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Abstract: Layer-by-layer (LbL) self-assembled polyelectrolyte capsules have demonstrated their
unique advantages and capability in drug delivery applications. These ordered micro/nanostructures
are also promising candidates as imaging contrast agents for diagnostic and theranostic applications.
Magnetic resonance imaging (MRI), one of the most powerful clinical imaging modalities, is moving
forward to the molecular imaging field and requires advanced imaging probes. This paper reports
on a new design of MRI-visible LbL capsules, loaded with redox-active gadolinium-doped cerium
oxide nanoparticles (CeGdO2−x NPs). CeGdO2−x NPs possess an ultrasmall size, high colloidal
stability, and pronounced antioxidant properties. A comprehensive analysis of LbL capsules by
TEM, SEM, LCSM, and EDX techniques was carried out. The research demonstrated a high level
of biocompatibility and cellular uptake efficiency of CeGdO2−x-loaded capsules by cancer (human
osteosarcoma and adenocarcinoma) cells and normal (human mesenchymal stem) cells. The LbL-
based delivery platform can also be used for other imaging modalities and theranostic applications.

Keywords: cerium oxide nanoparticles; gadolinium; polyelectrolyte microcapsules; MRI agent

1. Introduction

Medical imaging has long served as an important tool for diagnosis and therapeutic
efficacy monitoring. MRI is safe and has a very high spatial resolution of around 25–100 µm
in different magnetic fields. Today, gadolinium-containing compounds are widely used as
MRI contrast agents [1]. The Gd3+ ion has seven unpaired electrons (8S7/2) and an excep-
tionally high magnetic moment (7.94 BM), which enables the use of gadolinium-containing
compounds as contrast agents in magnetic resonance imaging (MRI). Gadolinium in ionic
form is very toxic and can potentially cause nephrogenic systemic fibrosis (NSF) [2,3]. In
this regard, various chelating compounds are used, for example, dipyridoxal phosphate,
1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, diethylenetriaminepentaacetic acid,
etc., which limit its direct contact with biological fluids. This principle is implemented in all
known clinical preparations based on gadolinium (Omniscan®, OptiMark®, MultiHance®,
Primovist®, and Vasovist®). At the same time, poorly soluble gadolinium oxide is a more
stable compound than its ionic form and does not have toxic effects either in vitro or
in vivo [4,5]. Gadolinium oxide in nanocrystalline form is considered one of the most
promising contrast agents for MRI, due to its higher value of longitudinal relaxation con-
stants in comparison with Gd3+ chelate complexes [6].

The cerium oxide nanoparticle (nanoceria, CeO2) is the most promising inorganic
nanozyme, and it is used in various areas of biomedicine. It has strong antioxidant [7],
radioprotective [8], and anti-inflammatory properties [9]. At the same time, the doping
of cerium oxide with Gd3+ ions increases its oxygen nonstoichiometry and, consequently,
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enhances the antioxidant activity of the nanoparticles [10], and also increases T1 relaxivity.
Thus, gadolinium-doped cerium oxide nanoparticles are a good ground for the design of
new theranostic agents, which possess both high redox activity and MRI contrasting ability.

It has been shown recently that nanoceria is capable of exhibiting selective cytotoxicity
against cancer cells [11–13], but the ultrasmall particle size of bioactive nanoceria and its
high reactivity limits the effective targeted delivery to tissues and organs. In this regard,
there is a need to create advanced nanoceria delivery systems providing the concentration
and delivery time control. One possible solution to this problem is the use of polyelec-
trolyte microcapsules. Polyelectrolyte capsules are constructed through layer-by-layer (LbL)
self-assembly techniques and have been shown to be a promising platform for various
biomedical applications [14–20]. The advantages of LbL capsules include the ease of their
size, chemical control, and the design of their structure, the wide variety of self-assembling
polyelectrolytes [16,21], the mild loading environment, and controlled permeability. Poly-
electrolyte capsules have been used for the controlled encapsulation and release of small
molecule drugs [22], enzymes [23], protein drugs [24], DNA [25], etc.

In this work, LbL polyelectrolyte capsules made from biodegradable polymers were
used as an intracellular delivery system for gadolinium-doped cerium oxide nanoparticles.
The research entailed the synthesis of polyelectrolyte microcapsules modified with redox-
active CeGdO2−x NPs, a comprehensive analysis of their physicochemical properties and
biocompatibility, and the demonstration of their ability to act as an MRI contrast agent.

