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Abstract: The global production of macadamia nuts has witnessed a significant increase, resulting in
the accumulation of large quantities of discarded nutshells. These nutshells possess the properties
of remarkable hardness and toughness, which are comparable to those of aluminum. Incorporating
natural fillers to enhance the properties of composite materials for various applications, including
light duty, structural, and semi-structural purposes, is a common practice. Given their inherent
hardness and toughness, macadamia nutshells present an intriguing choice as fillers, provided that
the manufacturing conditions are economically viable. With the urgent need to shift toward natural
fillers and reduce reliance on synthetics, exploring macadamia nutshells as components of natural
fiber composites becomes imperative. This review aims to comprehensively examine the existing
body of knowledge on macadamia nutshells and their bio-synthetic polymer composites, highlighting
key research findings, achievements, and identifying knowledge gaps. Furthermore, the article will
outline prospective areas of focus for future research endeavors in this domain, aligning with the
universal goal of minimizing synthetic materials.
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1. Introduction

In recent times, growing concerns regarding environmental issues, health considera-
tions, and the urgent need for sustainable manufacturing methods have amplified the focus
on the research on and development of green materials for engineering applications. Natu-
ral fibers derived from sources such as bamboo, flax, coir, hemp, etc., have been employed
as reinforcements in the production of bio-composites [1]. Effective waste management
has become imperative to maintaining a livable environment, as agricultural activities
generate substantial byproducts that often end up in landfills. Macadamia nutshells, like
other agricultural residues, are commonly incinerated as solid biomass fuel or utilized
as organic fertilizer, cooking fuel, garden mulch, and animal bedding, or discarded alto-
gether. Notably, macadamia nutshells exhibit distinct structural and density characteristics
compared to those of natural wood, although their chemical composition is surprisingly
similar [2]. Macadamia, a genus within the Proteaceae family, encompasses several species
primarily found in Australia. While ten species have been identified, only two are grown
commercially in Australia, Macadamia integrifolia and Macadamia tetrophylla. The former is
preferred due to its higher oil content and improved nut edibility after roasting, making it
the dominant species for commercial plantations [3]. In Australia alone, the food industry
generates approximately 28,000 tons of empty macadamia shells as a byproduct [4]. The
global market for macadamia nuts continues to expand, with shells and other waste com-
prising nearly 70% of the fruit’s weight [5]. Unfortunately, the potential of macadamia shells
as byproducts remains significantly underutilized [6]. As a botanical structure, macadamia
nutshells are delicately optimized, exhibiting exceptional strength and toughness resulting
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from ecological evolution and natural selection. These nutshells possess a cellular solid
mass with relatively high strength and low density; however, their structure differs consid-
erably from that of trees, displaying isotropic and uniform characteristics [7]. Macadamia
nutshell-filled polymeric composites hold promising potential for manufacturing various
structural components, including sandwich composites, with prospective applications in
infrastructure, aerospace, and automotive industries. Additionally, macadamia shells can
be processed at high temperatures in a specialized low-oxygen environment to produce
biochar, which finds applications in carbon filters, life-saving medical treatments, industrial
nano-powders, and cosmetics.

Although research on macadamia nutshell-reinforced composites is limited, no com-
prehensive review has been published thus far. Therefore, this article aims to provide
an overview of bio-synthetic polymer composites utilizing macadamia nutshells, encom-
passing their chemical properties, mechanical characteristics, manufacturing methods, fire
retardancy, water absorption behavior, and thermal properties.

