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Abstract: The addition of rubber to concrete improves resistance to chloride ion attacks. Therefore,
rapidly determining the chloride permeability coefficient (DCI) of rubber concrete (RC) can contribute
to promotion in coastal areas. Most current methods for determining DCI of RC are traditional, which
cannot account for multi-factorial effects and suffer from low prediction accuracy. Machine learning
(ML) techniques have good non-linear learning capabilities and can consider the effects of multiple
factors compared with traditional methods. However, ML models easily fall into the local optimum
due to their parameters’ influence. Therefore, a mixed whale optimization algorithm (MWOA) was
developed in this paper to optimize ML models. The main strategies are to introduce Tent mapping to
expand the search range of the algorithm, to use an adaptive t-distribution dimension-by-dimensional
variation strategy to perturb the optimal fitness individual to thereby improve the algorithm’s ability
to jump out of the local optimum, and to introduce adaptive weights and adaptive probability
threshold values to enhance the adaptive capacity of the algorithm. For this purpose, data were
collected from the published literature. Three machine learning models, Extreme Learning Machine
(ELM), Random Forest (RF), and Elman Neural Network (ELMAN), were built to predict the DCI of
RC, and the three models were optimized using MWOA. The calculations show that the MWOA is
effective with the optimized ELM, RF, and ELMAN models improving the prediction accuracy by
54.4%, 62.9%, and 36.4% compared with the initial model. The MWOA-ELM model was found to
be the optimal model after a comparative analysis. The accuracy of the multiple linear regression
model (MRL) and the traditional mathematical model is calculated to be 87.15% and 85.03%, which is
lower than that of the MWOA-ELM model. This indicates that the ML model that is optimized using
the improved whale optimization algorithm has better predictive ability than traditional models,
providing a new option for predicting the DCI of RC.

Keywords: machine learning; rubber concrete; prediction; algorithm; chloride permeability coefficient

1. Introduction

Concrete is one of the most widely used building materials today [1,2]. With the
economic boom, the disposal of used tire rubber is becoming a significant issue for urban
development [3]. Developing concrete from tire rubber is considered to be a viable techni-
cal solution contributing to resource and environmental protection [4–10]. With the rapid
development of marine technology, concrete structures have been widely used in coastal
projects which has led to widespread interest in the structural durability of concrete [11–13].
The structural durability of concrete plays a vital role in sustainable development. Chloride
ion attack is one of the main factors affecting the durability of concrete structures [14–17].
Chloride ion attack can cause structural failure of concrete, which can lead to many prob-
lems. Rubber is a hydrophobic material and has a high resistance to permeation. Chloride
ions are transported in concrete using water as a medium, so adding rubber can improve
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the concrete’s resistance to chloride ions [18–22]. The chloride permeation coefficient (DCI)
is one of the three main indicators of concrete durability design, and its permeation process
is also an effective way to understand chloride ion attack on concrete [23,24]. It is currently
difficult to measure each project’s DCI and permeation rate of concrete [25]. To this end,
several empirical models and equations have been developed to determine the DCI of
concrete [26–28]. However, chloride permeation is a complex and time-consuming process,
and these traditional methods cannot consider the influence of multiple factors and have
low predictive accuracy [29,30]. Therefore, it is particularly important to find a quick and
accurate method for determining the DCI of rubber concrete (RC).

Machine learning (ML) techniques have good non-linear learning capabilities, which
can learn from given data and make accurate predictions through complex systems [31].
ML technology has also been applied in the study of RC. For example, Nyarko et al. [10]
used 457 sets of RC data to build a 9-3-2 deep neural network (DNN) model to pre-
dict the strength of RC and demonstrated that the DNN accuracy was high at 0.9779.
Gupta et al. [32] successfully investigated the mechanical properties of rubber concrete at
high temperatures using a multi-input and multi-output artificial neural network (ANN)
model. Ly et al. [33] used DNN to predict the strength of RC successfully and found the
best structure to be 12-16-14-3-1. However, existing research has mainly focused on the
mechanical properties of RC. Research on the chloride penetration of RC is limited.

Compared to traditional feed-forward neural networks, Extreme Learning Machine
(ELM) can set the input weights randomly and obtain the output weights by least squares.
This network has a better generalization capability and faster iteration speed, as the entire
iteration process is not required, while the probability of the local extremum and overfitting
is lower [34,35]. Since the input weights are random, there is a problem with blind iteration
and low accuracy [36]. The random forest (RF) model was proposed in 2018 [37]. The
advantages of the RF model are controllable generalization error, fewer parameters to be
adjusted, suitability for high-dimensional feature vector spaces, and protection against
overfitting to a certain degree. However, its parameters still have randomness and lim-
itations [2,38]. Elman neural network (ELMAN) is similar to artificial neural networks
in structure. The difference is that the ELMAN can store information. The output of the
previous neuron is stored to guide the prediction of the next neuron. Therefore, the ELMAN
has better dynamic prediction capability. However, due to the influence of weights and
bias, it is prone to gradient explosion, resulting in lower prediction accuracy [39,40]. The
three models have shown extraordinary capabilities in solving prediction problems and
have been used in various studies [2,39–42], but the research applied to RC is still limited.
Therefore, these three models were chosen for this study.

