions. The
main advantage of this strategy is that the nanoparticles can be precisely localized both in
the micelle core and at the interface. Here, first, microphase separation generates micel-
lar structures. Then, oppositely charged nanoparticles (for example, positively charged
gold nanoparticles) absorb into the corresponding microdomain of the block copolymer
structure (for example, within the areas consisting of negatively charged polyacrylic acid
groups) [49]. Solvent-induced self-assembly by, e.g., non-covalent interaction has also been
applied to prepare nanoparticle–polymer hybrids [21,60]. For example, Meng et al. [21]
used this method to prepare self-assembled core–shell composite nanofibers with magnetic
Fe3O4 nanoparticles and conjugated block copolymers using orthogonal non-covalent
interactions. For this purpose, first, the polymer was dissolved in chlorobenzene. Then,
a defined amount of acetone was added under stirring and the mixture stirred for 9 h at
room temperature. Then, the magnetic nanoparticles were added to the polymer nanofiber
solution and stirring continued for another hour, resulting in a nanofiber hybrid solu-
tion. Finally, this solution could be directly used for solar cell fabrication by diluting
it 100 times with a solvent mixture of chlorobenzene and acetone. Another method for
creating nanoparticle–polymer hybrids is the templated self-assembly method. Here, the
interface between air and water is exploited for the self-assembly of amphiphilic molecules.
By evaporating the solvent from a mixture of nanoparticles and block copolymers on a
substrate, defined hybrid structures can be generated [61,62].
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As diverse as the encapsulation methods are the types of embedded nanoparticles.
Some well-studied nanomaterials so far are gold, silver, iron oxide, and aluminum ox-
ide nanoparticles, which are primarily used because of their properties, such as mag-
netism [17,63–66]. To the best of our knowledge, there is currently no publication in which
silica nanoparticles are encapsulated in self-assembled mesoscopic block copolymer struc-
tures such as vesicles using the co-precipitation method applied here. Silica is a promising
material for preparing nanoparticle–polymer hybrids due to its low toxicity, good avail-
ability, and versatile applications, e.g., for increasing the mechanical hardness [9,67–72].
However, a disadvantage of silica is that it does not have magnetic properties, such as iron
nanoparticles, so applications in the field of controlled release by magnetic heating are not
possible without further modification measures [17].

The sol–gel method is a common process for preparing silica–polymer hybrids [73–79].
The molecular precursor forms a three-dimensional network within the polymer matrix
during the sol–gel reaction [78]. It is a simple and inexpensive method to produce hy-
brid materials that can be used in a wide range of applications, such as catalysis, drug
release, and separation technology [80–83]. However, the silica particles form covalent
bonds with each other [77,79] or with the polymer matrix [84] and the polymer material
is often not capable of forming self-assembled hierarchical structures [73,74], resulting
in a non-dynamic system. Subsequent reorganization of the encapsulated nanoparticles
by the selective induction of phase transformation processes of the mesoscopic polymer
structures, as shown by Wang et al. [3], with gold nanoparticles encapsulated in PS-b-PAA
cylinders, would not be possible. The main advantage of dynamic nanoparticle–polymer
hybrids is that structural defects caused during nanoparticle assembly can be subsequently
repaired [3].

Compared to the hybrid systems of self-assembled polymers known from the lit-
erature so far, the use of silica leads to completely different challenges with regard to
encapsulation, requiring the development of a new process chain. Due to its similar sur-
face chemistry, silica serves as a model particle system for metal oxides. For example,
Kockmann et al. [65,72,85] have already shown that metal oxide nanoparticles of ZrO2 and
Al2O3 can be hydrophobized and incorporated into a polymer matrix using the functional-
ization method applied here. Thus, it is expected that the findings reported in this study
are transferable to other metal oxide systems. The materials shown so far, such as gold,
are hydrophobized and simultaneously stabilized by adding a hydrophobic modifier with
a thiol group in the molecule to the gold suspension before precipitation [3,4,55]. Since
silica is not a metal and, thus, does not have a high affinity for thiol groups, another
method of hydrophobization must be used and be examined and assessed with regard
to encapsulation. One possibility to hydrophobize the nanoparticles is to bond APTES
and carboxylic acids to the particle surface. The advantage of this method is that different
hydrophobicities can be achieved, which can significantly influence the encapsulation and
structure formation of the polymers, as seen in Section 3.2. The disadvantage, however, is
that suspension instabilities occur, especially with increasing chain length.

