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Abstract: In this study, yerba mate waste (YMW) was used to produce a kombucha beverage, and the
obtained microbial cellulose produced as a byproduct (KMW) was used to reinforce a mechanically
recycled poly(lactic acid) (r-PLA) matrix. Microbial cellulosic particles were also produced in pristine
yerba mate for comparison (KMN). To simulate the revalorization of the industrial PLA products
rejected during the production line, PLA was subjected to three extrusion cycles, and the resultant
pellets (r3-PLA) were then plasticized with 15 wt.% of acetyl tributyl citrate ester (ATBC) to obtain
optically transparent and flexible films by the solvent casting method. The plasticized r3-PLA-ATBC
matrix was then loaded with KMW and KMN in 1 and 3 wt.%. The use of plasticizer allowed a good
dispersion of microbial cellulose particles into the r3-PLA matrix, allowing us to obtain flexible and
transparent films which showed good structural and mechanical performance. Additionally, the
obtained films showed antioxidant properties, as was proven by release analyses conducted in direct
contact with a fatty food simulant. The results suggest the potential interest of these recycled and
biobased materials, which are obtained from the revalorization of food waste, for their industrial
application in food packaging and agricultural films.

Keywords: PLA; cellulose; yerba mate; kombucha; food packaging

1. Introduction

Biobased and biodegradable polymers have gained attention for food packaging ap-
plications in order to reduce the consumption of non-renewable resources and prevent the
accumulation of plastic waste in the environment. Among other biopolymers, poly(lactic
acid) has emerged in the market as the most used biobased and biodegradable plastic due
to its many advantages, such as its environmentally benign characteristics, availability in
the market at a competitive cost, ease of processing by means of the current existing pro-
cessing technologies for petrol-based thermoplastics (i.e., extrusion, injection molding, etc.),
high transparency, and inherent biodegradability [1,2]. However, PLA also presents some
disadvantages for film production which hinder its industrial exploitation in the food
packaging or agricultural sectors, such as its sensitivity to thermal degradation [2], poor
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barrier performance [3], and inherently brittle nature [4]. Its degradability in the environ-
ment requires specific conditions (compost medium at 58 ◦C, a pH around 7.5, relative
humidity of 60%, a C/N relationship between 20:1 and 40:1, and proper aeration) to be met,
even for short periods of time [5]. Moreover, the model of the linear economy generates
high levels of plastic waste and creates a dependence between economic development and
the entry of new, virgin plastics into the system [6]. Therefore, the use of recycled PLA
for film for food packaging or agricultural applications is gaining interest [7,8]. Cosate
de Andrade et al. [8] compared the chemical recycling and mechanical recycling of PLA,
and concluded that mechanical recycling generates less impact than chemical recycling
due to the fact that the mechanically recycled polymers are produced using lower energy
and fewer inputs than other destinations. However, bioplastic consumption is currently
still low, and they can be considered contaminants in plastic recycling streams due to
the fact that they can affect the mechanical performance of well-implemented mechanical
recycling processes of other plastics, such as polyethylene terephthalate (PET), polypropy-
lene (PP), and polystyrene (PS) [9–11]. Moreover, although the European Commission
promotes the increase of recycled plastic in food packaging as an essential prerequisite
to its strategy to introduce recycled plastics in a circular economy, the current legislation
does not allow the direct use of recycled plastics coming from recycled streams for food
contact materials. This is because those recycling processes originate from waste, and the
legislation establishes strict requirements concerning food safety (the transfer of substances
that may affect human health, or quality of the food, and microbiological safety) [12]. In this
context, during the industrial production of plastic products, several parts are produced
with defects, rejected from the production line, and then discarded. These rejected parts
can be reprocessed and used to produce recycled pellets that do not come from waste
streams and are of well-known origin. In a previous work, PLA was reprocessed up to
six times, and it was observed that the main losses took place when PLA was subjected to
more than four reprocessing cycles, while low degradation was found between one and
three reprocessing cycles [13]. However, due to PLA’s high sensitivity to hydrolysis of its
ester groups at the industrial processing conditions, such as melt extrusion, the obtained
recycled PLA-based products show a decrease in the polymer chain length and, thus, show
lower-quality performance than PLA-based products produced with virgin PLA [14]. This
is why the use of reinforcing fillers with antioxidant activity as additives have gained
interest for the purpose of protecting the polymeric matrix from thermal degradation and
increasing the mechanical resistance of mechanically recycled PLA [7].