Determining the ML model parameters is crucial, as they directly affect the model’s
predictive performance [43]. The parameters can be optimized by intelligent algorithms [44].
Intelligent algorithms can improve the model’s predictive performance by searching for
optimal parameters [45]. The main idea of the whale optimization algorithm (WOA) is to
simulate the humpback whale foraging process, proposed in 2016. The WOA has fewer
parameters and is also quite competitive compared to other optimization algorithms [46],
so it is widely used in various fields [47–49]. However, the standard WOA suffers from
slow convergence and local optimal solutions, so improvements are needed. Tent chaotic
mappings have a more uniform distribution and are often used to optimize the initial
populations of WOA [50,51]. Therefore, in this study, tent chaotic mapping was chosen to
optimize the population of WOA. Since the linear weight adjustment strategy of WOA is
not adapted to the constantly changing population, an adaptive weight adjustment strategy
was introduced. The Probability threshold value was introduced to enhance the algorithm‘s
global search ability [52]. At the end of the iteration, to avoid the WOA falling into the
local optimum, an adaptive t-distribution dimension-by-dimensional variation strategy
was used to perturb the optimal individual to increase the WOA’S ability to jump out of the
local optimum [53]. There is limited research on applying improved algorithms to optimize
ML models to predict DCI of RC, so this approach is used in this study.
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In summary, this study chose the ELM, RF, and ELMAN models to predict the DCI of
RC, while the WOA was improved to form a new mixed whale optimization algorithm
(MWOA). The MWOA algorithm can improve the accuracy of machine learning models.
The optimized model also has advantages over the traditional model. Thus, data were first
collected from the published literature and created a database for analysis. Secondly, using
the three models to predict the DCI of RC, the three models were optimized using MWOA.
Thirdly, we evaluated the model performance and found the optimal model. Fourth, we
conducted sensitivity analysis for models. Fifth, the representative prediction result of
the optimal model was compared with the actual value. Finally, using the optimal model
compared with the traditional model.

2. Database Description and Analysis of Variables

Since the experimental data were collected from the published literature, process-
ing is required to allow the model to learn better. This study collected 88 sets of RC
mixed ratio data [22,54–59]. Three ML algorithms using nine input variables were used:
(1) measurement method, (2) cement content, (3) water reducing agent content, (4) water
content, (5) water to ash ratio, (6) fine aggregate content, (7) coarse aggregate content,
(8) rubber size, (9) rubber content. The DCI is the only output variable. Due to the different
methods used to measure the DCI of RC, this study distinguishes between the measurement
methods. Two measurement methods are included in the collected literature, the rapid
chloride permeability test (RCPT) method and the rapid chloride migration Test (RCM)
method. Therefore, the RCPT method is defined as 1, and the RCM method is defined as
2. Considering the different types and sizes of rubber, this study distinguishes between
rubber by size under different measurement methods. The RCPT literature method includes
two rubber sizes, 0–1 mm and 1–3 mm. Therefore, the two rubbers were recorded as 1 and
2 by size. The RCM method literature includes five types of rubber with dimensions of
0.063–0.6 mm, 0.25 mm, 0.6–0.7 mm, 1–2 mm, and 4–10 mm. Therefore, the five types of
rubber are noted as 1, 2, 3, 4, and 5 by size. The RC samples selected for this study met the
28-day curing period. Cement substitution materials were not used as an input variable
in this study, as they are rarely added in the published literature. Figure 1 represents the
hotspot plot of the correlation coefficient between the variables. The correlation coefficients
between the variables are all less than 0.8, as seen from the graph. Some studies suggest
that the correlation between variables should be less than 0.8 to reduce the effect of multi-
ple collinearities [60,61]. Figure 2 represents the input and output parameters’ frequency
distribution histogram. The statistical analysis of each variable is shown in Table 1. Stdd
denotes overall sample bias, and Stde indicates sample bias.
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Table 1. Statistical analysis of input and output variables.

Max Min Average Median Stdd Stde

Method 2.00 1.00 1.6932 2.00 0.4612 0.4638
C·kg/m3 457.00 100.00 350.69 387.50 123.16 123.87

WR·kg/m3 5.82 0.00 0.62 0.00 1.34 1.35
W·kgm3/ 272.00 35.00 157.32 161.90 65.19 65.57

W/C 0.60 0.35 0.44 0.45 0.076 0.078
FA·kg/m3 1360.00 174.00 862.76 1005.00 365.72 367.82
CA·kg/m3 1124.00 0.00 504.95 607.00 410.24 412.59
Rubber Size 5.00 0.00 1.4773 1.00 1.215 1.222

Rubber Content kg/m3 138.40 0.00 35.89 22.00 37.55 37.77
DCI·10−12m2 18.55 1.07 8.39 9.74 3.88 3.90

3. Method
3.1. Whale Optimization Algorithm

Humpback whales are herd animals because they can only hunt small fish and prawns.
They have developed a unique way of hunting known as bubble net hunting, where the
term WOA comes from [46]. The algorithm is divided into three main parts: encirclement
predation, prey predation, and prey search. The specific process of the WOA is as follows:
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3.1.1. Encirclement Predation

In this process, humpback whales randomly search for prey based on the positions of
each other in the population. Since the location of the best target has yet to be discovered in
the search space, the WOA assumes that the location of the best target is within the search
range. Once the position of the best target is determined, other populations will approach
the best target and update their positions. The mathematical expression for this process is
as follows [62]:

X(v + 1) = X∗(v)− A·D (1)

D = |CX∗(v)− X(v)| (2)

where v indicates the number of iterations; A and C are vector coefficients; X∗(v) is the
location of the best target; X(v) is the current location; D is the process quantity; the
expressions for the calculation of A, C are as follows [62]:

A = 2a · r1 − a (3)

C = 2r2 (4)

a = 2− 2v
Vmax

(5)

where v indicates the number of iterations; Vmax indicates the maximum number of itera-
tions; r1 and r2 are both random numbers belonging to the range [0, 1]; a decrease gradually
from 2 to 0.