Therefore, the aim of this study is to show, for the first time, how the simple and
economical method of co-precipitation can be used to prepare silica–polymer hybrids of
self-assembled PS-b-PAA vesicles, which exhibit high dynamics due to their non-covalent
bindings and allow the possibility of subsequent nanoparticle reorganization. In particular,
the influence of factors such as nanoparticle size and type of modification of the nanoparti-
cles on the mesoscopic structure will be elucidated. For this purpose, the characterization of
the nanoparticles and the adjustment of their surface properties are important prerequisites.
Figure 2 shows the established process chain from the synthesis and modification of the sil-
ica nanoparticles to encapsulation in PS-b-PAA vesicles using the co-precipitation method.
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Figure 2. Schematic representation of the process for the production of the self-assembled
nanoparticle–polymer hybrids from silica and PS-b-PAA vesicles, involving synthesis, surface modi-
fication, colloidal stabilization, and encapsulation with the co-precipitation method as well as the
illustration of the reaction mechanism of the two-stage modification method using the example with
APTES and decanoic acid. (a) First modification step by chemically coupling APTES to the silica
surface, (b) addition of decanoic acid to the APTES-modified silica nanoparticles, and (c) second
modification step by chemically coupling decanoic acid to the silica–APTES surface.

2. Materials and Methods
2.1. Materials

Polystyrene-block-polyacrylic acid (PS-b-PAA, batch number: MKBQ5839V) was pur-
chased from Sigma Aldrich (Steinheim, Germany). The molecular weights were determined
by GPC with the solvent THF and PS as the standard. A value of 27,617 g/mol was ob-
tained for PS and 1761 g/mol for PAA, leading to a total molecular weight of 29,378 g/mol
with a polydispersity ≤1.1. The degree of polymerization of PS was 275 and of PAA
30. Deionized water was used as the selective solvent for polystyrene and for the silica
synthesis. Tetrahydrofuran (THF, not stabilized, for HPLC) from Sigma Aldrich (Stein-
heim, Germany) served as the solvent for PS-b-PAA. Tetraethylorthosilicate (TEOS, for
synthesis; purity ≥ 99.0%), aqueous ammonia solution 25% (for analysis, Reag. Ph. Eur.),
3-aminopropyl triethoxysilane (APTES; purity ≥ 98.0%), hexanoic acid (for synthesis; pu-
rity ≥ 98.0%), octanoic acid (for synthesis; purity ≥ 99.0%), decanoic acid (for synthesis;
purity ≥ 98.0%), N,N’-diisopropylcarbodiimide (DIC, for synthesis; purity ≥ 99.0%) from
Sigma Aldrich (Steinheim, Germany), and absolute ethanol (purity ≥ 99.8%, Reag. Ph. Eur.)
from VWR chemicals (Darmstadt, Germany) were used for silica synthesis and surface
functionalization.

2.2. Silica Synthesis, Modification, and Colloidal Stabilization

Stöber synthesis was used to prepare silica particles (SiO2) [86]. Ethanol (2.55 mol),
deionized water (1.05 mol), and ammonia (0.04, 0.06, 0.10, 0.26, 0.52, 0.63, 0.79, and 1.05 mol)
were mixed completely under stirring for 15 min. The entire amount of the TEOS precursor
(0.11 mol) was added rapidly, initiating sol–gel synthesis. After 24 h, with continuous
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stirring at 400 rpm, the particles were completely grown. Finally, the silica particles were
separated from the water and ammonia and transferred to pure ethanol (absolute). For
this purpose, the suspensions were centrifuged at 8500 rpm for 25 min and redispersed
in ethanol. This procedure was repeated 3 times. Suspensions with particles smaller than
70 nm could no longer be efficiently centrifuged due to their size. Here, the particles could
be transferred to ethanol using a rotary evaporator. Ammonia and water were removed
here under an elevated temperature (40 ◦C) and reduced pressure (down to 70 mbar, just
below the vapor pressure of water at 40 ◦C), and the evaporated amount was replenished
with ethanol.

The method for modifying silica particles was derived from Kockmann et al. [72].
First, silica particles were modified with APTES, choosing a molar ratio of silica to

APTES of 1:1. Both the APTES in ethanol solution and the silica suspension were preheated
in separate flasks in an oil bath to about 50 ◦C before the silica suspension was added
dropwise with vigorous stirring to the APTES solution. The flask was sealed airtight, and
the mixture was stirred at 78 ◦C for at least 12 h under stirring at 400 rpm. Then, the
particles were centrifuged a total of three times at 8000 rpm for 15 min and redispersed in
ethanol. Applying the ninhydrin test [72], the number of washing steps required to remove
all free APTES in the supernatant was determined in advance.