Another industrial sector that generates a large amount of waste and can be introduced
in the food packaging sector for the preparation of high-tech composites and/or nanocom-
posites is the food industry [15]. The kombucha beverage is a popular probiotic beverage
typically produced by fermenting sugared tea with a symbiotic community of bacteria and
yeast (SCOBY) that involves cooperative and competitive interactions [16]. While yeasts
produce invertase, which releases monosaccharides to media accessible to any microbe as
a carbon source, bacteria rapidly metabolize released sugars and produce organic acids
that acidify the media [16]. Meanwhile, the reduction in monosaccharides increases the
frequency of the invertase-producing yeast, and the ethanol produced by yeast stimulates
the bacterial cellulose synthase mechanism to produce a cellulose film at the surface that
acts as a physical barrier to protect from external competitors [16]. The cellulosic film is a
byproduct in the kombucha tea industry, but it is very interesting for the plastic industry.
Kombucha tea has been fermented in several sugared infusions (i.e., black tea, green tea,
yerba mate, etc.) [16–18]. The antioxidant activity of microbial cellulose obtained from the
kombucha fermentation is directly related to the high amount of bioactive compounds in
the infusion used for its fermentation, such as phenolics, tannins, catechins, flavonoids, etc.,
which are decomposed into their simpler forms during the kombucha fermentation pro-
cess [17]. In fact, it has been observed that the cellulose obtained from kombucha fermented
in sugared infusions of yerba mate possesses high antioxidant activity [16]. Yerba mate
(Ilex paraguariensis, Saint Hilaire) is a tree from the subtropical region of South America that
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grows in a limited zone within Argentina, Brazil, and Paraguay, where it has an important
commercial purpose due to the high consumption of dried yerba mate leaves in the form of
infusion, which is known as “mate” [15,19]. Its high consumption leads to a high amount
of yerba mate being wasted without any kind of revalorization [15]. For instance, in 2020,
the consumption of yerba mate in Argentina was over 310 million kg [20]. Thus, in this
work, kombucha SCOBY was fermented in yerba mate waste.

Among other plasticizers, citrate esters such as acetyl(tributyl citrate) (ATBC) have
been proven to be very effective PLA plasticizers, and are accepted for food contact applica-
tions [21]. The miscibility between PLA and ATBC has been associated with the similarity in
their solubility parameters (δ) that of PLA being between 19.5 MPa1/2 and 20.5 MPa1/2 [2],
while that of ATBC is 20.2 MPa1/2 [22]. Likewise, to produce polymers by a solvent casting
method, the selection of an effective solvent is also on the basis of a similar solubility
parameter to that of the polymer. In this sense, chloroform (δ = 19 MPa1/2) is widely used
to dissolve PLA [23].

The main objective of the present research was to obtain sustainable and active films
from the revalorization of plastic and food industry waste. The materials were prepared
based on mechanically recycled PLA and cellulosic particles extracted from kombucha
fermented in yerba mate waste. Thus, virgin PLA was subjected to three reprocessing
extrusion cycles (r3-PLA) to simulate the revalorization of industrial PLA products rejected
during the production line. Three reprocessing cycles were selected, since in a previous
work, it was observed that between one and three reprocessing cycles, low PLA degradation
occurs [13]. The decrease in the polymer chain length due to the three reprocessing cycles
was investigated by measurement of the viscosity-molecular weight. On the other hand,
yerba mate waste was used to obtain the sugared infusion to produce kombucha beverage
from kombucha SCOBY, while the cellulosic by-product formed during its production was
used to produce cellulosic particles with antioxidant activity (KMW). Another kombucha
SCOBY was fermented in a sugared infusion of new yerba mate, and the cellulosic particles
obtained were studied for comparison (KMN). Both particles, namely kombucha mate waste
(KMW) and kombucha mate new (KMN), were used to reinforce plasticized, mechanically
recycled r3-PLA with 15 wt.% of ATBC. Two reinforcing amounts were used, namely
3 wt.% and 5 wt.%, and the obtained films were characterized in terms of transparency,
barrier performance against water and UV light, thermal stability, crystallization behavior,
surface wettability, and mechanical performance in order to obtain information regarding
the possibility of using these films as antioxidant food contact materials, such as food
packaging or in the agro-industrial field.

2. Materials and Methods
2.1. Materials

PLA commercial-grade IngeoTM 2003D with a density of 1.24 g·cm−3 and a melt flow
index (MFI) of 6 g/10 min (measured at 210 ◦C and with a load of 2.16 kg) was supplied
by Natureworks (Minnetonka, MN, USA). Acetyl tributyl citrate (ATBC) (98% purity,
Mw = 402 g mol−1, and Tm =−80 ◦C), chloroform (CHCl3, δ = 19 MPa1/2), and 2,2-diphenyl-
1-picrylhydrazyl (DPPH) 95% free radical were supplied by Sigma Aldrich (Madrid, Spain).
The pristine yerba mate (Taragüi, Virasoro, Argentina) was used as is and called YMN,
while the yerba mate waste was obtained from the residue of mate infusion after our
consumption and called YMW.

2.2. Processing of Kombucha to Obtain Cellulosic Particles from Yerba Mate Waste

The native culture of kombucha was provided by Teresa Carles Manufacturing S. L.
(Barcelona, Spain), and was used as the starter culture and inoculum for a new batch of
kombucha fermented in an infusion of yerba mate (5 g/L) and sucrose (100 g/L). KMW
was obtained from the fermentation of one kombucha SCOBY from that batch in a 2.5 L
sugared infusion prepared either with 15 g of yerba mate (YMN) and/or yerba mate waste
(YMW), 300 g of sucrose, and 500 mL of stock culture, which was maintained at static
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conditions at 22 ± 2 ◦C and then covered with a textile cloth for 30 days. A new floating
disc was produced, and it was recovered, washed with distilled water, filtered off, and
further sterilized at 121 ◦C and 101 kPa for 15 min in a steam autoclave. The disc was then
homogenized by ultraturax at 30,000 rpm for two minutes (4 cycles of 30 s) and dried at
60 ◦C for 24 h. The dry matter, determined by drying at 105 ◦C until a constant weight
was reached, showed a yield of ca. 1.3 ± 0.1%, in accordance with previous reported
works [16]. Then, the obtained cellulosic paper was ground to obtain a powder and further
sieved (500 µm). In Figure 1 the wall process to obtain either KMN or KMW from the
SCOBY fermented in YM or YMW and convert it to the powder able to be processed by
melt extrusion is schematically represented.
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Figure 1. Schematic representation of the microbial cellulose (KMN and/or KMW) production from
kombucha fermented in YM or YMW.