3.1.2. Prey Predation

The bubble net foraging method is a unique hunting method for humpback whales.
The WOA is a simulation of the spiral bubble net foraging strategy for optimization. A
total of two methods were designed to simulate this behavior:

(1) Shrinkage envelope mechanism: This is achieved by reducing the value of a
in Equation (3). Other targets will move closer to the best target when the best target
is identified. The current position (X, Y) is gradually contracted to the optimal target
position (X∗, Y∗).

(2) Spiral update mechanism: The distance between any whale (X, Y) and the optimal
target position (X∗, Y∗) is first calculated, then spiral update equations are created to
simulate the whale’s hunting motion. The main expressions are as follows [62]:

D′ = |X∗(v)− X(v)| (6)

X(v + 1) = D′ · ebl · cos(2πl) + X∗(v) (7)

where b is a constant and indicates the parameter for the shape of the spiral; l denotes a random
number between [–1, 1]; D′ suggests the distance between the best target and any whale.

These two mechanisms co-occur, with a probability of 50% each. The expression of the
equation is as follows [62]:

X(v + 1) =
{

X∗(v)− A · D P < 0.5
X∗(v) + D′ · cos(2πl) · ebl P ≥ 0.5

(8)

3.1.3. Prey Search

Whale populations randomly search for prey, and the mathematical expression for
this process is as follows [62]:

Drand = |CXrand(v)− X(v) | (9)

X(v + 1) = Xrand(v)− A · Drand (10)
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where Xrand(v) indicates a randomly selected location in the current population of whales.
The WOA, like other intelligent algorithms, suffers from the problem of falling into

local extremum. Therefore, improvements to the WOA are needed.

3.2. Improved Whale Optimization Algorithm
3.2.1. Tent Chaotic Mapping Initializes Populations

Chaos is a complex, non-linear state that exhibits irregularity and randomness [63].
Therefore, chaotic mapping can be used to improve the algorithm’s performance. The two
commonly used chaotic mapping sequence models are Logistic and Tent. Compared to
logistic mappings, Tent mappings have a more uniform distribution, allowing the algorithm
to have a wider search range [50]. Therefore, Tent chaotic mapping is used to initialize the
population in this study. The expressions are as follows [51]:

xn+1 =

{
2xn, 0 ≤ xn ≤ 0.5

2(1− xn), 0.5 ≤ xn ≤ 1
(11)

The expression after the Bernoulli displacement transformation is as follows [51]:

xn = 2(xn)mod1 (12)

3.2.2. Adaptive Adjustment of Weight

The inertia weight is a crucial parameter in the WOA. Appropriate weight values
can improve the algorithm’s performance, since the original WOA did not consider
that the prey would guide the whale for position updates during the iterative pro-
cess. Therefore, an adaptive weight formula is established in this paper. The specific
expression is as follows [52]:

w = d1 ∗ (Pworst − Pbest) + d2 ∗
(

xupper
i − xlower

i

)
/t (13)

where t indicates the current number of iterations; xupper
i and xlower

i denote the upper and
lower bounds of xi respectively; d1 and d2 represent constants; Pworst and Pbest denote the
worst and best positions of the current population respectively. Thus Equations (1) and (7)
can be improved as:

X(v + 1) = w ∗ X∗(v)− A·D (14)

X(v + 1) = D′ · ebl · cos(2πl) + w ∗ X∗(v) (15)

With the introduction of an adaptive adjustment weights strategy, the algorithm can
adaptively change the weights’ size according to the whale population’s current distribu-
tion. At the beginning of the algorithm iteration, if the whale population falls into the local
optimum and the difference between the optimum and the worst solution is not significant,
the value of d2 ∗

(
xupper

i − xlower
i

)
/t is not affected by the population distribution. At this

point, obtaining a large value of weights is still possible and avoids the algorithm falling
into a smaller search range at the beginning of the iteration. As the whale population itera-
tions increase, the value of d2 ∗

(
xupper

i − xlower
i

)
/t decreases, and the effect on the weights

decreases. If the algorithm does not obtain an optimal solution, d1 ∗ (Piworst − Pibest) can
play a dominant role in the weight and can make the algorithm find the optimal solution in
larger steps. The adjustment of these two components makes the inertia weights highly
adaptive and strengthens the algorithm’s optimization search capability.
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3.2.3. Adaptive Adjustment of the Search Strategy

To prevent the algorithm from falling into the local optimum, a Probability threshold
value Q is introduced to update the expression of the random search. The expression for Q
is as follows [52]:

Q =

∣∣∣ f − fmin

∣∣∣
| fmax − fmin|

(16)

where f indicates the average fitness of the current population; fmin indicates the current
best fit value; fmax indicates the current worst fit value; for each whale, a q ∈ [0, 1] is
compared with Q value. If q < Q, the randomly selected individual whale updates its
position according to Equation (17), and the other individual whales remain unchanged [52].
Otherwise, other individuals update their position according to Equation (10). This allows
the algorithm to generate a set of random solutions globally with a greater probability in
the early iterations, reducing the likelihood of population diversity decline and enhancing
the global search capability of the algorithm.