Second, carboxylic acids with different chain lengths (hexanoic, octanoic, and decanoic
acid) were coupled to the amine groups present on the particle surface. The molar ratio of
carboxylic acid to silica (as SiO2) was 1:1. A coupling reagent was needed to support the
reaction. In this case, diisopropylcarbodiimide (DIC) was used in a molar ratio of 3:2 to
the respective carboxylic acid. For this purpose, first, the carboxylic acid was dissolved in
ethanol and heated to about 50 ◦C in a flask. At the same time, the suspension with APTES-
modified silica nanoparticles was heated to 50 ◦C in a flask and then added dropwise to
the carboxylic acid solution. After stirring at 78 ◦C for 12 h, the particles were washed. For
this purpose, the suspensions were centrifuged at 8500 rpm for 25 min and redispersed in
ethanol. This procedure was repeated 3 times.

2.3. Encapsulation of Modified Silica in PS-b-PAA Vesicles

The modified silica nanoparticles were finally encapsulated in PS-b-PAA vesicles. Here,
we initially used the silica nanoparticles modified with APTES and with
APTES–decanoic acid, the two types of modification that differ most clearly from one
another due to their hydrophobicity. The experimental conditions, with regard to the type
and amount of solvent, polymer concentration, temperature, stirring speed, and duration,
were determined on the basis of experience from previous investigations. For encapsulation,
the polymer was first dissolved in THF, which is a good solvent for both polystyrene and
polyacrylic acid, and the mixture stirred for at least 12 h. The initial concentration of the
polymer solution was 3 mg/mL, and the polymer–nanoparticle mass ratio in the product
amounted to 10:1, a ratio that seemed to provide enough nanoparticles for encapsulation
but not so many nanoparticles that the structure formation of the vesicles was disturbed
during precipitation. The SiO2–APTES suspension was then treated with an ultrasonic
sonotrode (Bandelin Sonopuls mini20, Berlin, Germany) for 2 min before it was added to the
polymer solution with vigorous stirring. SiO2–APTES–decanoic acid was first transferred to
THF before being added to the polymer solution. The mixture was then stirred at 400 rpm
for about 30 min to ensure homogeneous mixing. In all experiments, a clear/slightly
opaque solution was obtained with no agglomerates or sediments, indicating good stability
of the polymer–nanoparticle dispersion before precipitation. Water was then added to the
polymer solution as a selective solvent at a rate of 25 µL/min under a stirring speed of
400 rpm until a water content of 14 wt% was reached. At this point, the product volume
was 5 mL and the polymer concentration was 0.1 wt%. The solution was then stirred at
100 rpm for 3 h to obtain the polymer vesicles. The morphology was assessed after 24 h
of the process time to ensure that the vesicles in this case represented the thermodynamic
equilibrium structure. To freeze the morphology after the end of the process, the selective
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solvent water was added to the mixture (the solvent was three times the total amount of
the mixture). Finally, the vesicles were washed with water by centrifuging the solution
at 9500 rpm for 15 min and redispersing in water. In our experience, no changes in the
morphology of the polymer vesicles resulted from this purification procedure. The TEM
and SEM samples were prepared immediately afterward.

2.4. Characterization of Particle Size and Surface Modification

Particle sizes were determined using dynamic light scattering (instrument: Zetasizer
from Malvern, Worcestershire, UK) with a quartz glass cuvette (Hellma Analytics, Type
100 QS, Müllheim, Germany). Per sample, 3 measurements were performed. To investigate
the influence of sonication on particle size and distribution, the samples were additionally
treated with an ultrasonic sonotrode for 2 min before the measurement.

To yield a dry powder, about 2 mL of the suspension was first stored in a vial at 80 ◦C
for 2 h in a muffle oven and then stored in a vacuum desiccator for at least 3 days. A few
milligrams were sufficient to enable Fourier-transform infrared spectroscopy (FTIR) and
thermogravimetric analysis (TGA). For the TGA measurements, the powder samples were
heated to 700 ◦C under atmospheric conditions and the mass loss was determined.