2. Materials and Methods
2.1. Materials

Calcium chloride (CaCl2, #223506), sodium carbonate (Na2CO3, #S7795), ethylenedi-
aminetetraacetic acid disodium salt dihydrate (Na2EDTA, #E5134), citric acid (HOC(COOH)
(CH2COOH)2, #C0759), cerium (III) chloride heptahydrate (CeCl3·7H2O, #22300), gadolin-
ium(III) nitrate hexahydrate (#451134), dextran sulfate sodium salt (DS, MW ≈ 10 kDa,
#D4911), 4-iodophenol (#I10201), and poly-L-arginine hydrochloride (PArg, MW ≈ 70 kDa,
#P3892), were purchased from Sigma-Aldrich. All chemicals were used as received. Ul-
trapure water with a resistance greater than 18.2 MΩ cm−1 was used for all experiments.
MTT reagent and Hoechst 33,342 dye were purchased from PanEKO (Moscow, Russia). A
live/dead assay kit, LDH assay kit, rhodamine B isothiocyanate, and phalloidin-FITC were
purchased from Thermo Fisher Scientific, Cambridge, UK.

2.2. CeGdO2−x NPs Synthesis and Characterisation

An aqueous solution containing cerium (III) chloride and gadolinium (III) nitrate was
prepared, with a total concentration of rare earth elements of 2 mM. The molar ratio of
cerium to gadolinium was 4:1. An anion exchange resin in the OH form was added to the
resulting solution until pH 10.0 was reached. The resulting solution was separated from
the anion exchange resin by filtration and then subjected to hydrothermal treatment at
150 ◦C for 1.5 h, after which it was cooled to room temperature. The sol was stabilised
using sodium citrate (cerium/citrate molar ratio was 1:4). Then, the pH of the sol was
adjusted to 7–8 by dropwise addition of aqueous ammonia.

The absorption spectra of the CeGdO2−x NPs were measured on a Lambda 950 UV/VIS
spectrometer (Perkin-Elmer, Shelton, CT, USA). TEM images were acquired using a JEOL-
JEM 2010 transmission electron microscope (JEOL, Tokyo, Japan). EDX analysis was
performed using an FEI Inspect F microscope. The hydrodynamic diameter and the zeta
potential values were measured using a Zetasizer Nano ZS analyzer (Malvern Instruments
Ltd., Malvern, UK). The aggregative stability of the CeGdO2−x NPs was studied by dynamic
light scattering 1 h after the formation of the CeGdO2−x NPs’ suspension in a phosphate
buffer (pH 7.4) (PanEco, Moscow, Russia), DMEM/F12 culture medium (PanEco, Russia),
and DMEM/F12 culture medium containing 10% fetal bovine serum (HyClone, Logan,
UT, USA).
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2.3. The Synthesis and Characterisation of the Capsules

Calcium carbonate (CaCO3) was used as a template. The CaCO3 synthesis was initi-
ated by rapid mixing of equal volumes of CaCl2 and Na2CO3 aqueous solutions at room
temperature. After intensive stirring, with a magnetic stirrer for 30 s, the precipitate was
separated by centrifugation at 1000 rpms for 1 min and washed three times with water. As
a result, an aqueous suspension was formed containing spherical CaCO3 microparticles
with an average diameter of 3 to 4 µm. The first polyelectrolyte layer was deposited on
the microparticles’ surface by adsorption of positively charged poly-L-arginine hydrochlo-
ride (PARg) using a 1 mg/mL−1 PARg solution in 0.15 M NaCl (15 min incubation and
shaking). The second layer was deposited by absorbing a negatively charged sodium
dextran sulfate (DS) from a 1 mg/mL−1 DS solution in 0.15 M NaCl (15 min incubation
and shaking). The core/polyelectrolyte particles were washed three times with deionised
water after each adsorption step. A colloidal solution of CeGdO2−x NPs was taken at a
concentration of 0.5 mg/mL. The calcium carbonate nuclei were dissolved in ethylenedi-
aminetetraacetic acid (EDTA) for 30 min, then centrifuged and washed three times with
EDTA and then three times with water. The capsule consisted of a biodegradable poly-
electrolyte PArg and DS with cerium gadolinium oxide nanoparticles in the middle layer
(PArg/DS) (PArg/CeGdO2−x NPs) (PArg/DS).