Xrand(v) = Xmin + r ∗ (Xmax − Xmin) (17)

where r is a random number between [0, 1]; Xmin and Xrand are the maximum and minimum
values of Xrand respectively.

3.2.4. Adaptive t-Distribution Dimension-by-Dimensional Variation Strategy

Population diversity declines in later iterations of the WOA. This leads to the algorithm
being prone to fall into the local optimum. Therefore, this study introduces an adaptive
t-distribution dimension-by-dimensional variation strategy to perturb the individuals with
optimal fitness and improve the ability of the algorithm to jump out of the local optimum.
Depending on the size of the degree of freedom n, the t-distribution curves show different
patterns. When t→ (n→ ∞)→ N(0, 1) , t(n = 1) = C(0, 1), where N (0, 1) is a Gaussian
distribution and C (0, 1) is a Cauchy distribution. This shows that the two boundary
special cases of the t-distribution are the Gaussian and the Cauchy distributions [64]. The
dimension-by-dimension variation is calculated as follows [53]:

Xd
new = Xd

Pest + Xd
Pest × t(iter) (18)

where iter indicates the current number of iterations; t(iter) denotes t-distribution with the
degree of freedom parameter t. The flow chart for the MWOA is shown in Figure 3.
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3.3. Machine Learning Models
3.3.1. Extreme Learning Machine

The Extreme Learning Machine is a new neural network learning algorithm proposed
by Professor Guangbin Huang in 2004 [65]. The Extreme learning machine also evolved
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from the feedforward neural network, which can randomize the input weights, bias,
and the number of hidden layer neurons and then obtain the output weights by least
squares without the need for the entire iteration of the network [34,35]. ELM is widely
used in various fields such as pattern recognition, image processing, signal processing,
combinatorial optimization, and prediction [66–69]. The structure of the ELM is shown in
Figure 4. The primary calculation process for ELM is as follows:
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For N arbitrary samples (xi, ti), where xi = [xi1, xi2, xi3, . . . , xin]
T ∈ Rn, ti = [ti1, ti2, ti3, . . . , tim]

T ∈
Rm. Assume that the number of hidden layer neurons is Ñ, and the activation function is h(x), the standard
single hidden layer feedforward neural network (SLFN) expression is as follows [70]:

Ñ

∑
i=1

βih
(
ki · xj + bi

)
= yj, j = 1, . . . N (19)

where ki = [ki1, ki2, ki3, . . . , kin]
T denote the vector of weights connecting the ith hidden

neuron to the input neuron; bi denotes the bias of the ith neuron; βi = [βi1, βi2, βi3, . . . , βin]
T

denotes the weights connecting the ith hidden layer neuron to the output neuron. ki · xj
denote the inner product of ki and xj; The activation function is usually Sigmoid, RBF or
Sine, and in this study the activation function is Sigmoid.

A standard SLFN with Ñ hidden layer neurons and activation function h(x) can
approach this N samples with zero error, where ∑Ñ

j=1

∣∣∣∣∣∣yj − tj

∣∣∣∣∣∣= 0 . Thus, the following
expression exists [70]:

Ñ

∑
i=1

βih
(
ki · xj + bi

)
= tj, j = 1, . . . N (20)

The above N equations can be written as [70]:

Hβ = T (21)

Where H
(
k1, k2, k3, . . . kÑ , b1, b2, b3, . . . , bÑ , x1, x2, x3, . . . , xn

)

=

 h(k1 · x1 + b1) · · · h
(
kŇ · x1 + bÑ

)
...

. . .
...

h(k1 · xN + b1) · · · h
(
kÑ · xN + bÑ

)


N×Ñ

, β =

βT
1
...

βT
3


Ñ×m

, T =

tT
1
...

tT
N


N×m

H is called the hidden layer output matrix of the neural network [71,72]. The ith column
of H is the output vector of the ith hidden neuron concerning the input x1, x2, x3, . . . , xn.
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When the input layer weights and the hidden layer bias are determined, the hidden
layer output matrix H can be obtained by following the input samples. So, the final
conversion is to find the least squares solution for Hβ = T [70]:∣∣∣∣∣∣∣∣H(K1, . . . , KÑ , b1, . . . , bÑ

)
β̂− T

∣∣∣∣∣∣∣∣= min
β
||H
(
K1, . . . , KÑ , b1, . . . , bÑ

)
β− T || (22)

the least squares solution of Equation (14) is as follows [70]:

β̂ = H†T (23)

where: H† is the Moore-Penrose generalized inverse matrix of the matrix H [73].
Random input weights and hidden layer bias can lead to problems, such as blind

iterations and accuracy degradation [36]. Therefore, this study introduces the MWOA
into the ELM model to optimize the input weights and hidden layer bias to improve the
model’s accuracy.

