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Abstract: Over the last decade, there has been an increasing interest in the use of bioceramics for
biomedical purposes. Bioceramics, specifically those made of calcium phosphate, are commonly
used in dental and orthopaedic applications. In this context, hydroxyapatite (HA) is considered a
viable option for hard tissue engineering applications given its compositional similarity to bioap-
atite. However, owing to their poor mechanobiology and biodegradability, traditional HA-based
composites have limited utilisation possibilities in bone, cartilage and dental applications. Therefore,
the efficiency of nano HA (nHA) has been explored to address these limitations. nHA has shown
excellent remineralising effects on initial enamel lesions and is widely used as an additive for improv-
ing existing dental materials. Furthermore, three-dimensional printing (3DP) or fused deposition
modelling that can be used for creating dental and hard tissue scaffolds tailored to each patient’s
specific anatomy has attracted considerable interest. However, the materials used for producing hard
tissue with 3DP are still limited. Therefore, the current study aimed to develop a hybrid polymer
nanocomposite composed of nHA, nanoclay (NC) and polylactic acid (PLA) that was suitable for
3DP. The nHA polymer nanocomposites were extruded into filaments and their physiochemical
properties were evaluated. The results showed that the addition of nHA and NC to the PLA matrix
significantly increased the water absorption and contact angle. In addition, the hardness increased
from 1.04 to 1.25 times with the incorporation of nHA. In sum, the nHA-NC-reinforced PLA could be
used as 3DP filaments to generate bone and dental scaffolds, and further studies are needed on the
biocompatibility of this material.

Keywords: nanohydroxyapatite; polylactic acid; 3D printing; polymer nanocomposites; fused
filament fabrication

1. Introduction

Polymer nanocomposites (PNCs) are attracting increasing attention in the fields of
tissue engineering [1] and regenerative medicine [2]. PNCs can be utilised to create frame-
works, forming a 3D system through which cells can grow, separate and develop into
functional organisations [1]. In recent years, PNCs based on biodegradable polymers have
played an essential role in material technology, the packaging industry, agriculture and
the medical device industry because they exhibit excellent properties and potential for
structural deformation [3].

Polylactic acid (PLA) is well acknowledged among the available biodegradable polymers
owing to its decomposition process [4]. Furthermore, PLA can be decomposed into different
constituents without adversely affecting the surrounding environment, using metabolic routes
for deformation [4,5]. Moreover, PLA is a transparent thermoplastic aliphatic polyester
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with outstanding optical features, flexural strength of about 140 MPa [6], Young’s modulus
around 5–10 GPa [7] and good processability (with low shrinkage, which does not cause
product deformation); it is also fully biodegradable [8–10]. Therefore, researchers have
found many promising applications of PLA, especially in biomedical applications [11,12]. Its
outstanding biocompatibility ensures that no inflammatory response are elicited within the
encompassing tissue or in the human body because of dismissal [13–15]. The human body can
metabolise intermediate lactic acid, which is non-toxic and safe. However, previous studies
have reported that cells cultured on PLA surfaces failed to respond to in vitro cell culture
tests; therefore, PLA composites have been applied to enhance the cell-material attraction,
mechanical resistance and debasement rate [16]. For instance, nanohydroxyapatite (nHA) or
b-tricalcium phosphate-based PLA composites have been used to promote osteoconduction
and induce bone development [17]. Excellent mechanical features were also observed when
nHA and silver nanoparticles were added to a softened PLA matrix [18]. Therefore, nHA
has been used as a filler to improve the bioactivity of PLA without reducing its mechanical
strength.

Similarly, NCs or clay minerals have been broadly utilised to reinforce polymer matrix
composites and improve the mechanical, thermal and anti-corrosive features. An addition
of NC at low loading is also an excellent way to enhance the mechanical strength [19–21],
barrier strength [22,23] and thermal features of PLA polymers [19,24,25]. Researchers have
found that using NC at different percentages, ranging from 1% to 6%, could help increase
the mechanical and optical properties of PLA and improve the performance of PLA in
barrier tests for industrial production and packing applications [26].

HA [Ca10(PO4)6(OH)2] is a calcium phosphate that has a morphology and composition
similar to that of human hard tissues [27]. HA also has the same chemical and mechanical
properties as bones, teeth, dentine, enamel and calcified parts of tendons [28]. Typically,
HA has a hexagonal structure and a stoichiometric Ca/P ratio of 1.67, such as that of bone
apatite [29–31]. HA is an inorganic mineral with a carbonated apatite structure present
in human bone and teeth with a minority of deficient calcium [32]. Moreover, calcium
HA is insoluble in environments with acid–base balance, i.e., pH 7.4, which is the average
pH of the human body for various biological processes, especially blood oxygenation.
However, it dissolves insignificantly at a pH of <6.5 [33]. The advantage of nHA is that it
can be synthesised into various forms. Different forms of synthesised nHA, such as dense
ceramic [34], powder [35], coating material [36] or porous material [37], are suitable for
diverse applications. Therefore, nHA is the most commonly applied bioceramic in the field
of prosthetics [8] and as a delivery carrier for proteins [38], peptides [39], genes [40] and
drugs [41], owing to its excellent properties and flexible structure. Additionally, nHA is a
promising bioceramic for bone tissue engineering [42], dental applications [43] and stem
cell differentiation [44].

