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Abstract: Additive-manufacturing-based joining methods enable tailored or even functionalized
joints and allow for hybridization at small scales. The current study explored an innovative joining
method for aluminum cast alloys (AlSi12) with thermoset carbon-fiber-reinforced polymers (CFRPs)
via laser powder bed fusion (LPBF). The direct build-up of AlSi12 on a CFRP substrate proved
to be challenging due to the dissimilar thermal properties of the considered materials, which led
to substrate damage and low joint adhesion. These effects could be overcome by introducing an
AlSi12 foil as an interlayer between the two joining partners, acting as a thermal barrier and further
improving the AlSi12 melt wettability of the substrate. Within LPBF, the energy input in the form of
volumetric laser energy density influenced both the porosity of the fused layers and the formation of
thermally induced stresses due to the high cooling rates and different thermal expansion properties
of the materials. While the AlSi12 volume density increased with a higher laser energy input,
simultaneously increasing thermal stresses caused the debonding and deformation of the AlSi12 foil.
However, within a narrow processing window of laser parameters, the samples achieved remarkably
high shear strengths of τ > 20 MPa, comparable to those of conventional joining methods.

Keywords: hybrid joints; fiber-reinforced polymer–metal joining; additive manufacturing; laser
powder bed fusion

1. Introduction

Hybrid joints for lightweight applications, e.g., aviation and automotive components,
enable the local modification and adaption of component properties through the combina-
tion of metals and polymer composites [1,2]. However, manufacturing high-performance
joints of metals and fiber-reinforced polymers is challenging due to their physico-chemical
incompatibility and low mutual solubility [3,4]. Conventional and reliable joining meth-
ods, e.g., adhesive bonding or mechanical fastening, suffer limited design flexibility and
geometrical freedom [1,5]. Additive manufacturing, as a sequential layer-by-layer pro-
cess for material build-up, enables the production of three-dimensional, near-net-shape
components based on a digital model [6]. Therefore, research is conducted on various
additive-manufacturing-based joining methods, which increase the freedom of shape, en-
able a tailored or even functionalized joining area and allow for targeted hybridization
across all scales [7–9].

Several studies within this field have focused on the modification and progression of
fused deposition modeling (FDM) for polymers on metal substrates. In 2016, Amancio-Filho
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and Falck developed the “AddJoining” method for the manufacturing of layered metal–
polymer hybrid structures via FDM (German patent DE 10 2016 121 267 A1). Since then, the
technology was used for various material combinations, e.g., single-lap joints from acrylonitrile
butadiene styrene on Al 2024 substrates with a shear strength of 5.3 ± 0.3 MPa [1,10], as well
as for alternating layers of unreinforced and carbon-fiber-reinforced polyamide 6 on Al 2024
substrates, resulting in 21.9 ± 1.1 MPa shear strength [11].

Other research groups combined additive manufacturing process strategies for the
build-up and simultaneous joining of polymers with metals. Matsuzaki et al. formed resin
molds via FDM and filled them with copper via electroforming (electrolytic copper plating).
Based on component design, the FDM-printed parts functioned as structural units within
the hybrid [12]. Furthermore, Oliveira et al. [13] produced hybrids from polycarbonate and
AlSi10Mg completely via additive manufacturing. They prepared AlSi10Mg parts with
submillimeter-sized surface structures using laser powder bed fusion (LPBF), and these
served as substrates for the subsequent FDM printing of polycarbonate, resulting in a joint
strength of 10.8 ± 0.6 MPa.

As LPBF involves the application and bonding of the initial powder layer on build
plates, joining via direct deposition on conventionally manufactured substrates has already
been studied for dissimilar metal [14,15] and metal–ceramic [16,17] composites. In the liter-
ature, the following challenges were identified for multimaterial LPBF: different thermal
properties of the used materials, the formation of brittle intermetallic phases at the interface
and the wettability of the melt on the substrate surface [16,18]. These limitations could be
overcome by the introduction of specific interlayer materials for a variety of material com-
binations [14–17]. Following this approach, Azizi et al. introduced a Sn3Ag4Ti interlayer at
the surface of pyrolytic graphite, which was used as a build plate in LPBF with stainless
steel (316L) to enable the rapid single-step production of heat sinks or exchangers [19,20].