2.5. Encapsulation Imaging

Samples were visually assessed using a transmission electron microscope (TEM, in-
strument: Tecnai G2 F20 TMP from FEI, voltage: 200 kV, Frankfurt am Main, Germany)
and a scanning electron microscope (SEM, instrument: Helios G4 CX from FEI, voltage:
5 kV, Frankfurt am Main, Germany). Between 50 µL and 150 µL of the suspensions were
dropped onto a copper grid for TEM measurements and onto a membrane filter (Whatman®

Nuclepore™ Track–etched polycarbonate membranes with pore diameter of 0.2 µm, Dassel,
Germany) and dried in atmospheric air. The membrane filters for the SEM measurements
were then glued to a copper grid and sputtered with 4 nm platinum.

3. Results and Discussion

In this section, the process chain for preparing nanoparticle–polymer hybrids from
silica nanoparticles and PS-b-PAA vesicles will be shown and discussed analogously to
Figure 2. For this purpose, silica synthesis will be demonstrated first, followed by the
modification of the particles to ensure optimal surface properties or hydrophobicities of
the particles with regard to encapsulation. Next, we will discuss the challenges in the
modification with respect to re-agglomeration and stabilization of the particles. Finally, the
encapsulation of the modified silica particles in PS-b-PAA vesicles will be presented.

3.1. Silica Synthesis, Modification, and Colloidal Stabilization

In this section, we will (1) show the synthesis of silica particles by the Stöber method,
(2) show how the synthesized silica particles are modified with APTES and carboxylic
acids of different chain lengths (hexanoic, octanoic, and decanoic acids), (3) use FTIR and
TGA measurements to evaluate the process, (4) investigate the suspension stabilities of
the modified silica nanoparticles by DLS measurements, and (5) demonstrate and discuss
different re-agglomeration methods (ultrasonic and solvent exchange).

To begin with, it was crucial to select a simple and reproducible method for silica syn-
thesis. By 1968, Stöber et al. [86] had discovered that particle sizes and size distributions of
silica nanoparticles depend on the synthesis conditions (e.g., by varying the ammonia con-
tent). Over time, numerous other researchers have confirmed this [68,87–89]. Therefore, we
chose the Stöber method to synthesize the nanoparticles and evaluated the exact conditions
for generating a targeted particle size by successively increasing the amount of ammonia
and measuring the particle size (as the volume mean diameter dv50). As can be seen in
Figure 3, the particle size of silica particles can be controlled between 12 nm ± 0.08 nm
(at 1 mol–% ammonia, related to the total molarity in the synthesis mixture) and about
800 nm ± 17.28 nm (at 22 mol–% ammonia).
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Figure 3. Particle size and polydispersity index of the silica nanoparticles by varying the amount of
ammonia when using the Stöber method.

At lower or higher concentrations, homogeneous suspensions could no longer be
observed. Bogush et al. [68] reached a similar conclusion. Under the same conditions, they
were able to synthesize particles between 20 nm and 800 nm. However, for our study, we
selected particle sizes smaller than 50 nm (concrete: 45 nm ± 1.88 nm and 20 nm ± 8 nm)
to ensure that the particles could be integrated into the polymer vesicles.

For encapsulation, it is also critical to ensure high affinity between the nanoparticle
and the block copolymer. It was postulated that the surface properties of the silica particles
featuring hydroxyl groups might hinder successful encapsulation. Therefore, the surface
properties were specifically varied using different modifiers. The modification was per-
formed in a two-step process: (1) the particle surface is modified with APTES and (2) the
particle surface is modified with a carboxylic acid (hexane, octane, and decanoic acid). The
main advantage of this two-step process is that carboxylic acid residues of any length can
be coupled to the surface, resulting in different degrees of hydrophobicity. These can be
crucial for the success of the process when preparing nanoparticle–polymer hybrids, which
will be demonstrated in Section 3.2.

We verified our method by performing FTIR measurements on 45 nm unmodified and
modified silica particles. See Figure 4. Transmission values larger than 1 are exclusively
due to measurement artifacts and can, therefore, be neglected. The minima in the lower
wavelength range (approx. 450 to 1000 cm−1) are characteristic of silica (fingerprint range)
and therefore occur in all spectra. The characteristic vibrations of the organics present in
the modified particles (APTES and APTES with hexanoic, octanoic, and decanoic acid) can
be seen in the wavelength range between just above 1000 cm−1 and 3400 cm−1. However,
we will not discuss each individual minimum in detail here as the successful application of
this coupling strategy to silica particles has already been demonstrated before [62]. First, it
can be seen that the spectrum of the particles modified with APTES is highly similar to the
one of pure silica used as a reference. Compared to the FTIR spectrum of APTES-modified
ZrO2 nanoparticles [85], the expected signals of the CH2 and CH3 groups are only slightly
visible, which we attribute to the larger size of the silica nanoparticles resulting in a much
lower organic content for similar density at the particle surface. However, after additional
coupling of hexanoic, octanoic, and decanoic acid, the expected transmission bands are
clearly visible.
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Figure 4. FTIR spectra of 45 nm silica nanoparticles: unmodified silica particles used as a reference
(SiO2); SiO2 modified with APTES (SiO2–APTES); and SiO2 modified with APTES with hexanoic
(SiO2–APTES–hexanoic acid), octanoic (SiO2–APTES–octanoic acid), and decanoic acid (SiO2–APTES–
decanoic acid).