Turk et al. [45] demonstrated that nHA produced using the sonochemical method
displayed hexagonal and rod-like nanostructures. Similarly, Huang et al. [46] reported the
generation of spherical-shaped nHA through a single-step hydrothermal process. In another
study by Xing et al. [47], rod-shaped nHA was obtained through ultrasonication, and
fibrous nHA through precipitation. However, the shape of nHA is a vital specification for
biomedical applications. Hence, it is necessary to choose the appropriate synthesis method
to produce a viable shape suitable for end applications [48]. In another report, the thermal
properties of nHA synthesised from eggshells were investigated using thermogravimetric
analysis (TGA) [49]. The weight loss curve had two different decomposition stages: about
3% weight loss at 0–200 ◦C was attributed to residual water loss, and thermal decomposition
of nHA occurred at around 212–250 ◦C, resulting in weight loss of about 8%. Consequently,
a total decomposition of 12% was detected at a maximum temperature of 600 ◦C [49].
Webster et al. [50] reported that small nHA particles (67 nm) essentially improved osteoblast
attachment, as opposed to nHA particles measuring >100 nm after culturing for 4 h, while
suppressing fibroblast bonds. The nanophase ceramics also demonstrated the highest
adsorption of vitronectin, a protein promoting osteoblast attachment. Additionally, given



Polymers 2023, 15, 3980 3 of 23

its high bioactivity and biocompatibility, nHA is applicable to implantation in tissue
engineering [51].

In dentistry, nHA has been used as a dental implant coating material because it can
inhibit the growth of Gram-positive and Gram-negative bacteria [52]. Furthermore, in
an inflammation study, nHA played an essential role as a modulator of monocytes and
macrophages responsible for early-stage inflammatory reactions [53]. It was found that the
advantage of implants with a thin coating of nHA could be attributed to a reduction in the
inflammatory response [53]. In another study, a gel product with a 30–50% concentration of
hydrogen peroxide, enriched with fluoride calcium and nHA, was applied as a bleaching
agent [54]. This gel prevented hypersensitivity after bleaching [55]. Moreover, nHA paste
could be used to repair microscopic surface imperfections and subsurface pores in the
enamel that allow bleaching agents to penetrate and thus cause sensitivity [56].

In 3D printing, filaments are vital to the production of 3D models [57]. Filaments
are fed through the extruder head via rollers and gears; as they melt, they are deposited
on the build platform [57]. Therefore, 3D printers need solid and durable filaments that
can yield an excellent final product with adequate physical properties. Materials such as
PLA and acrylonitrile butadiene styrene (ABS) are generally used as 3D printing filaments.
Furthermore, advanced materials for additive manufacturing such as polycaprolactone
(PCL) [58], nylon [59], carbon fibre [59], glass fibre [60] and many others [60,61] are available
in the market. However, most of these materials are more efficient in producing the
products for real world applications rather than for prototyping. Therefore, researchers and
manufacturing industries have been investigating various nanocomposite-based filaments
to design and enhance the physical properties of 3D models that can be used as original
equipment manufacturers in the automobile and biomedical industries.

Miron et al. [62] examined the properties of PLA filament produced using a Filabot EX2
extruder. The extruded filaments had an average diameter of 2.0 mm, and displayed good
mechanical and biodegradable properties. Bhagia et al. [63] reported the tensile properties
of wood-reinforced PLA filaments for 3D printing applications. The Filabot EX2 single-
screw extruder specifications used were 1.58 screw diameter, 1.27 pitch length/diameter
ratio of 12 and compression ratio of 2.5:1. The filaments thus manufactured had dimensions
of 2.6 ± 0.03 mm. Further, the measurement of the dimensions was confirmed using a
micrometer. The filaments were used to produce 3D printed samples with a tensile strength
of 50 MPa. Chang et al. [64] described the fabrication of PCL–HA composite filaments for
the printing of bone scaffolds. The filaments were produced using a Filabot EX2 extruder
with a nozzle diameter of 1.75 mm. The composites were extruded into filaments at
100 ◦C. The produced filaments were successfully used to design 3D models with varied
concentrations of HA polymer composites. However, most of the studies have examined
HA-PLA scaffolds fabricated using various technologies such as electrospinning, freeze
drying and solvent casting. There is still a dearth of research on polymer composites based
on 3D printing. Therefore, in the present study, hybrid nHA-NC-reinforced PLA composite
filaments were used to produce a porous scaffold via 3D printing. The composition and
structures of the printed nHA-NC-PLA filaments were systematically analysed to determine
their printability and chemical and mechanical properties.

2. Materials and Methods
2.1. Materials

Calcium hydroxide (Ca(OH)2, analytical reagent ((AR), ≥95%), phosphoric acid
(H3PO4, AR, ≥85 wt% in H2O) with a relative density of 1.685 g·cm−3, NC (Nanomer
1.31 PS, montmorillonite clay containing 0.5–5 wt% 3-aminopropyltriethoxysilane and
15–35 wt% octadecyl amine), ammonia solution (NH4OH, AR) and chloroform (AR, 99%)
were purchased from Sigma Aldrich (Melbourne, Australia). PLA feedstock material was
purchased from 3D Nielsen (Helsingør, Denmark).
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2.2. Synthesis of Nanohydroxyapatite (nHA) Particles

The synthesis of nHA particles was based on the wet chemical precipitation method
using Ca(OH)2 and H3PO4 as starting materials [65]; the procedure is illustrated in Figure 1.
To ensure the stoichiometric molar ratio of nHA was 1.667, the concentrations of calcium
and phosphorus were maintained at 1.0 M and 0.6 M, respectively. NH4OH solution was
applied to adjust the pH of the mixing solution to around 10.0 to prevent the formation of a
calcium-deficient HA structure [65]. Firstly, to prepare a 1.0 M Ca(OH)2 suspension, 15.6 g
of Ca(OH)2 powder was added to 200 mL DI water in a glass beaker, followed by stirring
with a magnetic stirrer at 35 ◦C, 300 rpm for 1 h. A 0.6 M H3PO4 solution was prepared
by adding 8.21 mL of H3PO4 to 200 mL of DI water in another glass beaker with manual
stirring at room temperature for 5 min. Then, the H3PO4 solution was added dropwise to
the Ca (OH)2 suspension at a rate of 5.5 mL·min−1 with continuous stirring by a magnetic
stirrer and pH monitoring using a pH meter. This procedure is demonstrated in Figure 2.
Once the H3PO4 solution was added entirely to the Ca(OH)2 suspension, the NH4OH
solution was added dropwise to the mixing solution to maintain the pH at about 10. A
white precipitate began to form. The mixing solution was continuously stirred for 2 h at
85 ◦C, 850 rpm and covered to prevent any potential splashing or contamination from the
surroundings. The beaker containing the mixing solution was left in the fume hood for
3 days for maturation.