2. Bio-Synthetic Polymer Composites

Researchers have long been exploring opportunities to incorporate natural fibers into
various industries, a trend that gained momentum with the emergence of polymers in the
early 19th century. Synthetic polymers and composites have become ubiquitous worldwide;
however, their production and recycling processes contribute to environmental pollution,
prompting the need for alternative solutions utilizing natural fibers. Bio-synthetic compos-
ites, composed of natural materials and artificially prepared or synthesized polymers, offer
strength and structural integrity to the final product. Cellulosic fibers derived from sources
such as flax, alpaca, hemp, jute, and wood are biodegradable and commonly used as
reinforcement in composites with different thermoplastic matrices. Bio-composite materials
offer numerous advantages over conventional materials, including higher specific strength,
stiffness, and fatigue resistance, thereby enabling more adaptable structural design. Ad-
ditionally, bio-composites are biodegradable, possess superior tensile strength, exhibit
low specific gravity, and are recyclable. Consequently, these materials find application
in diverse product manufacturing and innovative fields. Green composites, compared to
their synthetic counterparts, offer various advantages, including reduced tool wear [8]
and biodegradability [9]. Furthermore, natural fibers exhibit higher specific strength than
do glass fibers while maintaining a similar specific modulus [10]. Many of these fibers
are obtained through the processing of agricultural, industrial, or consumer waste [11].
Natural fibers are widely accessible and find applications in a wide range of industries, as
illustrated in Figure 1.
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3. Macadamia Nutshells

Nutshells, which are agricultural waste, consist of lignocellulosic materials. The
strength and stiffness of agro-fibers are primarily attributed to cellulose content. Tradition-
ally, nutshells have been limited to low-end applications. However, recent research has
focused on exploring enhanced and value-added uses for these nutshells. Some potential
applications include utilizing them as carriers for insecticides and pesticides, employ-
ing them as abrasives for cleaning and polishing purposes, utilizing them as thickeners
in paint formulations, and utilizing them as raw materials for activated carbon produc-
tion. Moreover, in recent years, researchers have extensively investigated the potential of
incorporating nutshells as fillers in polymer composites [3].

Macadamia nutshells offer a promising opportunity to develop innovative green
composites via the incorporation of them as fillers with compatible polymeric resins.
Nutshells fall into the category of three-dimensional cells, characterized by cell walls with
a random orientation. From the early stages after flowering, the nuts develop and remain
within the shells until they reach their final lifecycle stage (Figure 2). Macadamia trees
thrive in sub-tropical climates and are long-term crops, typically taking four to five years
from planting to reach the point of cropping. Fully commercially viable yields are obtained
within approximately seven years, with an annual growing cycle of around 9 months.
The first flowering typically occurs in early spring, followed by the development of small
nutlets. These nutlets grow and mature during spring and summer, ripening in early
autumn. Each cluster of 40–50 flowers produces 2–15 nutlets, resulting in large clusters
of plump green nuts by early autumn. Harvesting usually begins in late autumn and
continues throughout the winter months. Farmers collect the nuts once they have fallen
to the ground, conducting harvest rounds every two to four weeks. After removing the
soft outer husk, the nuts are transferred to drying facilities, where they undergo controlled
temperature and humidity conditions to reduce their moisture content from 15–20% to
3.5%—a crucial step before cracking [13]. Careful mechanical cracking is employed to
minimize damage to the delicate kernel, and the waste shells and kernels are subsequently
separated. The germination process of macadamia seeds covered by shells occurs in five
stages, taking approximately 15–115 days from sowing. The prolonged germination period
can be attributed to the hard and rigid structure of the shells.
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Macadamia nutshells possess various anatomical features, including the hilum, mi-
cropyle, outer suture, inner suture, vascular bundles, sclerenchyma fiber layer, sclereid,
and testa layers (Figure 3). These terms belong to the realm of botanical study, and their
understanding is relevant in the context of material science and mechanical perspectives.
Figure 4 showcases a diagram illustrating the sandwich structure of a typical macadamia
seed shell, accompanied by a scanning electron microscope (SEM) image that highlights the
dense arrangement of the shell layers. Figure 5 provides detailed views of each individual
layer within the shell structure. Additionally, Figure 6 illustrates the development of cracks
in the shells under various loading conditions.
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Figure 6. SEM images on Crack propagation in macadamia seed coat. (a) Compressed loading
on samples; (b) Enlarged view showing interfacial fracture deflection between sclerenchymatous
layer (L3) and sclereid layer (L4); (c,d) Ending of crack. Reprinted with permission from Ref. [14].
Copyright 2014, Schuler et al.