2.3. Processing and Reprocessing of PLA

To obtain reprocessed PLA (r3-PLA), PLA pellets were previously dried overnight to
remove the residual moisture at 60 ◦C for 4 h in an air-circulating oven. The PLA pellets
were processed 3 times in a twin-screw co-rotating extruder with a screw diameter of
30 mm, supplied by Construcciones Mecanicas Dupra, S.L. (Alicante, Spain), at a screw
speed of around 22 rpm and using a temperature profile of 180 ◦C (feeding hopper), 185 ◦C,
190 ◦C, and 195 ◦C (extrusion die), on the basis of previous work [13]. After the extrusion
process, the strands were cooled in air and then pelletized using an air-knife unit. They
were subsequently subjected to an additional processing cycle under the same conditions,
up to three times.

The capillary viscosity of virgin PLA and r3-PLA pellets was measured with a Ubbelo-
hde viscometer (type 1C). Both pellets were diluted in CHCl3 and the measurements were
conducted at 25 ◦C using a water bath and a home-made 3D printed viscosimeter support.
At least four concentrations were used. The intrinsic viscosity [η] of PLA and r3-PLA was
determined to estimate the viscosity molecular weight by means of the Mark–Houwink
relation (Equation (1)).

[η] = K×Ma
v (1)

where K and a, for PLA, are 1.53 × 10−2 and 0.759, respectively [24].

2.4. Films Preparation

KMN- and KMW-loaded r3-PLA-ATB-based materials were processed into thin films
by the solvent casting method. For this purpose, 0.6 g of reprocessed PLA pellets
(r3-PLA) were dissolved in 45 mL of CHCl3 under continuous stirring at 1000 rpm at
room temperature. ATBC was then added at 15 wt.% with respect to the polymeric matrix,
on the basis of previous works [15,22,25], and named r3-PLA-ATBC. For the development
of composites, the plasticized PLA films (r3PLA-ATBC) were then loaded either with
kombucha mate waste (KMW) or kombucha mate new (KMN) in 1 wt.% and 3 wt.%,
with respect to the r3-PLA-ATBC polymeric blend, and all films were prepared by the
solvent casting method. Each suspension was cast onto a 50 mm-diameter glass mold,
and then CHCl3 was allowed to evaporate at 40 ◦C for 48 h in an oven. The obtained
films are summarized in Table 1. They were dried under a vacuum to complete the drying
process, ensuring the complete elimination of the solvent for about 10 h at 40 ◦C, prior to
being characterized.
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Table 1. Film formulations based on plasticized 3r-PLA-ATBC.

Sample r3-PLA (wt.%) ATBC (wt.%) KMN (wt.%) KMW (wt.%)

r3-PLA 100 - - -
r3-PLA-ATBC 85 15 - -

r3-PLA-ATBC-KMN1 84.15 14.85 1 -
r3-PLA-ATBC-KMN3 82.45 14.55 3 -
r3-PLA-ATBC-KMW1 84.15 14.85 - 1
r3-PLA-ATBC-KMW3 82.45 14.55 - 3

2.5. Characterization of the Films
2.5.1. UV-Visible Measurements

The transmittance of the obtained films was measured in the 800–250 nm region using
a UV-Visible spectrophotometer Varian Cary 1E UV-Vis (Varian, Palo Alto, CA, USA) at
a scanning speed of 400 nm/min. The overall transmittance in the visible region was
calculated following the ISO 13468 standard.

2.5.2. Scanning Electron Microscopy

The microstructures of films’ cross-sections were observed by field emission scanning
electron microscopy (FESEM) by means of a ZEISS ULTRA 55 microscope from Oxford
Instruments (Abingdon, UK). The film samples were previously frozen in liquid N2, cry-
ofractured, and sputtered with a thin layer of gold and palladium alloy in an EMITECH
sputter coating, SC7620, from Quorum Technologies, Ltd. (East Sussex, UK) to achieve a
conductive surface. Then, the film samples were observed with an accelerating voltage of
2 kV. Images were taken at 10,000×magnification.

2.5.3. Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) analyses were conducted in a Mettler-Toledo
model 821 DSC (Schwerzenbach, Switzerland). The DSC thermal cycles were carried out
under a nitrogen atmosphere. The first heating DSC scan was conducted from 30 ◦C to
200 ◦C at a rate of 10 ◦C/min, with the main objective of eliminating the thermal history.
Then, the samples were cooled down to −50 ◦C at a rate of 10 ◦C/min. Finally, the second
heating DSC scan was carried out from−50 ◦C to 300 ◦C at a rate of 10 ◦C/min. The degree
of crystallinity (χc), obtained from the DSC thermograms, was calculated by Equation (2).