Next, the precipitate was filtered and washed three times with DI water using a
centrifuge. The acquired precipitate was stored in a Petri dish and dried in the oven
overnight at 60 ◦C to obtain semi-dry precipitates. The semi-dry precipitates were divided
into two parts in different ceramic bowls for sintering in an electric furnace (CF1100 Muffle
Furnace, Across International, Livingston, NJ, USA) at 800 ◦C and 1000 ◦C, respectively
for 2 h. After sintering, the products were allowed to cool in the furnace for 1 h. Finally,
the products were ground to powder form using mortar and pestle. The synthesised nHA
powders were labelled according to the thermal conditions they were treated with, as listed
in Table 1.

Figure 1. Synthesis of nHA particles using the wet chemical precipitation method.



Polymers 2023, 15, 3980 5 of 23

Figure 2. Adding H3PO4 solution dropwise to Ca(OH)2 suspension.

Table 1. Different heat treatment conditions applied to synthesise nHA powders.

Synthesised nHA Powders Heat Treatment Conditions

nHA0 No sintering
nHA800 Sintering at 800 ◦C
nHA1000 Sintering at 1000 ◦C

2.3. Preparation of nHA-NC-PLA Nanocomposite Filament

The PLA nanocomposites were prepared using the solvent casting method in which
chloroform was used as the solvent [66]. NHA1000 synthesised in the previous experiment,
and NC was chosen for the nanoparticles to produce PLA nanocomposites. The PLA
nanocomposites with different compositions are shown in Table 2.

Table 2. Different compositions of PLA nanocomposites.

Composition PLA (wt%) nHA (wt%) NC (wt%) Chloroform (mL)

PLA 100 0 0 10
PLA-nHA1 99 1 0 10

PLA-nHA1-NC0.5 98.5 1 0.5 10
PLA-nHA2 98 2 0 10

PLA-nHA2-NC0.5 97.5 2 0.5 10

First, PLA pellets, according to the wt% presented in Table 2, were dissolved in
chloroform for 24 h in different beakers. Once the PLA pellets were dissolved entirely, nHA
and NC were added with ultrasonication for 10 min. Further, the homogenous solutions
were cast in different Petri dishes and oven-dried at 40 ◦C for 72 h to evaporate the solvent.
Finally, the cast films were washed with DI water and diluted ethanol to remove any
residues.

2.4. 3D Printing of Produced Filament

The nanocomposite filaments were prepared by the melt extrusion procedure with the
Filabot system (Filabot, Barre, VT, USA), as illustrated in Figure 3a,b, including the Filabot
EX2 filament extruder with the support of Filabot Airpath and Filabot Spooler—Precision
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Filament Winder. First, PLA nanocomposite films were cut into 1 mm to 2 mm sizes with
mechanical scissors. The films were fed into the material input and melted using the extruder
temperature controller. The temperature was set around 175 ◦C, and the diameter of the nozzle
was 2.85 mm. The airpath cooled the extruded filament and it was rolled by the spooler, as
shown in Figure 4, and extrusion parameters are shown in Table 3. A similar procedure was
followed to extrude the neat PLA pellets at an extrusion temperature of 174 ± 1.5 ◦C.

Figure 3. Producing the neat PLA and PLA nanocomposite filaments by using the (a) Filabot system
with (b) EX2 filament extruder.

Figure 4. PLA nanocomposite filament spool.

Table 3. FilabotEX2 filament extrusion parameters.

Filaments Nozzle
Temperature (◦C)

Speed of Printing
(%)

Retraction Speed
(%)

Fan Speed
(%)

PLA 174 ± 1.5 50 5.5 10
PLA-nHA1 174 ± 1.5 50 5.0 10

PLA-nHA1-NC0.5 174 ± 1.5 50 5.0 10
PLA-nHA2 174 ± 1.5 50 5.0 10

PLA-nHA2-NC0.5 174 ± 1.5 50 5.0 10
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2.5. 3D Printing of Scaffold Models

Three filaments, including neat PLA, PLA-nHA1-NC0.5 and PLA-nHA2, were cho-
sen for the 3D printing. The filaments were printed using a 3D printer (Figure 5a, Ulti-
maker 2 Extended Plus, Ultimaker, Utrecht, The Netherlands) with fused filament fabri-
cation (FFF) technology. The printing parameters in Table 3. The 3D printing structure of
10 × 10 × 5 mm3 was designed in SolidWorks (Dassault Systèmes, Waltham, MA, USA).
Further, the designed structure was converted into a G-code file using a 0.17 mm single
layer height and 2.0 mm pore size, respectively. The printing was conducted at room
temperature. Scaffold models were acquired by printing them in a layer-by-layer format
through the filaments to obtain 3D structures on the 3D printer platform, as shown in
Figure 5b.

Figure 5. (a) Ultimaker 2 Extended Plus 3D printer, and (b) 3D printing of the scaffold model.