4. Chemical Properties

In a study investigating the production of composite panels using macadamia nutshells
and waste plastic from the automotive industry, the researchers conducted an analysis to
assess the elemental content, moisture content, volatile carbon, and fixed carbon of the
nutshells. This analysis involved the use of X-ray fluorescence (XRF) spectroscopy, along
with proximate analysis (as presented in Table 1), ultimate analysis, and elemental analysis
(as presented in Table 2) [15].

Table 1. Proximate analysis of macadamia shell. Adapted with permission from Ref. [15]. Copyright
2017, Elsevier.

Proximate Analysis (wt% as Received) Ultimate Analysis (wt% as Received)

Moisture 5.5 C 48.39

Ash 0.2 O 40.31

Volatile matter 73.5 N 0.333

Fixed carbon 20.8 — —

Table 2. Elemental analysis (X-ray Fluorescence studies) Adapted with permission from Ref. [15].
Copyright 2017, Elsevier.

Analyte Na Mg Al Si P S Cl K

Concentration (%) 0.0298 0.0450 0.0620 0.0770 0.0140 0.0400 0.0008 0.1550

Analyte Ca Cr Mn Fe Ni Co Cu Zn

Concentration (%) 0.0350 0.0008 0.0047 0.0113 - 0.0001 0.0015 0.0005

Analyte Se Zr Br Ba Rb Hf Cd Pb

Concentration (%) 0.0004 - 0.0004 - 0.0001 - 0.0001 0.0002

The chemical structure of macadamia nutshells was evaluated through Fourier trans-
form infrared spectroscopy (FTIR) analysis, which revealed the presence of numerous
functional groups in the FTIR spectrum (Figure 7). The shells predominantly consist of
polymers such as cellulose, hemicellulose, and lignin. The characteristic peaks correspond-
ing to OH, CH2, C=O, C=C, and C-O-C functional groups provide evidence of the presence
of cellulose, hemicellulose, and lignin structures within macadamia nutshells.
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Notably, the peaks observed at 2910 and 2930 cm−1 indicate C-H stretching, while
the peak in the region of 1720 cm−1 may be attributed to the presence of acetyl groups
in hemicellulose. Peaks around 1600 and 1510 cm−1 suggest the presence of aromatic
structures, and the strong peak at 1000 cm−1 corresponds to stretching vibrations from the
functional groups present in hemicellulose and cellulose structures.

5. Thermal Analysis

To investigate the thermal behavior of macadamia nutshells, Sagar et al. [15] performed
thermo-gravimetric analysis (TGA), derivative thermo-gravimetric (DTG) analysis, and
pyrolysis experiments on empty nutshells (Figure 8). TGA tests involved measuring the
mass of the samples as a function of temperature. During TGA, changes in mass occur due
to sublimation, evaporation, decomposition, chemical reactions, and magnetic or electrical
transformations, providing insights into the thermal stability of the material. The presence
of acetyl groups makes hemicellulose the least thermally stable component, leading to
its decomposition at around 300 ◦C, as observed via the initial weight loss. Cellulose
degradation occurs rapidly around 400 ◦C, indicated by a characteristic peak on the DTG
curve (at approximately 370 ◦C). Lignin degradation, on the other hand, takes place at
lower temperatures and spans a wider temperature range. At the end of the TGA analysis,
the macadamia nutshells left behind a residue of approximately 20%.
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The thermal analysis results confirm that macadamia nutshells exhibit thermal stability
up to 250 ◦C. Furthermore, the TGA results provide confirmation of the presence of cellulose
(~35%), hemicellulose (~30%), and lignin (~35%) in macadamia nutshells.