The minimum at 3310 cm−1 reveals the presence of secondary amines (R–NH–R),
mainly characterized by NH stretching vibration. In contrast to primary amines, which
show a double minimum in the range between 3310 and 3350 cm−1, secondary amines
here show only one. Furthermore, the characteristic hydrocarbon vibrations of carboxylic
acids can be observed in the wavelength range between 2840 and 3000 cm−1. Of particular
interest are the wavelength ranges between 1597 and 1672 cm−1 as well as between 1480
and 1575 cm−1. Amide I vibrations, mainly caused by C=O stretching vibrations, could be
detected in the first mentioned range and amide II vibrations, dominated by NH bending
vibrations, could be detected in the second range [90]. The minima shown in this FTIR
spectrum thus indicate that APTES and the respective carboxylic acid are covalently linked
and bound to the particles. First, the APTES molecules are linked to the surface of the
silica particles with the cleavage of ethanol, resulting in the formation of covalent Si–O–Si
bonds. Next, amidation with the carboxylic acid takes place. Under cleavage of water, the
carboxylic acid is covalently bound to the APTES-modified silica surface. The characteristic
CO–NH group is formed, which can be detected by FTIR. The hexanoic acid–modified
particles exhibit noticeably higher signal intensity for the expected organic vibrations in
the range between 1000 cm−1 and 3400 cm−1 compared to the other samples, attributed to
a larger amount of sample measured, as well as a higher organic content, which might be
explained by some variation in the APTES content due to experimental variations.

To further characterize the modified silica nanoparticles, we performed thermogravi-
metric analysis. Figure 5 illustrates the change in mass (in %) versus temperature. The
starting temperature was set at 150 ◦C because up to this temperature, only adsorbed water
is removed from the powder samples [91]. The silica reference shows a significantly lower
weight loss, of only 4.2%, compared with the modified particles. All other curves exhibit a
slower drop up to about 250 ◦C, followed by a marked drop up to about 500 ◦C, and a much
less marked drop up to 700 ◦C. This is similar for all modifications, although the longer the
chain of the modifier or the higher the molar mass bound to the silica particles, the more
pronounced the drop between 250 ◦C and 500 ◦C. Therefore, it can be deduced that mainly
the modifier is decomposed in this temperature interval. Overall, we could detect a mass
loss of 13.5% for the particles modified with APTES, of 17.7% for the particles modified
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with APTES–hexanoic acid, of 18.4% for the particles modified with APTES–octanoic acid,
and of 19.4% for the particles modified with APTES–decanoic acid. Accordingly, analogous
to other literature sources [65,91,92], a trend emerged that the higher the molecular weight,
the higher the mass loss. In our specific case, it was even possible to determine a direct
linear relationship between the molecular weight of the modifier and the mass loss.
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Figure 5. Thermogravimetric analysis of unmodified silica nanoparticles (SiO2) as a reference and sil-
ica nanoparticles after modification with APTES (SiO2–APTES) as well as after two-step modification
with APTES and different carboxylic acids (SiO2–APTES–hexanoic acid, SiO2–APTES–octanoic acid,
and SiO2–APTES–decanoic acid).

The silica particles had to be modified so they could be encapsulated, but this changed the
behavior of the particles in the suspension. Figure 6a shows a photograph of the silica suspen-
sions in ethanol (black: SiO2 as a reference; green: SiO2–APTES; blue:
SiO2–APTES–hexanoic acid; red: SiO2–APTES–octanoic acid; orange: SiO2–APTES–decanoic
acid). Figure 6b presents the DLS results. The particle size and polydispersity (PDI) of the
modified silica particles are increased compared with the unmodified particles. This was
most noticeable for the particles modified with APTES (237 nm ± 2.62 nm with a PDI of
1.4 ± 0.08). In contrast, the particles modified with APTES–hexanoic acid showed only
a slight increase in particle size (90 nm ± 0.41 nm with a PDI of 1.17 ± 0.008) and the
particles modified with APTES–octanoic acid demonstrated slightly larger particle sizes
and particle size distribution (143 nm ± 5.25 nm with a PDI of 1.5 ± 0.08), although both
were significantly lower than the size and distribution after modification with APTES only.
Presumably, the hydrocarbon groups of the carboxylic acids had a higher compatibility
with the solvent ethanol than APTES with its amino group, which is why the particles
modified with APTES have a higher tendency to agglomerate.