Regarding the multimaterial LPBF of metal–polymer composites, Chueh et al. [7]
studied the side-by-side laser processing of Cu10Sn and polyamide powders in a single
powder bed. However, the fusion of the Cu10Sn powder required a high laser energy input,
which led to the overheating and decomposition of polyamide, causing the resulting carbon
deposits to interrupt the melting of subsequent layers. Therefore, the dissimilar powders
were laser-scanned with a specific gap to overcome undesirable material interactions.

Due to their elevated melting and processing temperatures, additive manufacturing
processes for metals on thermally sensitive polymer substrates are challenging and thus
hardly investigated for hybridization. However, reinforcement materials for polymer
composites are usually more resistant to elevated temperatures, e.g., carbon fibers with a
decomposition temperature of 3650 ◦C in the absence of oxygen [21]. Therefore, Gibson
et al. used Ni-coated carbon fiber woven fabric, on which they built Ti6Al4V layers via
LPBF. A cross-section analysis revealed that the Ti6Al4V melt penetrated about half of the
fabric thickness, thereby forming a metal–matrix composite [22]. In the following step, the
non-filled fabric side was infiltrated with polymer resin to obtain a hybrid metal/CFRP
composite with a functionally graded interface [9].

The current study deals with the build-up of metal layers on carbon-fiber-reinforced
polymer (CFRP) substrates through LPBF as a method for additive manufacturing. The aim
was to develop an innovative joining method for flexible and functional hybrid composites,
including form-fit joints, direct connections or edge reinforcement with complex geometry
and additional internal features such as cable or cooling channels. Fundamental investi-
gations on the feasibility of the proposed method were examined using AlSi12 powder
deposited on thermoset CFRP substrates. Prior to LPBF, the thermally unstable polymer
matrix was removed via laser ablation in order to apply and melt the AlSi12 powder directly
on the exposed carbon fibers. Within the following experiments, an AlSi12 foil was intro-
duced into the substrate set-up to overcome the thermal differences in the used material
combination. In order to detect the processing window for LPBF, the microstructure of the
resulting hybrids was examined via light microscopy in top-view as well as cross-section
images. In addition, thermogravimetric and thermo-mechanical analyses of the individual
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materials were carried out to allow for a deeper understanding of their behavior during
LPBF. Moreover, a method for quasi-static mechanical tensile testing was developed to
evaluate the shear strength of the CFRP/AlSi12 joint. In order to introduce the forces in
this specific interface, a counterbody for the AlSi12 volume was used according to the
“mortise-and-tenon” geometry by Silva et al. [23].

2. Materials and Methods
2.1. Materials

The thermoset-based CFRP M21/T800S (Hexcel Corporation) is a multiaxial, quasi-
isotropic laminate from eight unidirectional prepreg layers in a [0/45/90/-45]s stacking
sequence. TORAYCA® T800S fibers of 5 µm diameter served as reinforcement for the epoxy-
based matrix system Hexcel HexPly® M21; see Figure 1a. Laminates of 2 mm thickness
were hot-pressed and cured at 180 ◦C and 7 bar. Gas-atomized AlSi12 powder (ECKA
Granules Germany GmbH, Velden, Germany) with the following particle size distribution
was used for the LPBF process: d10 = 24.1 µm, d50 = 38.7 µm and d90 = 59.7 µm. The
pre-alloyed spherical Al powder with 11.9 wt% Si showed a dendritic cast microstructure;
see Figure 1a. Moreover, an AlSi12 foil with a 0.2 mm thickness and a melting range of
575–585 ◦C was used (voestalpine Böhler Welding Group GmbH, Düsseldorf, Germany).
The microstructure of the foil presented Si precipitations in an Al matrix; see Figure 1b. The
CFRP substrate and AlSi12 foil were bonded with the two-componential epoxy and amine-
based adhesive TEROSONTM EP5065 (Henkel AG & Co. KGaA, Düsseldorf, Germany);
see Figure 1b. Prior to joining, the adherents were cleaned with acetone. The adhesive
thickness of 0.2 mm was controlled by mixing 1 vol% micro-glass beads (Sigmund Lindner
GmbH, Warmensteinach, Germany) with a particle size of 180–212 µm into the adhesive.
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Figure 1. Substrate set-ups for LPBF: (a) set-up A: direct build-up of AlSi12 powder on la-

ser-pre-treated CFRP M21/T800S, (b) set-up B: AlSi12 powder on AlSi12 foil/CRFP substrate, adhe-
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Figure 1. Substrate set-ups for LPBF: (a) set-up A: direct build-up of AlSi12 powder on laser-pre-
treated CFRP M21/T800S, (b) set-up B: AlSi12 powder on AlSi12 foil/CRFP substrate, adhesively
bonded with TEROSONTM EP5065; light microscope (LM), bright field (BF).