6. Mechanical Properties

The usability of any material in terms of engineering applications highly depends upon
its mechanical attributes, such as flexural properties, tensile properties, fracture toughness,
stress and strain curves. These characteristics mostly determine the probable behavior of a
material in a specified application. Unlike man-made composites, biological materials do
not rely on simply one fiber–matrix interface, but rather on interactions of the multiplicity
of interfaces between the different structural levels of molecules, cells, and fibers. Studies
have been conducted to determine the mechanical characteristics of macadamia nutshells,
such as flexural properties, tensile properties, hardness, and compressive strength. They
are known to have approximately the same fracture toughness as that of common ceramics
and glass; when compared based on specific strength or modulus, they exceed those of
these materials due to their low density.

Wang, Zhang and Mai [13] reported that the elastic modulus and strength of macadamia
nutshells is around 5.2 GPa and 40–50 MPa, respectively. Mechanical properties of
macadamia nutshells subjected to heat treatment were studied. Researchers performed
elastic stress analysis under diametrical compression and observed that cracks caused the
final fracture, initiated from the inner surface of the shell underneath the loading point.
Representatives were collected as green, dried, and boiled. C-ring specimens were prepared
from whole nuts to conduct mechanical tests. Three geophysical positions were considered
such as the north pole, south pole, and equator for the specimens Figure 1 of reference [14]).

It is shown from Tables 3 and 4 that macadamia nutshells have a high compressive
strength, which makes it hard to prevent insects from boring into the nuts. According to the
study, their density is between 1.2 × 103 and 1.5 × 103 kg/m3, and macadamia nutshells
are heavier than most hard and soft woods.

Table 3. Young’s modulus (E), fracture strength (σUTS), and fracture toughness (KIC) of macadamia nut-
shell (‘green’). Adapted with permission from Ref. [13]. Copyright 1995, Kluwer Academic Publishers.

Position Equator North/South Pole N45 ◦ S45 ◦

Direction Polar Equatorial Polar/Equatorial Equatorial Equatorial

E (GPa) 7.77 (±1.2) 5.38 (±2.43) 4.78 (±2.9) 5.09 4.4

σUTS (MPa) 61.0 (±5.98) 57.8 (±9.95) — 56.1 46.2

KIC (MPa
√

m) 0.81 (±0.18) 0.64 (±0.09) 0.85 (±0.05) 0.9 0.83

Table 4. Effect of heat treatment on mechanical properties. Adapted with permission from Ref. [15].
Copyright 2017, Elsevier.

Heat Treatment Green Dried Boiled

Young’s Modulus (GPa) 6.2 5.66 5.95

Tensile Strength (MPa) 57.8 (±8.7) 54.9 (±3.1) 59 (±7)

Compressive Strength (MPa) 80 (±12) 84 (±9) 76 (±8)

Fracture Toughness (MPa
√

m) 0.78 (±0.12) 0.77 (±0.1) 0.80 (±0.15)

Work of Fracture (Jm−2) 98 105 108

The stress–strain curve and elastic stress distribution curve were evaluated (Figure 9).
Stresses in the shell were designated as meridian and hoop stresses adopting a geophysical
analogy by Jennings et al. [16].
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7. Macadamia Nutshell Reinforced Composites

The unique characteristics of macadamia nutshells, such as their low density, high
mechanical strength [17,18], biodegradability, and recyclability, make them highly suitable
for a wide range of innovative product designs. Researchers have extensively studied
the performance of composites composed of macadamia nutshells, pine cone wastes [19]
and various polymers, including poly lactic acid (PLA) [20], polyethylene (PE), polyester,
polybenzoxazine [21], polypropylene (PP) [22], as well as certain resins [23–25].