3.3.2. Random Forest Model

The RF model is one of the most commonly used regressions and classification models
proposed by Leo Breiman in 2001 [74]. The main idea is to train decision trees by taking
n samples from the original data set N to form a new training set, and m random forests
are created by these n decision trees at random [75,76]. Meanwhile, the predicted value is
decided by the voting of these m random forests [77]. A mathematical model can explain
the RF regression model, the leading theory being that X is the independent variable (input
data) and Y is the dependent variable (output data). Assuming that the distributions
of (X, Y) are independent, the randomly generated training set is Q, and the predicted
outcome is G(X), the mean squared generalization error is [78]:

EX,Y[Y− G(X)]2 (24)

Assuming that there are h decision trees, the average of the predicted values {G(Q, Xh)}
of the h decision trees is the prediction of the RF regression. If h→ ∞ , then the following
equation holds [78]:

EX,Y
[
Y− Gh(X, Qh)

]2 → EX,Y
[
Y− EQ(X, Qh)

]2 (25)

where EX,Y
[
Y− EQ(X, Qh)

]2 denotes the generalization error, noted as M. When h is
infinite, the average generalization error of a single tree is noted as M∗. The expression for
M∗ is as follows [78]:

M∗ = EQEX,Y[Y− G(X, Q)]2 (26)

where Q satisfies the following expression [78]:

M ≤ ρM∗ (27)

where ρ denotes the residual weighted correlation coefficient. The final RF regression
function is as follows [78]:

Y = EQG(X, Q) (28)

Since the number of forests and leaves in the RF model significantly impacts the
model’s performance, at the same time, they have randomness and limitations. Therefore,
this study introduces MWOA to optimize these two parameters. The structure of the RF
model is shown in Figure 5.
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3.3.3. ELMAN Neural Network

Elman neural network was proposed by ELMAN in 1990 [79]. ELMAN is a multi-layer
dynamic recurrent neural network that can approximate nonlinear functions well and is
therefore used in many industries [39,80,81]. Like artificial neural networks, ELMAN has an
input, hidden, and output layer. The difference is that ELMAN has a unique storage layer.
This particular storage layer, which acts as a delay operator, can store the output values
of the neurons in the previously hidden layer, giving the network a memory function and
improving the net work’s ability to process dynamic information. The structure of ELMAN
is shown in Figure 6. The expression for ELMAN at the moment t is as follows [82]:

xj(k) = f

(
n

∑
i=1

ω1i,jui(k) +
m

∑
i=1

ω2i,jci(k)

)
(29)

ci(k) = xi(k− 1) (30)

yj(k) = g

(
r

∑
i=1

ω3i,jxi(k)

)
(31)

where ω1i,j denotes the weight of node i in the connected input layer and node j in the
hidden layer; ω2i,j denotes the weight of node i and node j in the connection storage layer;
ω3i,j denotes the weight connecting node i in the hidden layer and node j in the output
layer; xj(k), ci(k) and yj(k) denote the output vectors of the hidden layer, the storage layer
and the output layer respectively. f and g denote the transfer functions of the hidden layer
and the output layer, respectively. The transfer function for this study is tanh.
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Figure 6. The structure of ELMAN.

ELMAN calculates the number of hidden layer neurons in the same way as ANN. The
main expressions are as follows [31]:

h =
√

m + n + a (32)

where m is the number of nodes in the input layer; n is the number of nodes in the output
layer; a ∈ (1, 10).

ELMAN’s predictive performance is influenced by weights and biases. Therefore, the
optimal weights and biases are found by optimizing the ELMAN neural network using MWOA.

The flow chart of the research process is shown in Figure 7.

Polymers 2023, 15, 308 11 of 27 
 

 

 

Figure 6. The structure of ELMAN. 

The flow chart of the research process is shown in Figure 7. 

 

Figure 7. Flow chart of the research process. 

4. Evaluation Indicators for the Three Models 

This study uses root mean square error (RMSE), mean absolute error (MAE), mean 

absolute percentage error (MAPE), and coefficient of determination (R2) to assess the per-

formance of the model. R2 is the metric used to evaluate the accuracy of the model’s pre-

dictions [83,84]. The closer the R2 value is to 1, the closer the MAE is to 0, and the more 

accurate the model will be. These four evaluation indicators are expressed as follows 

[85,86]: 

𝑅2 =
∑ (𝑞0,𝑘 − 𝑞0̅̅ ̅)(𝑞𝑡,𝑘 − 𝑞�̅�)

𝑁
𝑘=1

√∑ (𝑞0,𝑘 − 𝑞0̅̅ ̅)2 ∑ (𝑞𝑡,𝑘 − 𝑞�̅�)
2𝑁

𝑘=1
𝑁
𝑘=1

  
(33) 

𝑀𝐴𝐸 =
1

𝑁
(∑ |

𝑞0,𝑘 − 𝑞𝑡,𝑘

𝑞0,𝑘
|

𝑁

𝐾=1

)  (34) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑞0,𝑘 − 𝑞𝑡,𝑘)

2

𝑁

𝑘=1

  (35) 

Figure 7. Flow chart of the research process.