2.6. Characterisation
2.6.1. Morphology

The morphology of different synthesised nHA powders and the fractured surface
of PLA nanocomposite filaments were observed with the high-resolution Field-Emission
Scanning Electron Microscope (FE-SEM) SU700 (Hitachi, Tokyo, Japan). The neat PLA and
different nanocomposite filaments were manually broken into tiny pieces. The cross-section
of the specimens could be acquired from fractured surfaces. The samples were attached
by mounting tape and sputter coated with gold before scanning to avoid electrostatic
charges under an accelerating voltage of 5.0 kV (for nHA powder) or 10.0 kV (for PLA
nanocomposite filament samples) and high vacuum mode for 30 s. Additionally, the size of
nanoparticles was estimated from SEM images by Fiji image processing software (ImageJ,
V1.5, GNU General Public License, U. S. National Institutes of Health, Bethesda, MD, USA).

2.6.2. Fourier Transform Infrared (FTIR) Spectroscopy

The chemical compositions of nHA powder synthesised with different heat treatment
conditions were examined with the Cary 630 FTIR spectrometer (Agilent, Santa Clara, CA,
USA). The spectra were logged in transmittance mode with a resolution of 4 cm−1 ranging
from 500 to 4000 cm−1.

2.6.3. Thermogravimetric Analysis (TGA)

Analyses of the thermal stability of the neat PLA and different PLA nanocomposite
filaments were carried out with the Thermogravimetric Analyzer (TGA 4000, PerkinElmer,
Waltham, MA, USA). The tests were conducted under a nitrogen atmosphere at a flow
rate of 20 mL·min−1. About 3.0 mg of each sample was prepared and placed in an open
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alumina crucible. Then, specimens were heated from 30 to 850 ◦C at 10 ◦C·min−1, holding
for 1 min at 30 ◦C and 850 ◦C.

2.6.4. Differential Scanning Calorimetry (DSC)

The thermal properties of neat PLA and different PLA nanocomposite filaments were
measured with a Differential Scanning Colorimeter (DSC 6000, PerkinElmer, Waltham, MA,
USA). The samples of approximately 3.0 mg were pressed in an aluminium crucible and
heated in two heating cycles under a nitrogen gas atmosphere. The first heating cycle was
carried out from 30 to 200 ◦C at 40 ◦C·min−1, then kept for 2 min at 200 ◦C to erase the
previous thermal history. They were then cooled from 200 to 30 ◦C at 20 ◦C·min−1 and held
for 2 min at 30 ◦C to obtain the possible crystallisation processes. Furthermore, a second
heating was carried out from 30 to 200 ◦C at 20 ◦C·min−1 and held for 2 min at 200 ◦C to
investigate any thermogram differences from heating cycle 1.

2.6.5. Compression Testing

Samples with 10 (L) × 10 (W) × 5 (T) mm3 dimensions (ASTM D695) were used
for compression testing [67,68]. The testing was conducted using an Instron 5980 UTM
(Instron, Norwood, MA, USA) furnished with a 50 kN load cell. At first, the upper and
lower surfaces of 3D models were attached to the machine to ensure that slippage did not
occur during testing. The stiffness of the scaffolds was measured as the slope of the initial
portion of the stress–strain curve.

2.6.6. Tensile Properties

The extruded filament of each composition was moulded in dumbbell shapes (ASTM
D638 Type IV) with a dimension of 10 × 15 mm2 as per the following reference: [69]. Then,
the tensile properties of the neat PLA and PLA nanocomposite filament samples were
examined using the Instron 5980 Universal Testing Machine (UTM) (Instron, Norwood,
MA, USA) equipped with a 50 kN load cell at a crosshead speed of 1 mm·min−1 [70,71].

2.6.7. Hardness

All samples for the hardness examination were produced from different filaments
using the PCH-600D hydraulic lamination hot press (Henan Chuanghe Laboratory, Henan,
China) with a dual temperature controller at 180 ◦C for 5 min at 5 MPa pressure. These
specimens were cut into a rectangular shape with dimensions of 15 (L)× 5 (W)× 1 (T) mm3.
Then, the surface hardness measurement was conducted using the Scan-20 G5 (Struers,
Copenhagen, Denmark) hardness tester for the neat PLA and various PLA nanocomposite
samples, to which a load of 100 g/force was applied for 15 s. Microhardness measurements
were taken from the top surface to the interface and from the interface to the depth of
2.5 mm within the substrate. The results acquired from the equipment were in the Vickers
hardness (HV) unit. Then, they were converted to a GPa unit by multiplying by 0.0098 [72].

2.6.8. Water Absorption

The water absorption experiment followed the ASTM D570 standard [69]. The neat
PLA and PLA nanocomposite filaments were cut into small pieces, initially weighed and
immersed in DI water at ambient conditions. These specimens were periodically weighed
at various intervals (2, 4, 6 and 8 days) to determine the water uptake by sample. The
percentage of absorbed water (W) in the neat PLA and PLA nanocomposite filament
specimens was calculated using Equation (1):

W(%) = [(W1 −W0)/W0]× 100 (1)

where W1 and W0 are the sample weights after and before being immersed in the water.
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2.6.9. Water Contact Angle

The wettability of the neat PLA and various PLA nanocomposite filaments was eval-
uated by measuring the water contact angle using the sessile drop technique. At first, a
droplet was placed on the sample surface using a micrometre syringe. Next, the water
contact angle was determined by scanning the droplet profile for 20 s using the Theta Flex
optical tensiometer (Biolin Scientific, Frölunda, Sweden). Maintaining the size of the water
droplet at about 2–2.5 µL was essential to avoid the effects of weight.