The encapsulation of larger agglomerates could lead to inhomogeneous hybrids as
well as disrupt the structural formation of the polymer vesicles. Hence, efforts were
made to re-agglomerate them again using ultrasound. This showed good success for the
particles modified with APTES (88 nm ± 1.14 nm with a PDI of 1.34 ± 0.16), with APTES
and hexanoic acid (68 nm ± 0.97 nm with a PDI of 0.95 ± 0.05), and with APTES and
octanoic acid (95 nm ± 2.40 nm with a PDI of 1.3 ± 0.05). Ultrasound had to be applied
to the suspensions directly before encapsulation. Visual observations also showed clear
differences between the modified particles. As seen in Figure 6a, compared with the
unmodified silica particles, the suspension with APTES-modified silica particles became
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cloudy because of agglomeration. The suspensions with APTES–hexanoic acid– and
APTES–octanoic acid–modified particles, however, were less cloudy and did not show
any sedimentation. In contrast, the suspension with APTES–decanoic acid–modified silica
particles exhibited a clear phase separation with sedimented agglomerates and ultrasound
could not contribute to satisfactory re-agglomeration. In this case, DLS measurements were
not recorded because the agglomerates were outside the instrument’s measurement range
of 1 µm.
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Figure 6. Photograph of silica suspensions (a) as well as DLS measurements of the particle size and
particle size distributions of the unmodified and modified silica nanoparticles (b). (a) Suspensions
in the solvent ethanol (black: SiO2 as a reference; green: SiO2–APTES; blue: SiO2–APTES–hexanoic
acid; red: SiO2–APTES–octanoic acid; orange: SiO2–APTES–decanoic acid). (b) SiO2 as a reference
and modified particles (SiO2–APTES, SiO2–APTES–hexanoic acid, and SiO2–APTES–octanoic acid)
in ethanol with and without sonication. SiO2–APTES–decanoic acid could not be measured due to
strong sedimentation.

Therefore, another method was established. We transferred the silica particles modi-
fied with APTES–decanoic acid and, for comparison, the particles modified with APTES–
hexanoic acid and APTES–octanoic acid to THF and measured the particle size and the par-
ticle size distribution (see Figure 7). As expected, solvent change seemed to be an effective
method for stabilizing the hydrophobic particles. Comparing the n–octanol/water distribu-
tion coefficients of ethanol with −0.35 [93] and THF with 0.45 [94], a difference in hydropho-
bicity was observed that appeared to be sufficient to re-agglomerate the APTES–decanoic
acid–modified particles (65 nm ± 0.90 nm with a PDI of 0.99 ± 0.04). Sonication showed
no significant enhancement in particle size or distribution (64 nm ± 0.31 nm with a PDI of
0.97 ± 0.04), so it was assumed that this was the best possible re-agglomeration result. As al-
ready mentioned, the particles modified with APTES and hexanoic acid (186 nm ± 3.68 nm
with a PDI of 1.35 ± 0.06) as well as APTES and octanoic acid (147 nm ± 3.74 nm with
a PDI of 1.59 ± 0.06) were also transferred to THF and we studied the effect on particle
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size and particle distribution. We found that the shorter the carbon chain and, thus, the
more hydrophilic the particle surface, the larger the particles or agglomerates as the in-
teraction forces between the particles and the solvent decreased. The particles modified
with APTES–octanoic acid did not exhibit any significant difference for the two solvents, as
they possess moderate hydrophobicity. Similar to the suspensions with ethanol (compare
Figure 6), we also found that treatment with ultrasound can have a positive effect on
re-agglomeration (especially for APTES–hexanoic acid (101 nm ± 0.47 nm with a PDI of
1.32) and APTES–octanoic acid (91 nm ± 0.23 with a PDI of 1.28 ± 0.03)).
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Figure 7. DLS measurements of unmodified silica as a reference (SiO2) in ethanol, SiO2–APTES–
hexanoic acid, SiO2–APTES–octanoic acid, and SiO2–APTES–decanoic acid in the solvent THF with
and without sonication.