The absorption UV spectra of the CeGdO2−x NPs-loaded capsules were measured on
a Perkin-Elmer Lambda 950 UV/VIS spectrometer. TEM images were acquired using a
JEOL-JEM 2010 transmission electron microscope. Scanning electron microscopy (SEM)
and EDX analyses were performed using an FEI Inspect F microscope. Laser scanning
confocal microscopy (LSCM) images were acquired using a Leica TS laser scanning confocal
microscope with a 63× f/1.4 oil immersion lens. Rhodamine B isothiocyanate (RBITC)
labeled dextran was used as a fluorescent marker for the synthesis of the capsules and to
study their intracellular localization.

2.4. Cell Culture

Cytotoxicity and cellular uptake analyses were carried out on three types of cell
cultures: human osteosarcoma cells (MNNG/Hos), human adenocarcinoma cells (MCF-7),
and human mesenchymal stem cells (hMSc) isolated from the dental pulp of a healthy
orthodontics patient (with his written consent). All cells were deposited in the cryobank
of the Theranostics and Nuclear Medicine Laboratory in ITEB RAS. Cells were cultured
in a DMEM/F12 cultural medium containing 10% fetal calf serum (Cytiva, Shrewsbury,
MA, USA) and a mixture of antibiotics (penicillin-streptomycin) (PanEco, Russia). The
cells were cultured in 75 cm2 flasks (SPL, Pocheon-si, Korea) in a CO2 incubator (RWD,
Shenzhen, China).

2.5. MTT Assay

Cytotoxicity was assessed using a standard MTT assay [26]. Cells were seeded in
96 well plates (SPL, Korea) at a density of 2.5 × 104/cm2 in a DMEM/F12 culture medium
(PanEko, Russia) containing 10% fetal calf serum (HyClone, Logan, UT, USA). After 8 h,
capsules (1, 10, and 100 capsules per cell) were added to the cells. Then, after 24, 48, and
72 h, the medium was replaced with a solution of the MTT reagent (0.5 mg/mL). After 3 h
of incubation with the MTT reagent, 100 µL of DMSO (PanEko, Russia) was added. The
optical density of the formazan solution in DMSO was determined using a BioRad plate
reader 680 (BioRad, Ramsey, MN, USA) at 540 nm wavelength.

2.6. LDH Assay

Cells were seeded in 96-well plates and cultured in an atmosphere containing 5% CO2,
at 37 ◦C. Six hours after cell seeding, the medium was replaced with the similar medium
containing 1, 10, or 100 capsules per cell. Triton X-100 was used as a positive control.
Within 72 h after the addition of the CeGdO2−x NP-loaded capsules, the level of lactate
dehydrogenase in the culture medium was determined, according to the manufacturer’s
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protocol (The Thermo Scientific™ Pierce™ LDH Cytotoxicity Assay Kit, Cambridge, UK).
Absorbance of the solution was measured at wavelengths of λ = 490 nm and λ = 640 nm,
using the Microplate Reader ThermoMultiskan Ascent 96 & 384 (Thermo Fisher Scientific,
Cambridge, UK).

2.7. Cellular Uptake

Rhodamine B isothiocyanate (RBITC)-labelled capsules were used for intracellular
visualisation. The cells were seeded in 35 mm Petri dishes with a central hole (Ibidi,
Fitchburg, WI, USA), at a density of 2 × 103 per cm2. After attachment and spreading of
the cells (8 h), RBITC-labelled capsules were added (10 capsules per cell) and incubated
with the cells for 16 h. After that, the cells were washed three times with Hank’s solution
and were stained to show actin cytoskeleton (phalloidin-FITC, Thermo Fisher Scientific,
UK) and the cell nucleus (Hoechst 33342, PanEco, Russia). Micrographs were taken on a
Zeiss Axiovert 200 (Zeiss, Jena, Germany) inverted microscope at a magnification of 63×
with oil immersion.