4. Evaluation Indicators for the Three Models

This study uses root mean square error (RMSE), mean absolute error (MAE), mean
absolute percentage error (MAPE), and coefficient of determination (R2) to assess the
performance of the model. R2 is the metric used to evaluate the accuracy of the model’s
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predictions [83,84]. The closer the R2 value is to 1, the closer the MAE is to 0, and the more
accurate the model will be. These four evaluation indicators are expressed as follows [85,86]:

R2 =
∑N

k=1(q0,k − q0)(qt,k − qt)√
∑N

k=1(q0,k − q0)
2 ∑N

k=1(qt,k ∑ qt)
2

(33)

MAE =
1
N

(
N

∑
K=1

∣∣∣∣ q0,k − qt,k

q0,k

∣∣∣∣
)

(34)

RMSE =

√√√√ 1
N

N

∑
k=1

(q0,k − qt,k)
2 (35)

MAPE =
100%

N

N

∑
k=1

∣∣∣∣ qt − q0

q0

∣∣∣∣ (36)

where N indicates the number of samples; q0 indicates the actual value; q0 indicates the actual
average value; qt indicates the output value; qt indicates the output average value, k = 1:N.

5. Results of the Three Models

The objective of the computational analysis was to predict the DCI of the RC using
three ML models (MWOA-ELM, MWOA-RF, and MWOA-ELMAN). Therefore, the model
optimized by WOA and the conventional model was also built for comparison. A cross-
validation operation is also used in the calculation process, and the result is the average
of a 5-fold cross-validation. This was done to make the results more realistic and to avoid
chance. Therefore, the data set is divided into five groups by a 5-fold cross-validation
operation. For each training session, one set was used as the testing set and the remaining
four sets were used as the training set. This resulted in three 70 training sets, 18 test sets,
two 71 training sets, and 17 test sets of data sets. Consistent data for each model during
training and testing by programming. The models constructed and the computational
results are described in detail in the following subsections.

5.1. MWOA-ELM Model Result

Like neural network models, ELM models need to determine the number of hidden
layer neurons. In this study, the number of neurons in the hidden layer of the ELM
model was calculated by the corresponding program and determined by the trial-and-error
method to be 28. The parameter settings for the MWOA-ELM model in this study are
shown in Table 2. The parameter settings for the WOA-ELM model are the same as the
MWOA-ELM model.

Table 2. Parameter settings for the MWOA-ELM model.

Parameter Setting

Popsize 30
Maxgen 100
d1, d2 1 × 10−4

b 1
Hiddennum layer 28

Activation function Sigmoid

The average results of the three ELM models under 5-fold cross-validation are pre-
sented in Table 3. It was clear that the MWOA-ELM model performs the best. Its test set
R2 improved from 0.6458 to 0.9971, while the other error metrics RMSE, MAE, and MAPE
were all the lowest among the three ELM models. Figure 8a,b represent the Taylor diagrams
for the training and testing sets of the three ELM models [87]. As can be seen from the
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graph, the MWOA was effective, as reflected by the fact that the MWOA-ELM model was
closest to the optimal reference point for each indicator.

Table 3. Average of evaluation indicators for three ELM models.

R2 RMSE MAE MAPE (%)

ELM
Train 0.9602 0.7691 0.6233 0.1132
Test 0.6458 2.6232 1.4539 0.3509

WOA-ELM
Train 0.9848 0.4518 0.3475 0.0619
Test 0.9390 0.8810 0.6584 0.1155

MWOA-
ELM

Train 0.9927 0.3287 0.2181 0.0353
Test 0.9971 0.1911 0.1356 0.0212
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5.2. MWOA-RF Model Result

Introducing the MWOA is to find the optimal number of forests and leaves for the RF
model. The parameter settings for the MWOA-RF model for this study are shown in Table 4.
The parameter settings for the WOA-RF model are the same as the MWOA-RF model.

Table 4. Parameter settings for the MWOA-RF model.

Parameter Setting

Popsize 30
Maxgen 100

Forest size 24
Number of leaves 8

Number of cross-validation 5
d1, d2 1 × 10−4

b 1

The results of the 5-fold cross-validation of the three random forest models are pre-
sented in Table 5. On the test set, the MWOA-RF model had the highest R2 of 0.9341 and
the lowest values of 1.0164, 0.6533, and 0.0962 for RMSE, MAE, and MAPE, respectively.
Figure 9a,b show the Taylor diagrams for the three RF models on the training and testing
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sets. It was clear that the MSSA-RF model was closest to the optimal reference point among
the three evaluation indicators of the Taylor diagram. Therefore, MWOA is effectively
increased the probability of the RF model finding the optimal number of forests and leaves.

Table 5. Average of evaluation indicators for three RF models.

R2 RMSE MAE MAPE (%)

RF
Train 0.653 2.2463 1.2972 0.2766
Test 0.5768 2.5709 1.7408 0.4015

WOA-RF
Train 0.9661 0.7709 0.5698 0.1009
Test 0.8776 1.4409 1.0027 0.1941

MWOA-RF
Train 0.9870 0.4520 0.3152 0.0495
Test 0.9341 1.0164 0.6553 0.0962
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5.3. MWOA-ELMAN Model Result

A three-layer feed-forward MWOA-ELMAN model was established, and the optimal
number of neurons was obtained by Equation (32) and trial-and-error method as 13. The
MWOA-ELMAN model parameter settings for this study are shown in Table 6. The parameter
settings for the WOA-ELMAN model are the same as the MWOA-ELMAN model.