χc =
∆Hm − ∆Hcc

∆H0
m

· 1
WPLA

100 (2)

where ∆Hm is the melting enthalpy, ∆Hcc is the cold crystallization enthalpy, ∆H0
m is the

melting heat associated with pure crystalline PLA (93 J g−1) [26], and WPLA is the weight
fraction of PLA in the blend formulation.

2.5.4. Thermogravimetric Analysis

Dynamic thermogravimetric analyses were conducted in a TA Instruments TGA2050
thermobalance (TA Instruments, New Castle, DE, USA). For each measurement, around
10 mg of films were placed in a platinum crucible and heated from 30 to 800 ◦C at 10 ◦C/min,
under a nitrogen atmosphere.

Isothermal thermogravimetric analyses were also conducted in a TGA/SDTA 851
thermobalance from Mettler-Toledo (Schwerzenbach, Switzerland). For each measurement,
around 10 mg of films were heated at 180 ◦C for 20 min.

2.5.5. Tensile Test Measurements

The mechanical properties were evaluated by means of tensile test measurements
using a Shimadzu AGS-X 100 N universal tensile testing machine (Shimadzu Corpo-194
ration, Kyoto, Japan) equipped with a 100 N load cell, with an initial length of 30 mm



Polymers 2023, 15, 285 6 of 19

and a crosshead speed of 10 mm min−1. Dog-bone samples were prepared by a JBA
electrohydraulic cutter (Instruments J. Bot SA) for tensile specimen 1BB, according to
ISO 527-2. The Young modulus (E), tensile strength (TS), and average percentage elongation
at break (ε%) were calculated from the obtained stress–strain curves, and the media of at
least five specimens were reported.

2.5.6. Static Contact Angle Measurements

Surface wettability of the films was studied through static water contact angle (WCA)
measurements by using a standard goniometer (EasyDrop-FM140, KRÜSS GmbH, Ham-
burg, Germany) equipped with a camera and Drop Shape Analysis SW21; DSA1 software.
Drops of ~15 µL distiller water were placed onto the films’ surfaces with the aid of a syringe,
and approximately ten contact angle measurements were taken for each sample, with the
films in random positions.

2.5.7. Water Vapor Transmission Rate

The water vapor transmission rate (WVTR) measurements of the films were deter-
mined by gravimetry, using silica gel as a desiccant agent. Films were placed in permeability
cups with an exposed area (A) of 10 cm2, filled with 2 g of previously dried silica gel, and
further placed in a desiccator at 23 ± 1 ◦C with a saturated KNO3 solution, obtaining
a relative humidity of 85 ± 4%. The cups were weighed every hour for 7 h, and then
again after 24 h. The mass increase in the cups was plotted against time, with slope n.
WVTR (g/day cm2) was determined through Equation (3):

WVTR =
n
A

(3)

Because the water vapor transmission is dependent on the film thickness, the WVTR
values were normalized to 100 µm [27].

2.5.8. Specific Migration Test and Antioxidant Activity

Double-sided total immersion migration tests were performed by total immersion of
films in a glass vial containing a fatty food simulant (Simulant D1 = ethanol 50% v/v) at
40 ◦C for 10 days (area-to-volume ratio = 6 dm2/L) [28]. After 10 days, films were removed
and the food simulant was used to determine their antioxidant ability, which was measured
by determination of the radical scavenging activity (RSA) through the DPPH method. This
was accomplished by the determining the reduction in the absorbance at 517 nm by means
of a UV-Vis Varian Cary spectrophotometer. The radical scavenging activity (RSA) was
determined using Equation (4).

RSA (%) =
Acontrol − Asample

Acontrol
× 100% (4)

where Acontrol is the absorbance of 2,2-difenil-1-picrylhydrazyl (DPPH) in ethanolic solution
and Asample the absorbance of DPPH after 15 min in contact with each food simulant sample.

3. Results
3.1. Reprocessed PLA Characterization

The materials developed herein were prepared with mechanically recycled PLA,
which was processed three times by melt extrusion using a temperature profile from
feeding to hopper of 180 ◦C, 185 ◦C, 190 ◦C, and 195 ◦C, based on previous work [13], to
simulate the revalorization of industrial waste produced during the production line, in
which some parts are rejected. The viscosity–molecular weight (Mv) relationship of the
reprocessed PLA (3r-PLA) and PLA pellets was determined in order to obtain insights into
the degradation of the polymeric matrix as a consequence of the reprocessing procedure.
The obtained results of the estimated Mv of PLA and r3-PLA were 181,770 ± 3370 g/mol
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and 115,410 ± 5080 g/mol, respectively (a reduction of around 36%). A reduction in the
intrinsic viscosity ([η]) has already been reported in PLA samples subjected to a simulated
mechanical recycling process in which one melt extrusion reprocessing cycle was applied,
showing a reduction of around 14% with respect to samples prepared with virgin PLA [29].
In the present work, a reduction in the intrinsic viscosity ([η]) due to the three reprocessing
melt extrusion cycles was around 30%, leading to the aforementioned reduction in the Mv.
This reduction in the Mv is due to chain scission, produced by thermal degradation during
each thermal processing cycle as a consequence of a hydrolysis process which is augmented
by the heating [13].