2.8. MRI Scanning

MRI studies of CeGdO2−x-loaded capsules were carried out using a Bruker Clinscan
7T MRI tomograph (Bruker, Billerica, MA, USA). For the measurements, the samples were
diluted with an HEPES buffer solution to concentrations ranging from 0.1 mM to 1 mM,
taking into account the efficiency of the loading of the nanoparticles and the concentration
of nanoparticles per capsule. The SI dependencies on TI for each concentration were plotted
and the T1 relaxation time was determined by the Mathcad approximation. 1/T1 (s−1)
values were calculated from experimentally determined T1 relaxation times. T1 relaxivity
values were calculated as the tangent of the inclination angle in the dependencies of the
reverse T1 relaxation time on the Gd3+ concentration.

2.9. Antioxidant Activity of CeGdO2−x NPs

H2O2 was generated under X-ray irradiation of the CeGdO2−x NPs’ suspensions.
Irradiation was conducted using an X-ray therapeutic machine RTM-15 (Mosrentgen,
Moscow, Russia) in a dose of 5 Gy, at a dose rate of 1 Gy/min, 200 kV voltage, 37.5 cm
focal length, and 20 mA current. To evaluate the redox activity of the CeGdO2−x NPs, the
concentration of hydrogen peroxide after the X-ray exposure was measured by an enhanced
chemiluminescence technique, using a luminol–4-iodophenol–peroxidase system [27]. A
TRIS buffer was used to maintain a constant pH (7.2). A liquid scintillation Beta-1 counter
(MedApparatura, Kyiv, Ukraine), operating in a single photon counting mode (with one
photomultiplier and the coincidence scheme disengaged), was used as a highly sensitive
chemiluminometer. The high sensitivity of this method enabled the registration of hydrogen
peroxide at a concentration of <1 nM. The H2O2 content was determined using calibration
chemiluminescence plots. The concentration of hydrogen peroxide used for the calibration
was determined spectrophotometrically at 240 nm, using a molar absorption coefficient of
43.6 M−1·cm−1.

2.10. Statistical Data Analysis

Mean values and the standard deviation of the mean were calculated and the signifi-
cance of differences between the groups was determined using the Student t-test.

3. Results

For the synthesis of the CeGdO2−x nanoparticles, cerium chloride and gadolinium
nitrate were used (Figure 1a). Sodium citrate was used as a biocompatible stabiliser.
The results of the X-ray diffraction analysis of the CeGdO2−x nanoparticles indicated their
ultrasmall size and crystallinity. The X-ray diffraction pattern was characteristic of the cubic
Fm3m structure of nanocrystalline ceria. According to the Scherrer formula, the crystal size
of the CeGdO2−x nanoparticles was 2 nm. TEM data (Figure 1b) agreed well with the X-ray
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diffraction analysis, although individual nanoparticles could hardly be seen, due to the
stabiliser layer. The chemical composition of the CeGdO2−x nanoparticles was confirmed
with an EDX analysis (Figure 1c). The hydrodynamic diameter of the nanoparticles in
water was 6–7 nm (Figure 1d) and the UV spectrum possessed a peak characteristic of
ceria at 340 nm (Figure 1e). Zeta potential of the CeGdO2−x nanoparticles was −45.3 mV
(Figure 1f). We analyzed the aggregation stability of CeGdO2−x nanoparticles in various
medium, which confirmed their high degree of colloidal stability (Table S1).
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Figure 1. Synthesis scheme of the CeGdO2−x nanoparticles (a), transmission electron microscopy
(b), EDX analysis (c), dynamic light scattering in MQ water (d), UV absorbance spectrum (e) and
zeta-potential (f).

The degree of crystallinity of the cerium oxide nanoparticles plays a key role in
their enzyme-like properties. It was previously shown that the synthesis of cerium oxide
nanoparticles under mild conditions using hydrothermal methods makes it possible to
obtain nanoparticles with a low level of crystallinity and a higher content of Ce3+, which
ensures their high antioxidant activity. Conversely, cerium oxide nanoparticles prepared
using prolonged high-temperature annealing show negligible enzyme-like properties and
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are unable to protect human MSCs from oxidative stress [28]. The degree of crystallinity
could also affect the biodegradability of ceria NPs. For example, Plakhova et al. have
showed that the anti- and pro-oxidant activity of ceria measured at different pH levels can
be related to the dissolution of cerium oxide in aqueous media [29]. Thus, the conditions
for the synthesis of cerium oxide nanoparticles were chosen to achieve low toxicity and
high enzyme-like activity.