Table 6. Parameter settings for the MWOA-ELMAN model.

Parameter Setting

Popsize 30
Maxgen 100

Hiddennum_best 13
Number of cross-validation 5

Activation function tansig, purelin
Training function trainlm

d1, d2 1 × 10−4

b 1

The 5-fold cross-validation results for the three ELMAN models are presented in
Table 7. Similar to the pattern of the first two models, the MWOA-ELMAN model has the



Polymers 2023, 15, 308 15 of 27

best results. Figure 10 represents the Taylor diagrams for the training and testing sets. From
Figure 10, the results of the MWOA-ELMAN model were closest to the optimal reference
point, indicating that the algorithm is effective in optimizing the weights and improving
the model’s prediction accuracy.

Table 7. Average of evaluation indicators for three ELMAN models.

R2 RMSE MAE MAPE (%)

ELMAN
Train 0.8275 1.6528 1.0820 0.1938
Test 0.7108 2.1198 1.3609 0.2590

MWOA-
ELMAN

Train 0.9783 0.5704 0.3207 0.0523
Test 0.9390 0.8810 0.6584 0.1155

MWOA-
ELMAN Train 0.9883 0.4140 0.2261 0.0373
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6. Discussion
6.1. Comparative Analysis of the Three Models

In Section 5, MWOA is proven to improve the generalization of the three models
ELM, RF, and ELMAN. It is also possible to prove that the three optimization models are
the most exact (it has been shown in the literature that a model is highly accurate when
its R2 is more significant than 0.9 [88]). This indicates that ML techniques can meet the
prediction accuracy. However, it is necessary to perform a comparative analysis to obtain
the optimal model. Figure 11 represents the metric radar plots for the training and testing
sets of the MWOA-ELM, MWOA-RF, and MWOA-ELMAN models. The figure shows that
the MWOA-ELM model outperforms the other two models on the training and testing sets,
with the highest R2 and lowest RMSE, MAE and MAPE. Figure 12 represents the Taylor
diagrams for the training and testing sets of the three models. The MWOA-ELM model
performs the best, with the lowest error metric on the Taylor diagram, while being closest to
the best reference point. Table 8 shows the average of the 5-fold cross-validation results for
each of the three models. MWOA-ELM model outperformed the training process during
testing. In contrast, the prediction accuracy of both the MWOA-RF and MWOA-ELMAN
models decreased, with the MWOAA-RF model decreasing the most (by about 5.6%),
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indicating that MWOA-ELM is very stable. Figure 13 represents box plots of the training
and testing sets for the three models. The bars indicate the mean value of each model. The
training and prediction results of the models can be seen more visually in the box plots,
where the MWOA-ELM model is not necessarily the best on the training set but has the
lowest mean value. In the testing set, it is the best performer and relatively stable, with all
R2 around 0.99. This suggests that the MWOA-ELM is the best. It can also demonstrate
that with the introduction of cross-validation, the model is very realistic in its calculations
and avoids chance.
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Figure 11. Radar plots of metrics for the Training (a) and Testing (b) sets for MWOA-ELM, MWOA-RF,
and MWOA-ELMAN models.
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Figure 12. Taylor diagrams for the Training (a) and Testing (b) sets of the MWOA-ELM, MWOA-RF
and MWOA-ELMAN models.
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Table 8. Average of evaluation indicators for MWOA-ELM, MWOA-RF, and MWOA-ELMAN.

R2 RMSE MAE MAPE (%)

MWOA-
ELM

Train 0.9927 0.3287 0.2281 0.0353
Test 0.9971 0.1911 0.1356 0.0212

MWOA-RF
Train 0.9870 0.4520 0.3152 0.0495
Test 0.9341 1.0163 0.6553 0.0962

MWOA-
ELMAN

Train 0.9883 0.4141 0.2261 0.0373
Test 0.9698 0.6870 0.4867 0.0947
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6.2. Sensitivity Analysis

Sensitivity factor analysis (SA) is an effective method for measuring the influence
of model input parameters on output parameters. Sensitivity factor analysis provides
feedback on the importance of the model input parameters. Therefore, this study uses the
cosine amplitude method (CAM) [89] to perform sensitivity factor analysis on three models
and an experimental model. The expressions are as follows:

Rij =
∑n

k=1 xikxjk√
∑n

k=1 x2
ik ∑n

k=1 x2
jk

(37)

where xi denotes input parameters; xj denotes output parameters; n denotes the number of
data; Rij denotes the strength of the relationship.
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Figure 14 represents the strength factor of the relationship between each variable and
DCI. It can be seen that the three models show similar sensitivity to the experimental model,
justifying the developed model. As seen from the graph, the measurement method has the
most significant effect on the DCI of RC, followed by FA, while the impact of WR is the least.
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6.3. Prediction of Typical Machine Learning Model