3.2. Encapsulation of Modified Silica in PS-b-PAA Vesicles

After the silica nanoparticles were successfully modified and stabilized, they had to be
encapsulated in PS-b-PAA vesicles, which we achieved using the co-precipitation process.

To establish an efficient encapsulation process, this section will highlight various
factors that influence encapsulation. Specifically, various modification types (APTES with
comparatively hydrophilic properties and APTES–decanoic acid with highly hydrophobic
properties) and particle sizes (20 nm and 45 nm) are discussed. SEM and TEM images
provide information about the encapsulation and structure of polymer vesicles as well
as insights into the fusion processes of the self-assembled vesicles. At this point, it is
important to understand how the structure formation of polymer vesicles basically proceeds
(i.e., without the presence of nanoparticles). The block copolymer PS-b-PAA is initially
completely dissolved in the organic solvent THF. Addition of the selective solvent water
results in energetically unfavorable interactions with the hydrophobic part of the polymer
(polystyrene), leading to coiling of the polymer chains. The polymer monomers then
self-organize so as to minimize the interfacial area. Depending on the water content, the
type and dimension of the morphology can vary, as seen in Figure 8. At a low water
content (12.5 wt%), small, spherical micelles are initially present, which then change to the
structure of vesicles (14 wt%). With a further increase in water content, the vesicles grow in
size (19.5 wt%) and can change again to a different morphology, such as the network-like
structure at 24 wt% in Figure 8.
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Figure 8. SEM images of mesoscopic PS-b-PAA structures with variation of water content. Spherical
micelles (12.5 wt%), vesicles (14 wt% and 19.5 wt%), and large network-like structures (24 wt%).

For the encapsulation experiments, we chose a water content of 14 wt% to achieve an
adequate size ratio between the silica nanoparticles and the vesicles.

Figure 9a presents the used silica nanoparticles modified with APTES and decanoic acid
for comparison, and Figure 9b presents the formed PS-b-PAA vesicles (480 nm ± 80 nm) in
the absence of nanoparticles.
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Figure 9. TEM images of the encapsulation experiments of silica nanoparticles in PS-b-PAA vesicles.
(a) SiO2–APTES–decanoic acid nanoparticles (20 nm) without PS-b-PAA vesicles as a reference. (b) PS-
b-PAA vesicles without SiO2 as a reference. (c) Encapsulation experiment with SiO2–APTES (20 nm).
Red arrows indicate silica nanoparticles attached to the vesicle surface. (d) Encapsulation experiment
with SiO2–APTES–decanoic acid (20 nm). Agglomerates of silica nanoparticles outside the vesicles
are visible encircled in red.
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In the presence of APTES-modified silica nanoparticles (mass ratio PS-b-PAA to silica
of 10 to 1), the PS-b-PAA structures were present as defined polymer vesicles similar to
the reference experiment without silica nanoparticles. Furthermore, these vesicles were
partially connected to one another in a chain-like manner (see Figure 9c). It can, therefore,
be assumed that no morphology changes occurred due to the presence of APTES-modified
silica particles. In terms of encapsulation, the particles attached to the membrane of the
vesicles are visible (see red arrows). Furthermore, we assume that some silica particles are
encapsulated directly into the vesicles. We believe that the particles bind with the polymer
material primarily due to the formation of hydrogen bonds between the amino group
of the modified particles and the carboxyl group of the block copolymer. However, the
efficiency of the encapsulation does not yet appear to be optimal, as based on the mass ratio
of PS-b-PAA to silica of 10 to 1, presumably more particles should have been encapsulated.
To increase efficiency, it might be advantageous to use slightly more hydrophobic surface
properties. For example, the silica nanoparticles modified with APTES and hexanoic acid
might have optimal hydrophobicity.

In contrast, we found that in the experiment with APTES–decanoic acid–modified
particles, the particles were highly agglomerated and mainly found outside the vesicles
while only a few defined vesicles and undefined assemblies were detected (see Figure 9d).
Similar results are also visible in the SEM images (compare Figure 10). In the experiments
without silica nanoparticles and with APTES-modified particles, defined vesicle structures
could be observed (Figure 10a,b), whereas in the experiment with APTES–decanoic acid–
modified silica nanoparticles, many large agglomerates were detected (Figure 10c).
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experiment with SiO2–APTES (20 nm). (c) Encapsulation experiment with SiO2–APTES–decanoic
acid (20 nm).
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This suggests that the silica particles modified with decanoic acid are too hydrophobic
for the co-precipitation encapsulation process used here. The addition of water as a
selective solvent causes the precipitation of the water-insoluble part of the block copolymer
(polystyrene) above a critical amount. However, if the hydrophobic silica particles have a
stability limit at a lower water content than polystyrene, the modified particles agglomerate
before the vesicles have completely formed, disrupting the self-assembly process and
leading to the insufficient encapsulation of the particles as well as increased agglomeration
among the vesicles.