Next, the redox activity of the synthesized nanoparticles was analyzed in different
media to reveal their pronounced antioxidant properties (Figure 2). The properties were
demonstrated for the CeGdO2−x nanoparticles in aqueous solutions upon the X-ray irradi-
ation (Figure 2a). The study showed that, at a concentration of nanoparticles of 250 µM, the
amount of the hydrogen peroxide formed was reduced by a factor of three in comparison
with the control experiment. At a concentration of nanoparticles of 1 mM, the level of
hydrogen peroxide in the sol after the X-ray irradiation was equal to zero (Figure 2b).
These data are consistent with the authors’ earlier data on the antioxidant properties of
CeO2 nanoparticles, which showed that, at the concentration of 10−5 M, they were able to
effectively reduce the generation of radiation-induced hydrogen peroxide [30]. The redox
properties of nanoceria enables it to work as a scavenger of reactive oxygen species (ROS)
and free radicals, preventing the development of radiation-induced damage to cells, organs,
and whole organisms [31–35]. It has previously been shown that nanoceria is capable of
inactivating a wide range of radicals and ROSs, including the hydroxyl radical [36], nitroxyl
radical [37], singlet oxygen [38], and superoxide anion radical [39]. Nanoceria is generally
considered as a unique inorganic nanozyme with a wide spectrum of scavenging and
anti-inflammatory activity, which makes it promising in the treatment of various diseases.
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Figure 2. Antioxidant activity of CeGdO2−x NPs under X-ray irradiation (5 Gy). Schematic represen-
tation of the experiment (a). Concentration of hydrogen peroxide after X-ray irradiation (total dose
5 Gy, 1 Gy per min) in CeGdO2−x NPs colloid solution at pH 7.2 (b). The level of hydrogen peroxide
was determined by the chemiluminescent method, using horseradish peroxidase.

The method of layer-by-layer adsorption of differently charged polyelectrolytes was
used for the synthesis of the microcapsules, as shown in Figure 3a. The efficiency of LBL
capsule formation was confirmed by zeta potential analysis after deposition of each poly-
electrolyte layer (Figure S1). The integration of CeGdO2−x nanoparticles into the middle
layer was carried out by mixing the sol of the nanoparticles with a negatively charged
polyelectrolyte (dextran sulfate). Interestingly, the integration of CeGdO2−x nanoparticles
in the capsules provided them a luminescent property, which was revealed using a con-
focal microscope (Figure 3b,c). The reason for the bright glow was not investigated since
this was outside the scope of the work. The study of the microcapsules by transmission
electron microscopy confirmed the effective sorption of nanoparticles, which is indicated
by dark areas throughout the microcapsule (Figure 3d). The integration of nanoparticles
into the structure of microcapsules was also confirmed by scanning electron microscopy,
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where nanoparticle aggregates can be observed at high magnification (Figure 3e–g). Energy
dispersive spectroscopy (EDX) confirmed the presence of cerium and gadolinium in the
structure of the synthesized microcapsules (Figure 3i,j). The UV-visible spectrum of the
synthesized microcapsules is shown in Figure 3h, which shows the peak characteristic of
nanocrystalline ceria.
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The polyelectrolyte microcapsules can be taken up by various types of cells, including
non-phagocytic cells. The process of endocytosis of the polyelectrolyte microcapsules has
been well studied, and has been demonstrated in both in vitro systems and in vivo models.
Prior to this, the mechanisms of the penetration of the capsules into cells with the help
of pharmacological inhibitors were studied [40]. It was shown that the main mechanism
of the penetration of the capsules into human hepatocellular carcinoma HepG2 cells is
endocytosis. At the same time, the deformability/stiffness of the microcapsules govern the
rate of both endocytosis and exocytosis. It should be noted, however, that micron-sized
capsules can be absorbed not only by phagocytic cells, but also by many others [41]. The
shape of the microcapsules influences the penetration efficiency into smooth muscle cells
and macrophages, through bending and faster internalization [42]. In this study, spherical
capsules were used, and this shape facilitated a fairly effective uptake by cells of various
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types, including human hMScs (Figure 4). It should be noted that the loading of capsules
with nanoparticles led to a change in the structure of the outer shell of the microcapsules
and an increase in its roughness (Figure 3d), which provided additional sites for interaction
with the cell membranes, and thus increased the absorption efficiency. It has been shown
that human osteosarcoma cells (MNNG/Hos line) and human adenocarcinoma cells (MCF-
7 line) also efficiently took up the hybrid microcapsules containing gadolinium-doped
cerium oxide nanoparticles.
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Figure 4. Cellular uptake of RBITC-labelled CeGdO2−x NPs-loaded LbL microcapsules. Differ-
ent types of cells (MNNG/Hos, MCF-7 and hMsc) were stained by phalloidin-FITC (green, actin
cytoskeleton staining) and Hoechst 33,342 (blue, cell nucleus staining). Scale bar is 20 µm.