2.6.10. Printability

To access the printability properties, the 3D printed scaffold models were captured
using a 24-megapixel (MP) camera (Canon, EOS 200D II, Tokyo, Japan). The strand print-
ability and printing accuracy, as described in Figure 6, were estimated from the acquired
images of different scaffold models using Fiji image processing software (ImageJ, V1.5,
GNU General Public License, USA).

Figure 6. 3D scaffold model designed in SolidWorks.

The strand printability was defined to examine how uniformly the printed strands con-
trasted with the designed strand. This parameter was calculated utilising Equation (2) [67]:

Strand printability =
length of printed strand after cooling to room temperature

length of designed strand
(2)

The printing accuracy of each scaffold model was measured following Equation (3) [67]:

Printing accuracy (%) =

(
1− |Ai − Ao|

Ao

)
× 100 (3)

where Ai is the initial area of the designed model, and Ao is the overall area of the 3D
printed model.

3. Results and Discussion
3.1. Morphology

The dispersion of the nanoparticles in the PLA nanocomposite filaments was observed
by SEM, as shown in Figure 7. Regarding the neat PLA filament (Figure 7a), the cross-
section of the filament was visualised as a smooth fractured surface with slight roughness
and typical fracture properties of a brittle material [73].

However, other SEM images from Figure 7b–i provide information regarding the
distribution of nanoparticles on the cross-section surface of the nanocomposite filament.
Nanoparticles with irregular shapes and various sizes were observed on the surface struc-
ture of fractured nanocomposite filaments with an uneven dispersion. These nanoparticles
led to roughness on the surface of the fractured nanocomposite filaments compared with
that on the surface of the neat PLA filaments. Furthermore, the concentration of nanoparti-
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cles on the fractured surface became more evident as the wt% of the nanoparticle (nHA and
NC) content increased. It was evident that the fractured surface of the filaments containing
NC (PLA-nHA1-NC0.5 and PLA-nHA2-NC0.5) was smoother than that of the filaments
without NC (PLA-nHA1 and PLA-nHA2).

Figure 7. SEM images of the fractured surface of (a) PLA; and PLA nanocomposite filaments including
(b,c) PLA-nHA1, (d,e) PLA-nHA1-NC0.5, (f,g) PLA-nHA2 and (h,i) PLA-nHA2-NC0.5.

Further, there were two dark spots on the cross-section surface of the PLA-nHA1
filament, as illustrated in Figure 7b, which were the air gaps on the filaments produced
by the extrusion procedure. The air gaps on the surface may have been generated by the
unstable loading of PLA-nHA1 nanocomposite during the extrusion process.

The agglomeration of nanoparticles in nanocomposite filaments is shown in Figure 7c,e,g,i.
The SEM images show that the nanoparticles were distributed on the PLA nanocomposite
filaments in both isolated and agglomerated forms, leading to poor interfacial adhesion be-
tween the nanoparticles and PLA. In fact, Zare et al. [74] found that the agglomeration or
aggregation of nanoparticles significantly reduced the interfacial or interphase and tensile
characteristics of nanocomposites by reducing the specific surface area and effective volume
fraction of the nanoparticles.

3.2. FTIR

FTIR analysis was performed to identify the chemical functional groups of various
synthesised powders and to confirm the production of nHA powder. The FTIR specta,
shown in Figure 8, confirm the formation of nHA produced using the wet chemical pre-
cipitation method at different heat treatment conditions, including semi-dry nHA or nHA
with no heat treatment (nHA0), nHA calcined at 800 ◦C (nHA800) and nHA calcined
at 1000 ◦C (nHA1000). The variations in the spectra between Ca(OH)2 and nHA were
obvious. However, there was no significant difference in the spectra of nHA0, nHA800
and nHA1000. The clear peaks in the regions from 3574 cm−1 to 3575 cm−1 originated
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from O-H stretching [75]. These peaks confirmed the presence of the OH− group in the
synthesised nHA powder and Ca(OH)2. Further, PO3−

4 groups were well defined with
sharp peaks in the region of 1025 cm−1 or 1029 cm−1 and at around 960 cm−1, in line with
the results of Destainville et al. [76] and Raynaud et al. [77]. The peaks of the PO3−

4 group
could not be seen in the pattern of Ca(OH)2.

Figure 8. FTIR spectra of Ca(OH)2 and nHA synthesised at different heat treatment conditions.

The transmittance intensity of the PO3−
4 group peak increased as the calcination

temperature increased. However, the peaks of the OH− and CO2−
3 groups indicated

the presence of similar transmittance intensities between the different synthesised HA
powders. Additionally, in the FTIR patterns of nHA0, nHA800 and nHA1000, the CO2−

3
group showed weak bands at around 1650 cm−1 [77], further confirming the presence
of CO2−

3 ions in the molecular structure of nHA. Conversely, the spectrum of Ca(OH)2
contained two weak peaks at 1411 and 874 cm−1, validating the two vibration modes of
C−O originating from the CO2−

3 group [78,79]. Therefore, the chemical properties of the
nHA and Ca(OH)2 were clearly distinguished by FTIR.