We also examined the influence of the particle size of the silica particles on the en-
capsulation. This was of particular interest with regard to the composite properties of
the nanoparticle–polymer hybrids (such as mechanical stability), where a correlation with
particle size is likely. Figure 11 shows exemplary TEM images from the experiments with
APTES-modified silica particles of 20 nm and 45 nm. We found that defined vesicles can be
generated with both particle sizes. The sizes examined here, therefore, do not appear to
have any negative influence on the structural formation of the vesicles.
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Figure 11. Exemplary TEM images of encapsulation experiments of APTES-modified silica particles
with PS-b-PAA vesicles. The image on the left shows 20 nm silica particles, and the one on the right
shows 45 nm silica particles.

During the encapsulation experiments, we made some interesting observations regard-
ing the fusion behavior of the polymer vesicles. As already mentioned, due to their high
molecular weights, block copolymers are suitable for investigating inter- and intra-vesicular
reorganization processes, such as those that take place during fusion. Figure 12 shows
some exemplary TEM images that show different states during fusion of the self-assembled
vesicles, analogous to the basic processes in membrane fusion described in the literature
(compare Figure 1). It was not possible to trace the fusion process directly over time, since
the duration of the experiments was always the same and therefore, all images show the
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same point in time. However, there are also different fusion states within a sample, since
new fusion processes are continuously initiated and not all vesicles fuse at the same time.
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Figure 12. Exemplary TEM images illustrating the fusion process of PS-b-PAA vesicles with APTES-
modified silica nanoparticles. (a) Docked vesicles (encapsulation attempt with APTES-modified
45 nm silica nanoparticles). (b,c) Semi-fused intermediates with the formation of fusion pores
(encapsulation attempt with APTES-modified 20 nm silica nanoparticles). (d–f) Opening of the fusion
pores (encapsulation attempt with APTES-modified 20 nm silica nanoparticles).

Figure 12a depicts three vesicles that are connected to each other via their outer mem-
brane but still have separate cores. In Figure 12b,c, the cores are seen to be linked by
thin filaments, forming a hemifused state, which occurs due to the fusion of the outer
membranes and the subsequent creation of a fusion pore (filament). Figure 12d,e displays
how this pore continues to open until the interiors of the vesicles are largely fused together
(Figure 12f), which can be attributed to further rearrangement mechanisms. A fully fused
vesicle could not be observed because the process time of 3 h was apparently not long
enough for complete fusion. However, this is likely to occur with passage of time. Interest-
ingly, Qu et al. [28] were able to make the same observations using TEM images, showing
vesicle fusion intermediates during the self-assembly process.
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We do not assume that the fusion processes were triggered by the high voltage of
the TEM, since no significant changes of the polymer vesicles during the duration of a
regular measurement could be observed. Furthermore, Qu et al. [28] do not describe any
special method for preparing the samples for the TEM measurements. Compared with low-
molecular-weight organic amphiphile-based structures, the polymer vesicles are probably
more resistant to high voltage due their high molecular weights and their compactness
because of their spherical shape.

4. Conclusions

In this study, for the first time, the preparation of nanoparticle–polymer hybrids of
silica nanoparticles and self-assembled PS-b-PAA vesicles by the co-precipitation method
was demonstrated. Important factors influencing the hybrids, such as the particle size
and the modification type of the silica nanoparticles, were further elucidated. We found
that the nanoparticle size (20 nm and 45 nm) had no negative effects on the structure
formation. The modification type, however, had a great strong on the vesicles. When silica
nanoparticles were modified with APTES, defined vesicles with encapsulated particles
were formed. However, when the silica nanoparticles were modified with APTES and
decanoic acid, the vesicles were agglomerated and no encapsulation took place, indicating
that hydrophilicity is a crucial factor in encapsulation. In addition, during the experiments
with APTES-modified silica nanoparticles, vesicle fusion processes were observed via TEM
images, providing a deeper understanding of phase transformation processes.

In the near future, our goal is to focus on a concrete application of nanoparticle–
polymer hybrids. Therefore, the field of intrinsically self-healing materials seems appropri-
ate, since supramolecular structures of block copolymers appear promising in the field of
self-healing [24,95].
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