3.2. UV-Visible Measurements

The transmittance of the obtained films was measured by means of a UV-Visible
spectrophotometer, and the absorption spectra of the films are shown in Figure 2. Neat PLA
film was also analyzed for comparison. From the spectra, it could be seen that although
all formulations based on recycled PLA (r3-PLA) resulted in less transparent materials
than PLA, they were mostly transparent in the visible region of the spectra (400–700 nm)
allowing the films to be seen through, which is one of the most important requirements
for food packaging due to consumers’ acceptance [30]. It is also very important that films
intended for agricultural applications should not only protect crops, but also permit the
photosynthesis process to occur [1,31]. Among reprocessed films, r3-PLA film was the
most transparent film, showing the highest transmission along the visible region of the
spectra (400–700 nm). The incorporation of ATBC slightly affected the transparency of
r3-PLA, as was already observed with the addition of ATBC to a virgin PLA matrix [22].
The transparency was slightly reduced with the incorporation of KMN and/or KMW.
Absorption measurements were conducted in the range of 540–560 nm (see zoom image in
Figure 2) of the visible region of the spectra, and it can be seen that the materials resulted
as highly transparent (between 81% and 87% of transmittance).

When comparing r3-PLA with neat PLA film, a slight UV-light absorption in the 260
to 290 nm region can be observed in the 3r-PLA sample, which has already been observed
in recycled PLA [7,14]. It has been reported that recycled PLA leads to a reduction in
the UV light transmission in the 260 to 290 nm region of the spectrum, ascribed to the
formation of –COOH chain end groups in PLA as a consequence of the chain scission
(carbonyl carbon-oxygen bond cleavage) during thermal processing [14]. Nevertheless,
it should be highlighted that the UV light transmission reduction is less marked than in
the post-consumer, mechanically recycled PLA bottles studied by Chariyachotilert et al.
They observed higher UV light transmission reduction, which can be related not only to the
thermal degradation during reprocessing, but also with the degradation of PLA products
during service, as well as under the conditions typically used for cleaning PET (85 ◦C,
1 wt.% NaOH and 0.3 wt.% Triton® X-100 surfactant for 15 min) [14]. In this sense, in a
previous work, Agüero et al. studied the mechanical recyclability of injected molded PLA
parts in more depth, performing between one and six reprocessing melt extrusion cycles,
and showed that low degradation takes place between one and three reprocessing cycles
in [13]. Thus, this means that less degradation had taken place after three reprocessed melt
extrusion cycles than in post-consumed, washed, and further reprocessed PLA, highlighting
the viability of mechanical recyclability of rejected PLA parts from the production line.

3.3. Scanning Electron Microscopy

FESEM investigations were conducted to study the microstructure of the films, and
the micrographs of the cross-fractured surface are shown in Figure 3. The r3-PLA film
(Figure 3a) showed the typical regular and smooth fracture of PLA films based on semi-
crystalline virgin PLA [9,32]. An increased ductile fracture was observed in r3-PLA-ATBC
film (Figure 3b), with more plastic behavior and no apparent phase separation, demonstrat-
ing the plasticizing effect of ATBC on the reprocessed PLA matrix. The ternary composites
for both formulations with 1 wt.% (Figure 3c,e) and those with 3 wt.% (Figure 3d,f), showed
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a uniform dispersion of both KMN and KMW into the r3-PLA matrix. In the case of the
higher reinforcing amount used here (3 wt.%) (Figure 3d,f), it seems that there was an
increase in surface roughness. However, the formulations had very similar surface patterns
to those reinforced with lower amounts of kombucha particles (1 wt.%), suggesting that
cellulosic particles are well-distributed in the reprocessed PLA matrix. It has been observed
that plasticizers such as ATBC improve the dispersion of cellulosic particles into the PLA
matrix [25].
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3.4. Differential Scanning Calorimetry