In Section 6.1, the MWOA-ELM model was proven to be the best model. Therefore,
the typical predictions from the MWOA-ELM model are shown in this section. Figure 15
depicts the regression results for the training and testing set. It is important to emphasize
that the MWOA-ELM model has strong predictive power. Its indicator values for the
training and testing set were R2 = 0.9928, RMSE = 0.3243, MAE = 0.2219, MAPE = 0.0287
and R2 = 0.9987, RMSE = 0.1336, MAE = 0.0979, MAPE = 0.0187. Figure 16 shows the
predicted values of the MWOA-ELM model compared to the actual values, with the error
values included. The comparison results show that the predicted values of the DCI of RC
are consistent with the experimental values. It is worth noting that the error between the
training set and the testing set is small, which indicates that the MWOA-ELM model can
predict the DCI of RC well. The above results suggest that predicting the DCI of RC using
the MWOA-ELM model is feasible. This may contribute to developing a numerical tool for
determining durability indicators for RC. The application of intelligent algorithms is equally
effective. In the future, consider increasing the amount of data and input variables, which
would improve the ability of the MWOA-ELM model to predict the DCI of RC. The weight
matrix for the MWOA-ELM model’s typical prediction result is shown in Appendix A.
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6.4. Forecast Comparison

The overall results of the representative predictions of the MWOA-ELM model are
shown in Section 6.3. However, it is necessary to show the forecasting results within the
model. This provides a more intuitive view of the model’s predictions. Therefore, this
section shows the prediction results of the MWOA-ELM model under different methods
separately. Figure 17 represents the prediction result of the MWOA-ELM model for the liter-
ature [54,55]. The model’s predictions can be judged from Figure 17, in general agreement
with the experimental results. Figure 18 represents the prediction results of the model for
the literature [57–59]. It can be seen from Figure 18 that the model predicts better results for
the literature [58,59]. The predicted curves for the literature [57], showed some deviations,
but the overall trend was consistent. However, the errors are acceptable in terms of the
overall results of Section 6.3. Figure 19 represents the prediction results of the model for
the literature [56]. From Figure 19, it can be observed that the prediction curves both show
some deviations. This may be due to the algorithm falling into the local optimum when
optimizing this part of the data, making the model learn insufficiently. However, in general,
the errors are still acceptable. Figure 20 reflects the predictions of the literature [22]. From
Figure 20, the prediction trends are consistent and the errors are relatively small. The
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above conclusions indicate that using the MWOA-ELM model predicting the DCI of RC
is feasible. The model can still be further optimized, which includes developing more
powerful algorithms and increasing the amount of data.
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6.5. Comparative Analysis with Other Models

To further verify the MWOA-ELM model’s reliability, this study introduces a multiple
linear regression model for comparison [90]. Since the MRL model is similar to the ML
model in that it also studies the effects of multi-factor interactions, it is compared with
the MWOA-ELM model. Figure 21 represents the regression analysis results of the MRL
model. The results of the evaluation indicators for the MWOA-ELM (Mean of overall model
results under five-fold cross-validation) model and the MRL model are shown in Table 9.
Obviously, MWOA-ELM is superior to the MRL model.
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Comparison with other models is equally necessary. Ye [91] developed a mathematical
model to predict the DCI of RC, because the input variables for the mathematical model
used are the water-cement ratio, the rubber admixture, and the rubber size. Therefore, the
input variables of the MWOA-ELM model are replaced in the same way. Keeping the same
input variables is better for comparison. The data were obtained from three randomly
selected papers to avoid complex calculation [22,54,55]. Figure 22 represents the results
of the regression analysis for the two models. The results of the evaluation indicators for
the two models are shown in Table 10. From Figure 22, the regression analysis result of
the MWOA-ELM model is better, with the R2 of 0.991 higher than the mathematical model
of 0.8053. Similar results are seen in the other error evaluation indicators in Table 9. This
indicates that the MWOA-ELM model has better prediction and generalization ability.
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Table 10. Evaluation indicators for the MWO-ELM and Mathematical model.

R2 RMSE MAE MAPE (%)

MWOA-ELM 0.9991 0.0590 0.0277 0.0109
Ye [91] 0.8503 2.5326 2.2127 0.5486

7. Conclusions and Future Prospect

This study used ML techniques to predict the DCI of RC. Three models, ELM, RF,
and ELMAN were developed to investigate. The established MWOA was also used to
optimize the three models. Four metrics, RMSE, MAE, and MAPE, were used to evaluate
the performance of the models. According to the prediction results, the MWOA-optimized
ELM, RF, and ELMAN models successfully predicted the DCI of RC. At the same time, they
had the highest R2 and lowest errors compared to the unoptimized models. This indicates
that the algorithm established is valid. Comparing the three optimal models, the MWOA-
ELM model performs the best. The three models were shown to have similar sensitivity
to the experimental model by the CAM method. This justifies the developed models.
Comparing the typical prediction results of the MWOA-ELM model with the actual values
shows that the prediction results generally agree with the experiment, while the error is
within a reasonable range. Comparison with the MRL and published mathematical model
show that the MWOA-ELM model performs the best. This suggests that the MWOA-ELM
model can accurately predict the DCI of RC.

In summary, this study successfully used ML techniques to predict the DCI of RC while
demonstrating the proposed MWOA is valid. This provides a new option for determining
the DCI of RC. However, observation of the results revealed that the proposed method could
be further optimized to better understand RC’s chloride permeation process. This includes
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developing more robust algorithms, increasing the data set, adding input variables, and
enhancing the interpretable analysis of the model.
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