7.1. Composites with Poly Lactic Acid

Chensong et al. [17] conducted a study on the mechanical properties of bio-composites
composed of macadamia nutshell powder and poly lactic acid (PLA). The strength and
stiffness of the composites were found to be dependent on the weight content of macadamia
nutshell particles. Specifically, a 40% weight content of nutshell powder resulted in a 9.8%
increase in the elastic modulus. However, the hardness of the composites was not affected
by the weight content, and an increase in powder content led to a decrease in both flexural
and tensile strength. Rakesh et al. [26] investigated composites of PLA with the addition
of a plasticizer, such as Triacetin. The inclusion of the plasticizer caused changes in the
morphology of the composites. Among the tested compositions, the composite with 8%
plasticizer exhibited a maximum tensile strength of approximately 11 MPa, along with
satisfactory elongation at break.

In a study by Xiaohui et al. [27], the additive manufacturing of composites using
poly lactic acid (PLA) and macadamia nutshell (MS) was explored. The macadamia shell
samples were treated with alkali and silane, resulting in morphological changes. The
PLA composite containing 10 wt% of the treated macadamia nutshell showed thermal and
mechanical properties comparable to those of pure PLA, as well as promising characteristics
for scaffold applications. Morphological changes resulting from the treatments are depicted
in Figure 10, while Figure 11 illustrates the FTIR spectra and XRD analysis of the treated
and untreated macadamia shell, demonstrating changes in chemical bonds and crystallinity.
The PLA composite with 10% treated macadamia nutshell exhibited the best performance,
showing potential for use in lightweight and structural parts.
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In another report, the authors studied such composites made of four kind of nutshells
such as walnut, almond, macadamia (MSP) and wild almond [28]. The PLA/MSP compos-
ite was the most water-resistant regardless of surface treatment. Crystallization degree of
these representatives also improved.

7.2. Composites with Polyethylene and Polyester

Sevda et al. [29] conducted a study on high-density polyethylene (HDPE) composites
reinforced with microcrystalline cellulose (MCC) and nutshell fiber (N). The researchers
also incorporated polyethylene graft maleic anhydride (PE-g-MA) to enhance the interface
between the components. The prepared samples were subjected to accelerated weathering
for 672 h in total, during which changes in morphology, weathering, mechanical properties,
and chemical composition were analyzed.

Exposure to weathering conditions led to a decrease in flexural strength and an increase
in the modulus of elasticity of 62%. Color changes and a loss of gloss were predominantly
observed in the MCC/nutshell reinforced composites, along with an increase in surface
roughness. Figure 12 depicts the surface roughness patterns of eight different composite
samples subjected to varying weathering periods [29].
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Laert et al. [7] conducted a study on the mechanical and thermal properties of low-
density polyethylene (LDPE) composites incorporating Macadamia integrifolia residue.
Various fiber contents (0%, 5%, 10%, and 20% by weight) were investigated, and it was
found that the composites with a 20% fiber content performed the best. The inclusion
of fibers increased the stiffness of the composites compared to neat LDPE, but this led
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to a reduction in toughness and resilience, resulting in lower impact energy absorption.
Chensong et al. [30] investigated the flexural properties of polyester composites reinforced
with macadamia nutshell particles at four weight fractions: 10%, 20%, 30%, and 40%. The
presence of voids in the composites was observed to decrease the flexural strength. The
authors also reported that the flexural strength of the polyester did not improve with the
addition of macadamia nutshell particles.