DCS analysis was conducted and used to investigate the glass transition (Tg), cold
crystallization (Tcc), melting temperatures (Tm), and crystallinity (χc) of plasticized 3r-PLA-
ATBC films, and the obtained DSC curves are shown in Figure 4 while the obtained results
are summarized in Table 2. The r3-PLA film showed the Tg at a lower value than the
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PLA samples which were processed three times by melt extrusion and further processed
by injection molding (Tg = 64 ◦C [13]), due to the presence of a residual solvent, as was
demonstrated by Yang et al. Their study compared PLA-based composites processed by
extrusion with those processed by solvent casting method, and concluded that limited
variations in the DSC parameters were observed for samples processed with the two
different processing techniques (melt extrusion and solvent casting method) [33]. In the
r3-PLA film, a cold crystallization peak appeared which was not present in the virgin PLA
pellet [13], and this has been related to the fact that the shorter PLA chains formed during
the reprocessing cycles, such as oligomers, showed higher mobility levels and promoted
the crystallization of PLA [13,29]. In fact, it has been observed that PLA plasticized with
oligomeric lactic acid (OLA) showed a reduction in cold crystallization temperature, which
was further reduced by increasing the OLA content [34,35]. Similarly, the incorporation
of the ATBC plasticizer produced a decrease in the Tg and Tcc, as well as in the Tm, which
is ascribed to the ability of the ATBC plasticizer to increase the free volume between
the polymer chains. Accordingly, their mobility was also decreased, enhancing the slow
crystallization rate [22,36]. On the other side, the combination of the ATBC plasticizer and
the microbial cellulose particles onto a plasticized 3r-PLA matrix produced higher Tg and
Tcc values and higher crystallinity degrees, suggesting that the segmental motion of PLA
matrix may have been affected by the presence of KMN and KMW [33]. Moreover, the
synergic effect on the crystallization of PLA as a consequence of a potential nucleating
agent in a presence of citrate ester plasticizers has been already reported [25,37]. The
DSC thermograms show a double melting behavior, which has already been observed in
mechanically recycled PLA [38,39] and PLA plasticized with OLA [34]. This behavior, in
PLA-based materials, is ascribed to the presence of different crystalline structures with
different levels of perfection and thermodynamic stability. The melt PLA crystallizes at
temperatures higher than 120 ◦C in an ordered form (α form) [40]. In the present work, all
samples were crystallized at temperatures below 120 ◦C. This is related to the ability of
shorter polymer chains (oligomers), produced as a consequence of the PLA degradation
during reprocessing steps, to promote the aforementioned crystallization of PLA. The
reduction in the cold crystallization temperature was particularly marked in plasticized
3r-PLA-ATBC samples. When PLA crystallized below 110 ◦C, less stable crystals appeared,
known as α′ crystals [40]. From the cold crystallization peak in the DSC thermogram, it
can be observed that disorder (crystals with α′ form) to order (crystals with α form) phase
transition took place, suggesting that a great fraction of the polymer was in an amorphous
state due to the DSC cooling scan applied, as this was already observed in plasticized
PLA-ATBC samples [15,41]. An increase in the Tcc values of KMN- and KMW-loaded films
was observed with respect to the r3-PLA-ATBC film, suggesting that somewhat fewer
disordered crystals (α′) are present in composite materials. A different crystallization
degree was observed for PLA-ATBC-KMN-based films with respect to PLA-ATBC-KMW-
based films. A higher crystallinity degree was found for those particles obtained from the
fermentation of kombucha in yerba mate waste (KMW), and could be directly related to
the superior dispersion of KMW particles into the plasticized PLA-ATBC matrix, which are
able to promote a higher nucleation effect [25].

Table 2. DSC thermal properties of 3r-PLA-ATBC-based films.

Sample Tg
(◦C)

Tcc
(◦C)

∆Hcc
(J g−1)

TmI
(◦C)

TmII
(◦C)

∆Hm
(J g−1)

χc
(%)

r3-PLA 49.1 106.1 20.0 144.4 151.3 23.2 3.4
r3-PLA-ATBC 32.1 95.0 21.2 135.6 146.8 23.4 2.8

r3-PLA-ATBC-KMN1 39.1 99.5 19.2 139.7 148.9 19.8 0.7
r3-PLA-ATBC-KMN3 36.8 99.9 19.5 138.3 148.2 20.2 1.0
r3-PLA-ATBC-KMW1 37.3 98.4 20.3 137.7 148.1 22.8 3.1
r3-PLA-ATBC-KMW3 33.5 99.3 19.0 138.3 147.8 21.5 3.2
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3.5. Thermogravimetric Analysis

The thermal stability of the materials was studied under isothermal mode at 180 ◦C
to ensure enough thermal stability for the typical melt-processing temperature of PLA
(Figure 5a). During the first minute under TGA isothermal conditions, films experienced
a quick weight loss, probably due to the evaporation of the remaining chloroform. Then,
all the materials showed a mass loss of around 1 or 2% in 10 min, which allows enough
time to process the PLA-based materials. 3r-PLA-ATBC-KMW1 showed very similar
thermal stability to 3r-PLA-ATBC, whereas 3r-PLA-ATBC-KMW3 presented less thermal
stability. This could be related to the fact that when higher amounts than 3 wt.% of KMW
reinforce 3r-PLA, some part of the PLA matrix is non-stabilized due to the deficient particle
dispersion. Nevertheless, it should be highlighted that all the materials showed enough
thermal stability for melt extrusion purposes.

The thermal degradation parameters obtained by TGA are described in Table 3. Plas-
ticization of PLA produced a decrease in T5% and T10%, due to the decomposition of the
plasticizer [42,43], and a slight decrease in Tmax was observed, since the plasticization could
make the polymer chains available to thermal degradation, as was already observed on
plasticized PLA with citrate esters [15,22,30]. The addition of 1% of KM increased T5%
and T10% in the case of KMW, compared with plasticized r3-PLA. However, the addition
of 3 wt.% of KM decreased T5% and T10% due to the low thermal stability of bacterial
cellulose [44]. Regarding Tmax, it seemed that this value was enhanced by the addition of
KMW and KMN at 1 wt.%, since the value was close to the unplasticized r3-PLA film, but
the addition of a higher amount of KM showed a significant decrease for 3 wt.% KMN.
However, no modifications were observed for KMW. An overall conclusion for this study
is that the addition of KMW enhanced the thermal properties of r3-PLA-ABTC better
than the KMN. This could be due to the higher crystallinity of r3-PLA-ABTC-KMW1 and
r3-PLA-ABTC-KMW3 composites, as shown by the DSC results.
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Table 3. TGA thermal properties of 3r-PLA-ATBC-based films.