Thus, the integration of redox-active nanoparticles into the shell of microcapsules
made it possible to simultaneously deliver a much higher concentration of nanoparticles
into the cells compared to a bare sol of nanoparticles.

Next, a comprehensive analysis was carried out of the cytotoxicity of the synthesized
microcapsules on three types of cell cultures: human osteosarcoma MNNG/Hos cells,
human adenocarcinoma MCF-7 cells, and mesenchymal stem cells isolated from human
dental pulp. Two tests were used for analysis: an MTT test to analyze the level of dehydro-
genase activity, and an LDH test to detect dead (lysed) cells (Figure 5). It was found that
the capsules at the highest concentration (100 capsules per cell) after 24 h of co-incubation
caused a significant decrease in the level of viability for all types of cell cultures studied.
Further incubation (48 and 72 h) confirmed the negative effect of the microcapsules at high
concentrations; the viability of the cells was reduced to 80% for human MSCs and to 84%
for MNNG/Hos cells. However, low concentrations of capsules (1 or 10 capsules per cell)
did not cause a statistically significant decrease in the cell viability, while a downward
concentration trend was observed for all the cell types. The most sensitive to the contact
with the capsules were human MSCs. At the same time, the analysis of the level of free
lactate dehydrogenase (LDH assay) did not reveal statistically significant differences, which
presumably indicates that the capsules affect the cells’ metabolic profile and their prolif-
erative and migratory activity, but do not cause any damage to cell membranes or cause
their death even at high concentrations. Studies of the toxicity of magnetic capsules to
human MSCs synthesized from poly(allyl)amine hydrochloride and poly(styrene) sulfonate
were reported recently [43]. It has been shown that, at concentrations of less than 100 mi-
crocapsules per cell, they were not toxic and can be effectively internalized. It has also
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been shown that hMSCs can be efficiently loaded with microcapsules without damaging
the cell’s structural integrity [44]. The LbL microcapsules were not shown to reduce cell
viability but changed the structure of the actin cytoskeleton of cells [45]. Thus, it can be
concluded that the synthesized microcapsules have a high level of biocompatibility.

Polymers 2023, 15, x FOR PEER REVIEW 9 of 13 
 

 

significant differences, which presumably indicates that the capsules affect the cells’ 

metabolic profile and their proliferative and migratory activity, but do not cause any 

damage to cell membranes or cause their death even at high concentrations. Studies of the 

toxicity of magnetic capsules to human MSCs synthesized from poly(allyl)amine 

hydrochloride and poly(styrene) sulfonate were reported recently [43]. It has been shown 

that, at concentrations of less than 100 microcapsules per cell, they were not toxic and can 

be effectively internalized. It has also been shown that hMSCs can be efficiently loaded 

with microcapsules without damaging the cell’s structural integrity [44]. The LbL 

microcapsules were not shown to reduce cell viability but changed the structure of the 

actin cytoskeleton of cells [45]. Thus, it can be concluded that the synthesized 

microcapsules have a high level of biocompatibility. 

 

Figure 5. MTT assay 24, 48, and 72 h after incubation with microcapsules (1, 10 or 100 per cell), LDH 

assay 72 h after incubation with CeGdO2−x microcapsules (1, 10, or 100 per cell). * p ≤ 0.05, ** p ≤ 0.01. 

The next task was to find out how the integration of the nanoparticles into the 

structure of the capsules affects the relaxation rate in MRI measurements (Figure 6). 