3.3. TGA

The thermal degradation of the neat and PLA nanocomposite filaments was examined
at a temperature range of 30–850 ◦C. Figure 9 shows the TGA curves of the PLA and
PLA nanocomposite filaments. The thermal decomposition of filament samples involved
two stages: from 30 to 350 ◦C and from 350 to 850 ◦C. In the first stage (30–350 ◦C), the
initial weight loss in PLA samples was less than that in the nanocomposite samples by
2.3%. This result can be explained by the vaporisation of residual water acquired from
the synthesis processes of different nanocomposites. Regarding the PLA nanocomposite
filament samples, the PLA-nHA1 sample lost around 8.2%, whereas the PLA-nHA1-NC0.5,
PLA-nHA2 and PLA-nHA2-NC0.5 samples lost around 6.5% in weight at the temperature
range of 30 to 350 ◦C. These results confirm that the PLA-nHA1-NC0.5, PLA-nHA2 and
PLA-nHA2-NC0.5 samples had higher decomposition temperatures than the PLA-nHA1
sample. The higher decomposition rate in the initial stages occurred due to the breakdown
of the hydroxyl groups in the fillers as well as the matrix [80]. In the second stage, the
thermal decomposition of all samples occurred with more than 98% weight loss, mainly
contributed by the thermal degradation of the PLA polymer and NC. The PLA sample
completely decomposed at 416 ◦C, as shown in Figure 9. In a study reported by Kumar
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et al. [81], NC lost 30% of its weight at a temperature range of 30 to 800 ◦C. Further, the
remaining components in the nanocomposite samples were nHA particles (PLA-nHA1,
PLA-nHA2) and a small amount of NC (PLA-nHA1-NC0.5, PLA-nHA2-NC0.5). Finally,
the residual weight percentages of PLA-nHA1, PLA-nHA1-NC0.5, PLA-nHA2 and PLA-
nHA2-NC0.5 at 850 ◦C were 0.2, 0.8, 1.0 and 1.3%, respectively.

Figure 9. TGA curves of the neat PLA and PLA nanocomposite filaments.

3.4. DSC

DSC analysis was carried out to determine the thermal behaviours of the neat PLA
and PLA nanocomposite filaments. The DSC data from the cooling and the second heating
processes are shown in Figure 10a,b. For PLA, no peak in the DSC cooling curve was
observed (Figure 10a), meaning the crystallisation of the PLA sample did not occur during
the cooling process. Furthermore, the PLA nanocomposites reinforced with nanoparticles
(nHA and NC) showed peaks at around 100 ◦C, and the crystallisation temperature (Tc) of
a PLA nanocomposite sample increased when the weight percentage of the nanoparticles in
the PLA polymer decreased [82]. The Tc values of the PLA-nHA1, PLA-nHA1-NC0.5, PLA-
nHA2 and PLA-nHA2-NC0.5 nanocomposites were 103, 102, 101 and 96 ◦C, respectively.
Moreover, the glass transition of PLA occurred at around 55 ◦C (Tg), while there was no
evidence of glass transition on the cooling curves of the composites [66,83].

Regarding the subsequent heating data of the PLA and PLA nanocomposite filaments
shown in Figure 10b, there was no significant difference in their melting points, and their
melting temperatures (Tm) were close to 174 ◦C. However, PLA-nHA2-NC0.5 had a higher
heat flow at 29 W·g−1, resulting in rapid melting. Nanocomposites with high heat flow tend
to melt quickly. However, the neat PLA had a low heat flow at 20 W·g−1. Consequently,
the nanoparticles did not have a substantial effect on the melting temperature of the PLA
polymer. The peaks of Tg, Tc and Tm are listed in Table 4. Furthermore, a weak peak
at 68 ◦C in the second heating curve of PLA was observed, indicting the transition to
glass. Nevertheless, the transition did not occur in the second heating process for any of
the PLA nanocomposites. According to Krishnamachari et al. [84] and Zheng et al. [85],
the intermolecular interaction, chain flexibility and nHA filler interaction with the matrix
influence the Tg. Therefore, the glass transition of fillers incorporated with a matrix limited
the decomposition. Overall, since nHA aids the formation of rigid phases that regulate
shape memory characteristics, it can be considered an effective bioactive filler material.



Polymers 2023, 15, 3980 13 of 23

Figure 10. DSC analysis at the (a) cooling stage and (b) second heating stage of the neat PLA and
PLA nanocomposite filaments.

Table 4. Glass transition, crystallisation and melting temperatures of the neat PLA and various PLA
nanocomposites.

Sample Cooling Second Heating
Tg (◦C) Tc (◦C) Tg (◦C) Tm (◦C)

PLA 55 N/A 67 174.5
PLA-nHA1 N/A 103 N/A 174

PLA-nHA1-NC0.5 N/A 102 N/A 174
PLA-nHA2 N/A 101 N/A 173.5

PLA-nHA2-NC0.5 N/A 96 N/A 173.5

3.5. Hardness

The hardness of the neat PLA and the PLA nanocomposite filaments was examined.
The results are shown in Table 5 and Figure 11. The reinforcement of the PLA matrix with
nanoparticles, including nHA and NC, significantly improved the hardness of the neat
PLA. Further, the addition of nHA particles at 1 and 2 wt% to the PLA matrix, respectively,
increased the hardness value (HV) (50 and 60 HV) by 1.04 and 1.25 times, compared with the
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HV of the neat PLA (48 HV). The addition of the nHA–NC complex to the PLA matrix also
enhanced its hardness. In fact, the HV of the PLA-nHA1-NC0.5 nanocomposite was higher
than that of the neat PLA and PLA-nHA1, by 1.15 and 1.1 times, respectively. Meanwhile,
the PLA-nHA2-NC0.5 nanocomposite had the highest HV at 68, higher than that of the
neat PLA and PLA-nHA2 nanocomposite samples by 1.42 and 1.13 times. These results
confirm that the addition of NC and nHA particles to the PLA matrix can improve the
hardness of this polymer.

Table 5. Vickers hardness of the neat PLA and PLA nanocomposite samples.

Samples Vickers Hardness (HV) Vickers Hardness (GPa)

PLA 48 0.470
PLA-nHA1 50 0.490

PLA-nHA1-NC0.5 55 0.539
PLA-nHA2 60 0.588

PLA-nHA2-NC0.5 68 0.666

Figure 11. Vickers hardness of the neat PLA and its nanocomposite filaments.