Sample T5% (◦C) T10%(◦C) Tmax (◦C) Residual Mass (%)

r3-PLA 296.1 313.52 354.4 0.4
r3-PLA-ATBC 217.4 272.28 351.1 0.8

r3-PLA-ATBC-KMN1 224.8 266.74 354.1 0.5
r3-PLA-ATBC-KMN3 214.7 246.21 344.7 0.7
r3-PLA-ATBC-KMW1 227.2 274.62 352.4 0.5
r3-PLA-ATBC-KMW3 208.1 243.19 351.8 0.5

Figure 5 also shows the TGA (Figure 5b) and DTG (Figure 5c) curves. Thermal
degradation of the composites presented two steps of degradation. Firstly, the evapora-
tion/degradation of the plasticizer overlaps with the initial degradation of KM, then in the
second step of degradation, a PLA matrix was observed. For samples with higher concen-
trations of KM, a higher percentage of the mass was lost in the first step, confirming that in
this event, the KM was starting to degrade. It is important to note that the composites were
thermally stable at the processing temperatures usually used for PLA.

3.6. Tensile Test

The mechanical performance of the r3-PLA and plasticized r3-PLA based films was
analyzed by tensile test, the results of which, in terms of Young Modulus (MPa), Tensile
Strength (MPa), and Elongation at Break (%), are represented in Figure 6. Firstly, it is
worth noting the decreased tensile parameters obtained for the r3-PLA films analyzed
herein, which were processed by solvent casting, compared with in other works centered
around PLA samples, which used melt extrusion [13]. As was mentioned previously,
this effect of the processing condition on the mechanical behavior of PLA films has been
studied by Yang et al. [33], who related this reduction in the tensile values, especially
in terms of modulus, to the presence of captured residual chloroform, which acts as a
plasticizer. Otherwise, with the addition of ATBC (r3-PLA-ATBC), an enhanced in ductility
was observed, as was expected due to the proven effectiveness of this citrate ester as a PLA
plasticizer [22,25,37,45]. Specifically, r3-PLA-ATBC showed a notable modulus reduction
with respect to r3-PLA, from ~1750 MPa to ~1550 MPa, as well as an increment in the
elongation at break from 12% to 14%, while a very small drop in the tensile strength
was observed.

Regarding the addition of KM, at low content (1 wt.%), both KMN and KMW induce
a very similar effect on the modulus and tensile strength, showing r3-PLA-ATBC-KMN1
and r3-PLA-ATBC-KMN1 values around 750–850 MPa and 15–17 MPa, respectively, for
these parameters. In composite materials, when the particle dispersion is not homogenous
enough, the transfer load does not occur appropriately, which caused a reduction in
modulus and strength. This drawback of the introduction of cellulose-derived particles
in PLA films has already been reported by other authors [46]. However, a significant
difference between KMN and KMW was observed for the results of the elongation at
break. In this sense, r3-PLA-ATBC-KMN1 showed a slight enhancement with respect to
unloaded r3-PLA-ATBC (up to 17%) while the results of the r3-PLA-ATBC-KMW1 samples
were closer to the non-plasticized r3-PLA. This difference in terms of ductility is directly
correlated with the crystallinity values obtained in the thermal analysis. When the KM
content was increased, the r3-PLA-ATBC film loaded with 3 wt.% of KMN showed a
somewhat higher modulus and tensile strength, approaching the r3-PLA-ATBC, while the
elongation at break was shown to be lower. Lignocellulosic and cellulosic materials have
been widely studied as fillers of PLA-based composites due to their high weight/strength
ratio, and can act as reinforcement when the interface contact area is adequate [47,48].
Instead, with the addition of 3 wt.% of KMW, mechanical reinforcement does not occur
properly. This behavior can be explained by the more marked plasticizing effect produced
by the KMW as a consequence of the possible degradation of some phenolic compounds
(with less –OH able to establish hydrogen bonding interaction between them) present
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in pristine yerba mate, due to the hydrothermal extraction process used to prepare the
infusion. Thus, permitting better interaction between PLA and ATBC allowed for a higher
elongation at break, in good accordance with the Tg value, close to that of r3-PLA-ATBC
(Table 2).
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3.7. Release Studies and Antioxidant Ability

Specific migration tests were conducted to evaluate the potential antioxidant activity
of the films, as microbial cellulose obtained from kombucha fermentation showed that the
tea used for its production had antioxidant properties [18]. In this work, kombucha was
fermented in a yerba mate-sugared infusion. The antioxidant activity of yerba mate is well-
known, and mainly arises from its composition in phenolic compounds [19]; even yerba
mate waste is still able to provide antioxidant activity [15]. The radical scavenging activity
(RSA) of each food simulant D1 sample after 10 days of contact at 40 ◦C, considered by the
current legislation the worst foreseeable conditions for intended use [28], was determined
by means of the DPPH method [41], and the results are shown in Figure 7.
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Figure 7. Radical scavenging activity of 3r-PLA-ATBC-based films.