Previously, the authors demonstrated the MRI contrast ability of dextran-stabilized 

gadolinium-doped cerium oxide nanoparticles [46], which amounted to 3.6 mM·s−1. The 

analysis of the relaxation rate of the synthesized LbL capsules loaded with CeGdO2−x NPs 

demonstrated their lower relaxation rate (2.75 mM·s−1), which could be due to the 

aggregation of CeGdO2−x NPs in the structure of the polyelectrolyte matrix and the low 

access level to water molecules (electron spins), or the possible partial loss of the 

nanoparticles during the multistage synthesis of the composite capsules, as previously 

shown [47]. At the same time, it should be noted that the relaxation rate for such CeGdO2−x 

Figure 5. MTT assay 24, 48, and 72 h after incubation with microcapsules (1, 10 or 100 per cell),
LDH assay 72 h after incubation with CeGdO2−x microcapsules (1, 10, or 100 per cell). * p ≤ 0.05,
** p ≤ 0.01.

The next task was to find out how the integration of the nanoparticles into the structure
of the capsules affects the relaxation rate in MRI measurements (Figure 6). Previously, the
authors demonstrated the MRI contrast ability of dextran-stabilized gadolinium-doped
cerium oxide nanoparticles [46], which amounted to 3.6 mM·s−1. The analysis of the relax-
ation rate of the synthesized LbL capsules loaded with CeGdO2−x NPs demonstrated their
lower relaxation rate (2.75 mM·s−1), which could be due to the aggregation of CeGdO2−x
NPs in the structure of the polyelectrolyte matrix and the low access level to water molecules
(electron spins), or the possible partial loss of the nanoparticles during the multistage syn-
thesis of the composite capsules, as previously shown [47]. At the same time, it should
be noted that the relaxation rate for such CeGdO2−x loaded microcapsules is significantly
inferior to commercial preparations [48]. Given that, after the internalization of such mi-
crocapsules by the cells, the loaded nanoparticles were released and distributed in the
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cytoplasm, it can be assumed that the relaxation rate parameter should increase. There are
different ways to incorporate gadolinium compounds into the capsules, e.g., they can be
loaded into the internal compartment of the capsules. Meanwhile, the question of how
to fix a gadolinium compound in the center of a capsule instead of allowing it to move
freely inside a capsule still remains unresolved. The second approach is to incorporate
gadolinium compounds into the capsule shell; this can be achieved by conjugating contrast
agents to a polyelectrolyte, or by using nanoparticles with a high surface charge, which will
bind to an oppositely charged polyelectrolyte. The latter approach was used in this study. It
is very important to provide linking spacers that have good rigidity to bridge the ligand and
the polymer. It is also necessary to take into account the influence of the template solvent,
since the pH value of such a solvent can affect the properties of the loaded paramagnetic
nanoparticles, the degree of their aggregation, and possible dissolution. Thus, the use
of paramagnetic particles makes it possible to create MRI agents based on LbL capsules;
however, it is necessary to ensure certain conditions for the integration of nanoparticles
into the capsule structure are met, and to select conditions for the synthesis and localization
of nanoparticles, which governs their MRI contrasting property.
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Figure 6. R1-relaxation rates for CeGdO2−x NPs-loaded LbL capsules at different concentrations
of Gd.

4. Conclusions

This paper has demonstrated the fabrication of biodegradable microcapsules with
CeGdO2−x NPs nanoparticles in their shell with an MRI contrasting property. The new
microcapsules had a size of 3–4 µm. A comprehensive analysis of their physicochemical
properties has confirmed the effective loading of nanoparticles into the structure of the
capsules. Furthermore, the synthesized capsules effectively penetrated both normal and
cancer cells, being localized in the cytoplasm after the internalization. The microcapsules
were not toxic at concentrations below 100 capsules per cell. The combination of MRI
imaging and the redox properties of the capsules opens up possibilities for their use as
theranostic agents and drug carriers with an easy to trace localization.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym15183840/s1, Table S1: The aggregative stability of CeGdO2−x
NPs via DLS study in different medium. Figure S1: Changes in zeta potential of CeGdO2−x loaded
capsules while layer by layer assembly. Layer 1st, 3rd, 5th: positively charge (poly-l- arginine). Layer

https://www.mdpi.com/article/10.3390/polym15183840/s1
https://www.mdpi.com/article/10.3390/polym15183840/s1
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2nd, 4th, 6th: negatively charge (2nd and 6th dextran sulphate, 4th—citrate-stabilized CeGdO2−x NPs)
applied on calcium carbonate template.
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