A study by Golan et al. [86] on the reinforcement of PLA with nHA and tungsten
disulphide nanotubes showed that the HV of the PLA-nHA nanocomposite was higher than
that of the neat PLA film by 1.4 times. Therefore, it was concluded that adding nHA particles
to the PLA film increased the HV of the polymer. Another study by Arulmurugan et al. [87]
investigated the nanomechanical characteristics of different ratios of montmorillonite clay-
reinforced polyester composites. The addition of 5 wt% NC to the polymer matrix led to a
26.52% improvement in hardness compared with that of the neat polymer. Furthermore,
the average Vickers HVs of cortical bone and cancellous bone are 0.396 and 0.345 GPa,
respectively, as reported by Pramanik et al. [88]; the neat PLA and PLA nanocomposite
samples in our study had higher HVs than cortical and cancellous bones. According to Wu
et al. [89], bone HV typically ranges from 33.30 to 48.23 HV in different regions of the human
body. From the perspective of hard tissue repairs such as bone or dental applications, the
materials need to possess a high hardness ability that is required to replace the damaged
tissue [90]. Therefore, the produced PLA nanocomposite filaments possess high hardness
that can be utilised in hard tissue repairs.

3.6. Tensile Strength

The tensile properties of the neat PLA and PLA nanocomposite filaments are illustrated
using stress–strain curves in Figure 12 and mechanical characteristics in Table 6. The neat
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PLA had the highest tensile strength. Further, the tensile strength of the PLA matrix
gradually decreased as the nanoparticle content increased. This phenomenon can be
explained by the addition of inorganic additives, contributing to the decrease in PLA
crystallinity. The decrease in the crystallinity led to a decrease in toughness and mechanical
strength [91]. Furthermore, the poor interfacial interaction between the matrix and fillers
displayed low load transferring, resulting in a decrease in mechanical strength. The
decrease in the tensile strength of the nanocomposites could be attributed to the aggregation
of nHA particles in the nanocomposites, considering that their surface energy is much
higher than that of the PLA matrix [92]. Owing to the agglomeration of nHA, the PLA
nanocomposites showed early failure and lower mechanical strength than the neat PLA.
Han-Seung Ko et al. [93] reported that the tensile strength of PLA-nHA nanocomposites
was lower than that of neat PLA owing to poor interfacial adhesion between the PLA
matrix and nHA particles. Furthermore, Oliver-Ortega et al. [94] observed that the tensile
strength of PLA was higher than that of PLA-NC nanocomposites.

Figure 12. Tensile stress–strain curves of the neat PLA and different PLA nanocomposite filaments.

Table 6. Mechanical characteristics of PLA-HA-NC composites.

Sample Young’s Modulus
(MPa)

Ultimate Tensile Strength
(MPa)

PLA 16.04 1.20
PLA-nHA1 15.06 0.85

PLA-nHA1-NC0.5 16.45 0.75
PLA-nHA2 15.09 0.59

PLA-nHA2-NC0.5 16.48 0.54

3.7. Compressive Strength

The mechanical properties of the neat PLA and PLA nanocomposite 3D printed scaffold
models were evaluated by compression testing. Additionally, the compressive elastic modulus,
or Young’s modulus, as the slope of the linear part of the stress–strain curves, was calculated.
The results are shown in Table 7. Figure 13 shows the stress–strain curves of the 3D scaffold
model samples. The models demonstrated similar trends, with a linear zone in the range of
4–13% strain. Moreover, the deformation rate of PLA nanocomposite scaffold models was
lower than that of the neat PLA scaffold model. Table 7 shows that the increase in Young’s
modulus and compressive strength was proportional to the nanoparticles’ composition. In
fact, Young’s modulus of the PLA increased by 1.45 times with the addition of 1% nHA and
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0.5% NC and by 1.6 times with the addition of 2% nHA. The compressive strength of the
PLA sample was the lowest at 27.22 MPa. Meanwhile, the compressive strength values of the
PLA-nHA1-NC0.5 and PLA-nHA2 scaffold models were much higher, at 36.75 and 40.48 MPa,
respectively. These results confirm that nHA and NC significantly enhanced the compressive
properties of the PLA polymers.

Table 7. Young’s modulus and compressive strength of 3D printed scaffold models.

Scaffold Models Young’s Modulus
(MPa)

Compressive Strength
(MPa)

PLA 1.66 27.22
PLA-nHA1-NC0.5 2.4 36.75

PLA-nHA2 2.66 40.48

Figure 13. Stress–strain curves of the neat PLA and PLA nanocomposite 3D printed scaffold models.

It was found that the higher the nHA concentration, the higher the compressive
strength and elastic modulus of the PLA-based scaffold [95,96]. From the perspective of
tissue engineering applications, these outcomes show that the samples met the compressive
strength criteria for trabecular bone, which ranges from 0.5 to 50 MPa under different types
of stresses [97].

3.8. Water Absorption

The water absorption behaviours of the neat PLA and PLA nanocomposite filaments
are illustrated in Figure 14. The proportion of water uptake of the neat PLA was around
0.5%, and it reached equilibrium within 2 days. However, the various PLA nanocomposite
filament samples showed rapid increases in water uptake in the first 4 days, with an
insignificant surge after this period.