7.3. Composites with Polypropylene (PP)

Lucas et al. [31] studied composites made of macadamia nutshell residues (MR) and
polypropylene (PP) composites using different MR contents (5, 10, 15, 20, 25, and 30%wt).
Characterizations were conducted mainly focusing on the effect of moisture retention, and
additionally, life cycle assessment (LCA) was obtained. The presence of MR content allows
thermal stability. Meanwhile, it creates cracks and voids in the interface although it does
not affect mechanical performance substantially (Figure 13). TGA and DTG curves, and the
nature of moisture retention during the 7 days of the representatives were obtained. LCA
revealed higher MR contents (30%) to promote lower environmental impacts than does the
classical handling of nutshells (Figures 7 and 8 of reference no. [31]).
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Nycolle et al. [32] investigated the effect of an alkaline treatment and coupling agent on
the thermal and mechanical properties of macadamia nutshell residue (5 to 30% wt)-based
PP composites. Such a treatment allows interfacial adhesion between the fiber and matrix.
The FTIR spectra and X-ray diffraction pattern (XRD) obtained from the representatives
before and after the treatment present how effectively functional groups were changed
and crystallinity was transformed. Thermal degradation and mechanical properties were
studied along with morphological analysis to observe the performance of treatments of the
fibers and how they interfaced with the matrix. An addition of 30% wt treated fiber to the
PP exhibited an enhancement of 67.5% in the tensile modulus. However, it was established
that a higher fiber content being added to the PP enhanced the stiffness, and consequently
reduced the impact strength of the materials (Figures 2, 4 and 7 from reference [32]).
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7.4. Composites with Some Resins

Wechsler et al. [33] conducted a study comparing particleboards made from macadamia
nutshells with resin derived from castor oil to conventional wood fiber/urea formaldehyde
particleboards. The macadamia nutshell particleboards exhibited a 43% higher density,
lower moisture retention, and reduced swelling. The internal bond strength was similar,
but the modulus of rupture and modulus of elasticity were slightly lower compared to
those of the conventional particleboards. Figure 14 presents the relevant data recorded in
the study. Furthermore, the particleboards made with castor oil resin emitted less than 5%
formaldehyde compared to traditional urea formaldehyde particleboards.
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Derrick et al. [34] investigated the physico-mechanical properties of composite parti-
cleboards made from macadamia nutshells and Gum Arabic. The samples containing 50%
Gum Arabic and 50% macadamia nutshells demonstrated favorable results, including the
lowest average values of water absorption and swelling after submersion in distilled water,
as well as the highest density, modulus of rupture, modulus of elasticity, internal bond
strength, and compressive strength. A comprehensive study was conducted to determine
the influence on the physico-mechanical properties of particleboards fabricated with parti-
cles of Eucalyptus saligna and macadamia nutshells [35]. Urea formaldehyde (UF)-based
resin, an ammonium sulfate catalyst, and a paraffin emulsion were used in the fabrication
process. The results indicated that particleboards with a high proportion of macadamia
nutshell particles exhibited lower mechanical strength and dimensional stability. This was
attributed to the thicker geometry of the macadamia nutshell particles, which limited their
interaction with the adhesive.

Omid et al. [36] also investigated the use of synthesized phosphorous-based deep eu-
tectic solvents or phosphorylated macadamia nutshell powder (p-wood) as a reinforcement
in epoxy resin composites. The composites containing 20% p-wood exhibited a V-1 rating
in the UL 94 Classification of the plastics flammability standard, along with significant
reductions of 74% in the peak heat release rate and 344◦C in the maximum smoke temper-
ature compared to those of neat epoxy resin. The composites also showed an increase in
char yield and limiting oxygen index value. Figure 15 illustrates the heat release rate (HRR)
and total heat release (THR) rate of the bio-composite samples, where “N-wood” refers to
macadamia nutshell powder treated with a toluene solvent.
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A study focused on the thermal behavior of benzoxazine composites reinforced with
macadamia biomass was conducted [37]. Differential scanning calorimetry (DSC), dynamic
mechanical analysis (DMA), and thermomechanical analysis (TMA) were employed to
investigate the properties of the composites. The results showed that the addition of
10% (v/v) of macadamia biomass in its natural form had minimal impact on the glass
transition temperature, modulus of elasticity, and linear thermal expansion coefficient of
the benzoxazine matrix.