As expected, the r3-PLA film did not show any antioxidant activity. The KMN and
KMW were processed into thin films and also subjected to the food simulant for comparison.
The neat KMN film showed high RSA activity of 70.2 ± 1.1% and 55.2 ± 11.7%. Meanwhile,
the films loaded with KMN or KMW showed some antioxidant activity, as microbial cellu-
lose obtained from kombucha fermentation possesses natural and remarkable antioxidant
activity, which is directly related to the infusion used for the fermentation [18]. Films
loaded with KMN showed higher antioxidant activity than those loaded with KMW, as it is
known that yerba mate waste possesses a low polyphenol content due to the hydrother-
mal extraction process used during infusion preparation (temperature higher than 80 ◦C)
before obtaining the waste. The scavenging effect obtained here for 3r-PLA-ATBC-based
materials loaded with microbial cellulose kombucha fermented in yerba mate or yerba
mate waste (between 1 wt.% and 3 wt.%) are low, but it should be highlighted that they still
possess some antioxidant activity and, thus, the results interesting for food crops and food
packaging. A high level of antioxidant activity has been observed in materials containing
yerba mate extract. For instance, Deladino et al. studied corn starch-loaded materials
with yerba mate extract at a concentration of around 10 wt.% with respect to the starchy
matrix, and found between 40% and 60% RSA [19]. The values obtained in the present work
are in the range of other antioxidant materials based on tri-layer recycled PLA/sodium
caseinate (SC)/recycled PLA-based materials reinforced with 1 and 3 wt.% of nanoparticles
obtained from yerba mate waste (YMN) (RSA (%) of rPLA/SC/rPLA-YMN1 = 6.4± 0.1 and
RSA (%) of rPLA/SC/rPLA-YMN3 = 11.0 ± 0.2) [39].

Besides the biobased origin, biodegradability, and recyclability of PLA, the modifica-
tion of PLA-based composite films through the incorporation of cellulosic nanoparticles
has already shown improvements in thermal, barrier, and mechanical properties, and the
possibility to provide additional antioxidant properties makes these films highly interesting
for food packaging or agricultural applications [15,49].
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3.8. Water Contact Angle and Water Vapor Transmission Rate

The surface hydrophilic/hydrophobic properties of films were determined by the
measurement of the static water contact angle (WCA) and the results are reported in
Figure 8a. Meanwhile, the water vapor transmission rate (WVTR) values of plasticized
r3-PLA-ATBC-based films are reported in Figure 8b. The PLA film, after three cycles of
melt extrusion (3r-PLA), showed a water contact angle higher than 65◦, which was ascribed
to hydrophobic surfaces (θ lower than 65◦ are ascribed to hydrophilic surfaces) [50]. The
plasticized 3r-PLA sample (3r-PLA-ATBC) showed a lower WCA value, as was observed in
an already reported work on PLA and PLA-ATBC [25]. This was also in agreement with
the WVTR value, in which r3-PLA andr3-PLA-ATBC showed similar WVTR properties,
despite being slightly higher the WVTR of 3r-PLA-ATBC. The plasticizing effect of ATBC
into the r3-PLA matrix influenced the diffusion process as a consequence of the increased
polymer chain mobility. The presence of either KMN or KMW in the 3r-PLA-ATBC matrix
produced a decrease in the surface wettability of the films (Figure 8a), leading to values
higher than 3r-PLA-ATBC and, thus, higher hydrophobicity. This unexpected increment
of the hydrophobicity of the film surface, even when hydrophilic cellulosic particles were
added, can be related to the changes in the topographical properties as a consequence of the
presence of cellulose particles. However, it should be highlighted that the composite films
were still more hydrophilic than 3r-PLA. The WVTR showed increased values with the
presence of either KMN or KMW in the 3r-PLA-ATBC matrix (Figure 8b), particularly in
the case of KMN, probably due to the high amount of active compounds.–OH groups were
able to interact with water, increasing the water diffusion through the film. Meanwhile,
the KMW, which showed less antioxidant activity (Figure 7) and, consequently, a lower
amount of bioactive compounds within the polymeric matrix, allowed less water vapor to
be transmitted through the film.
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4. Conclusions

Microbial cellulose particles were successfully obtained from kombucha beverage
fermented in both infusion, pristine yerba mate, and yerba mate waste. They were further
used to reinforce a plasticized PLA matrix subjected to three extrusion cycles (r3-PLA),
aiming to simulate the revalorization of PLA from industrial PLA products rejected during
the production line. The r3-PLA-based biocomposites, reinforced with KMN and KMW,
were effectively prepared by solvent casting, and the effect of yerba mate starting material
(pristine or waste), as well as the amount added (1 and 3 wt.%) into the plasticized r3-PLA-
ATBC, were deeply investigated.

All films resulted to be optically transparent, and FESEM micrographs revealed a good
dispersion of microbial cellulose particles in the reprocessed polymeric matrix.

DSC analysis showed a crystallinity increase in r3-PLA-ATBC composites reinforced
with KMW, indicating that it favored the crystal growth and nucleation effects, while for
the tensile test, measurements showed a more marked plasticization effect. Moreover, the
materials reinforced with KMW showed less WVTR, indicating improved barrier properties
against water than the materials reinforced with pristine KMN. However, KMN-reinforced
r3-PLA-ATBC-KMN-based films showed higher antioxidant activity, although it should be
highlighted that r3-PLA-ATBC-KMW-based films still showed antioxidant activity.

The reprocessed PLA (r3-PLA) in combination with ATBC and KM particles offers a
promising perspective to produce transparent and flexible films with good water barriers
and mechanical properties that are suitable as antioxidant films for food packaging or
agricultural mulch films.
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