The water uptake percentage of the neat PLA was the lowest, while that of the PLA-
nHA2-NC0.5 was the highest. The percentage of water absorption increased when the
loading of nanoparticles increased. The weights of the neat PLA and PLA nanocomposite fil-
ament samples (PLA-nHA1, PLA-nHA1-NC0.5, PLA-nHA2, PLA-nHA2-NC0.5) increased
by 0.5%, 4.0%, 5.5%, 8.5% and 15.5%, respectively, after 8 days of immersion in DI water.
Therefore, the added nHA and NC in the nanocomposites played a key role in increasing
the water absorption of the nanocomposite filaments. Water absorption is necessary for cell
development and cell proliferation; hence, the high water absorption of the nanocomposite
filaments indicates their potential as biocompatible materials [98].
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Figure 14. Water absorption of the neat PLA and PLA nanocomposite filament samples.

3.9. Water Contact Angle

The water contact angles were measured to assess the wettability of the neat PLA and
PLA nanocomposite filaments. Figure 15 presents the sessile drop images of the different
samples, and the results are summarised in Table 8. The water contact angles of all samples
were smaller than 90◦. Therefore, these samples were hydrophilic. Moreover, the water
contact angle increased as the concentration of the nanoparticles increased [99]. Table 4
shows that the PLA sample had the smallest contact angle at 48.13◦, whereas the PLA-
nHA2-NC0.5 sample had the largest contact angle at 64.73◦. Although nHA is a hydrophilic
biomaterial that contains hydroxyl groups, the addition of NC increased its hydrophobicity
compared to that of neat PLA.

Figure 15. Sensile drop images of the filament samples (a) PLA, (b) PLA-nHA1, (c) PLA-nHA1-NC0.5,
(d) PLA-nHA2, and (e) PLA-nHA2-NC0.5.



Polymers 2023, 15, 3980 18 of 23

Table 8. Water contact angle measurements of the neat PLA and PLA nanocomposite filaments.

Samples Water Contact Angle (◦)

PLA 48.13
PLA-nHA1 52.97

PLA-nHA1-NC0.5 58.01
PLA-nHA2 63.45

PLA-nHA2-NC0.5 64.73

Wang et al. [100] reported that PLA-nHA nanocomposite membranes were more
hydrophobic than neat PLA due to the addition of nHA. This result can be explained
by the fact that the surface of the nanocomposite membranes was rough, which was
disadvantageous for water attachment. Further, nHA and PLA are hydrophobic materials.
Therefore, since water cannot penetrate the pores or voids of the rough surface, it rests on
semi-solid and semi-air surfaces, thus increasing the contact angle [100]. The findings of
the current study indicate that the surface hydrophobicity of the PNC increased with an
increase in composite content.

3.10. Printability

The 3D printed scaffold models were examined for strand printability and printing
accuracy. Figure 16a–d show that the presence of nHA and NC particles insignificantly
improved these printing features of the PLA polymer.

Figure 16. 3D scaffold models were printed from the extruded PLA and PLA nanocomposite filaments:
(a) front images of scaffold models; side images of (b) PLA, (c) PLA-nHA1-NC0.5, and (d) PLA-nHA2
scaffold models.

As mentioned in the methodology, strand printability is the ratio of the length of the
printed strand to the length of the designed strand, so the ratio is deemed acceptable when
it is close to 1. As illustrated in Figure 17a, the strand lengths of all the samples were smaller
than that of the designed scaffold model, with a strand printability of <1. Therefore, the
PLA-nHA1-NC0.5 scaffold model had the highest strand printability, at 0.996. Meanwhile,
the strand printability values of the neat PLA and PLA-nHA2 scaffold models were lower,
at 0.925 and 0.967, respectively.

However, Figure 17b confirms that the addition of nHA and NC particles to the com-
positions insignificantly enhanced the printing accuracy of PLA. The PLA nanocomposite
scaffold models had a printing accuracy of around 95.6%, while the printing accuracy of
the PLA scaffold model was about 95%. Figure 17b shows no considerable difference in
the printing accuracies of the PLA nanocomposite printing, such as seen in the PLA-nHA1-
NC0.5 (Figure 16c) and PLA-nHA2 scaffold models (Figure 16d). In comparison to PLA,
PLA nanocomposites showed minimal improvement in printing accuracy.
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Figure 17. (a) Strand printability and (b) printing accuracy of different 3D printed scaffold models.

4. Conclusions

The solvent casting method was used to prepare PLA reinforced with nHA and NC
composites. The neat PLA and PLA nanocomposite filaments were fabricated using a
melt extrusion procedure. The different characteristics of the extruded filaments were
also investigated. First, the SEM images of obtained filaments revealed the presence of
irregular-shaped nanoparticles on the fractured surface of PLA nanocomposite filaments
in isolated and agglomerated forms. Second, the addition of nHA and NC to the PLA
matrix contributed to the increase in the water absorption and water contact angle of the
nanocomposites. Various mechanical properties of the acquired filaments were examined.
The results demonstrated an increase in hardness but a decrease in tensile strength when
nHA and NC particles were added to the PLA matrix. Furthermore, the thermal properties,
including thermal stability and thermal behaviour, of the different filaments had improved
in the presence of nHA and NC particles. Accordingly, different 3D scaffold models with
grid-like structures (10 (L) × 10 (W) × 5 (T) mm3) were obtained by a 3D printer using the
fused deposition modelling (FDM) technique. The outcomes confirmed the printability of
the fabricated PLA nanocomposite filaments, with high printing accuracy (>95%). Further,
reinforcement with nHA and NC did not play a role in enhancing the strand printability
and printing accuracy of the PLA polymer. Additionally, the mechanical characteristics
of the printed scaffold models were examined. We found that the presence of nHA and
NC particles had significantly improved the compressive strength of the PLA polymer.
Additionally, FTIR analysis confirmed the formation of nHA powder and the presence of
various typical groups, including PO3−

4 , CO2−
3 and OH−.
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