7.5. Composites from Waste Macadamia Nutshells and Automotive Waste Plastic

A study focused on the production of wood plastic composite (WPC) panels via a
combination of waste automotive plastics with macadamia nutshells as a matrix material was
conducted [15]. The study examined the density, mechanical properties, microstructure, and
thermal properties of the produced WPC panels and compared them with those of panels
made solely from 100% automotive plastic. The investigation revealed that the addition of
macadamia shells to the automotive waste plastic helped improve the modulus of elasticity
under compression loading. The comprehensive modulus for the automotive waste plastic
was 253 MPa. Since wood has a higher modulus than plastic does, the modulus of the
fabricated panels increased with an increase in the content of macadamia shells.

The comprehensive modulus of the panel board increased as the proportion of
macadamia shells increased, reaching a value of 548 MPa for a board containing a 75%
macadamia shell mixture. However, in the flexural test, the incorporation of macadamia
shell did not exhibit a reinforcing effect and led to a slight decrease in flexural strength
(Figure 16). The report suggests that this result may be attributed to the poor interaction
between the automotive waste plastics and macadamia shells or the immiscibility of the
plastics. Overall, the study demonstrates that the addition of macadamia shells signifi-
cantly increased the comprehensive modulus by 548 MPa in a WPC panel containing 75%
macadamia shell.

Microstructure analysis of the fractured surfaces under compression revealed that the
addition of macadamia shells partially transformed the brittle failure of the waste automotive
plastic into a ductile failure. In terms of thermal properties, the WPC panel exhibited favorable
flame-retardant properties compared to panels made solely from 100% plastic.

7.6. Macadamia Nutshell Fillers Studied for Purposes Other Than Composites

Jun et al. [4] developed carbon composites using macadamia nut shells, phenolic resin,
and carbon fibers for their application as solid adsorbents in coal-fired power stations
for the post-combustion capture of CO2. The newly developed composites exhibited a
performance improvement of over 30% compared to that of their previously developed
adsorbents. The introduction of phenolic resin resulted in an enhanced efficiency of CO2
adsorption. Yingge et al. [38] utilized macadamia nut shells as a precursor to prepare porous
carbon material, which was subsequently used in the fabrication of sulfur–carbon composite
material as the sulfur storage matrix for lithium–sulfur batteries. The study investigated
the effect of temperature on the microstructure and electrochemical performance of the



Polymers 2023, 15, 4007 13 of 15

porous carbon material. The activation process at a temperature of 900 ◦C resulted in
the desired pore structure of the carbon material. The material exhibited a super high
specific surface area (3552.7 m2/g), larger pore volume (2.2 cm3/g), and higher mesoporous
content (23.85%), providing significant technical advantages. Macadamia biomass was
effectively used as carbon resource in cleaner production of iron [18] and materials for
additive manufacturing [39].
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8. Concluding Remarks

The physical characteristics of polymers and cellulosic fibers are influenced by various
internal factors, including molecular weight, crystallinity, crystal morphology, crosslinking,
branching, copolymerization, plasticization, molecular orientation, and residual stress.
Additionally, external variables such as ambient atmosphere, the nature of deformation,
thermal history, weathering, time (aging), and the frequency of stressing also play a role.
The viscoelastic nature of polymers and their composites further demonstrates a strong
dependence of mechanical properties on time and temperature. As a result, understanding
the intricate relationships between polymer structure and properties is a complex and
ongoing area of research, offering intriguing avenues for exploration.

By controlling the nucleation and growth of mineral phases, as well as manipulating
the microstructure in materials such as synthetic polymers and biomaterials, it becomes
possible to significantly alter their morphology and unlock advanced properties. This
knowledge opens up new possibilities for developing novel processing methods and cre-
ating useful objects with enhanced functionalities. The mechanical properties such as
strength, etc., of macadamia nutshell fibers are naturally high, which is a prime vantage. To
be able to utilize such a naturally grown high strength fiber is a great scientific achievement.
Furthermore, the fiber and its composites do not inherit the characteristics, e.g., high mois-
ture absorption, that discourage its uses. In this context, exploring innovative approaches
becomes crucial in order to fully harness the potential of natural fibers and fillers, such as
macadamia nutshells, in the development of functional and structural composite materials.
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