2.2. Substrate Set-Up and Preparation

LPBF is based on the layer-by-layer fusion of powder on a substrate with the help of
laser energy. First, LPBF experiments were carried out by layering and laser melting AlSi12
powder directly on the CFRP substrate (set-up A); see Figure 1a. In advance, near-infrared
(NIR) laser pre-treatment was carried out to ablate the surface matrix layer from the CFRP
substrate, herewith exposing carbon fibers targeting an improved bonding with the AlSi12
melt. The CFRP pre-treatment was conducted according to previous studies, addressing the
influence of laser pulse parameters on the matrix and carbon fiber ablation behavior [24]
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and correlating them with the bonding strength of hybrid CFRP/Al joints [25]. Detailed
descriptions of the applied laser system and laser parameter with an areal energy density
of 0.37 J/mm2 for the matrix ablation are presented in [26]. After laser ablation, the CFRP
substrate was adhesively bonded to a steel build plate with an instant adhesive (Pattex
Ultra Gel).

As a result of the findings from set-up A, the substrate structure was modified for
further LPBF experiments according to set-up B; see Figure 1b. An AlSi12 foil was laminated
on the CFRP as an interlayer between the CFRP and the additively printed AlSi12 powder.
In this case, the CFRP and AlSi12 foil were cleaned with acetone and adhesively joined, but
the foil should be integrated during CFRP manufacturing for improved process efficiency.
Prior to LPBF, the substrates were inserted in steel build plates with an instant adhesive;
see Figure 2.
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Figure 2. Automatic laser processing chamber used to manufacture test specimens for mechanical
tensile strength analysis.

2.3. Laser Powder Bed Fusion

LPBF was conducted with a TruFiber 1000 single-mode fiber laser (TRUMPF Laser- und
Systemtechnik GmbH, Ditzingen, Germany) working in an NIR wavelength of λ = 1075 nm
with a maximum laser power of Pmax = 1000 W and a focal diameter of df = 46 µm; see
Table 1. For laser scanning, the 2D SCANLAB intelliSCAN 30 optical galvanometer scan
system (SCANLAB GmbH, Puchheim, Germany) was used.

Table 1. Specifications of the LPBF equipment: TruFiber 1000 laser and Scanlab intelliSCAN 30
optical system.

Characteristic Unit TruFiber 1000 Laser

Wavelength λ in nm 1075
Maximum laser power Pmax in W 1000

Beam quality M2 <1.3
Pulse duration TP in µs 20–continuous wave

Focal length f in mm 255
Focal diameter dspot in µm 46
Rayleigh length zRL in mm 1.2

LPBF of the AlSi12 powder was conducted in the absence of oxygen in a laser process-
ing chamber, which was flooded and operated with argon. The experiments for substrate
set-up A were executed with a flexible, manual laser processing chamber for a small sample
size with a low powder usage below 13 cm3. Within this set-up, the Ø 23 mm build plate
and the powder coating were conducted manually. For substrate set-up B, the experiments
were scaled up to an automatic laser processing chamber providing motorized build plate
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control and powder application; see Figure 2. The build plates had a Ø 120 mm diameter
and a building area of 76 × 76 mm2. With a maximum build height of 25 mm and a powder
supply of 280 cm3, this chamber enables the production of larger samples. Both processing
chambers were designed and manufactured at Aalen University specifically for research in
material science.

Regardless of the substrate set-up, the constant LPBF parameters involved the laser beam
diameter, layer thickness and hatch distance; see Table 2. The laser beam was operated in
continuous-wave mode and defocused from the focal diameter df = 46 µm to df5 mm = 200 µm
to enlarge the laser spot area while reducing its intensity. The hatch distance was adjusted
from Hs = 46 µm to Hs = 200 µm between set-ups A and B to reduce the hatch overlap from
77% to 0%. The scan velocity was constant for substrate set-up A and varied between Vs = 400
and 700 mm/s for substrate set-up B. The adjustment of the laser power for each set-up
resulted in higher volumetric energy densities (VEDs) for substrate set-up B, calculated using
the equation given by Kumar et al. [27]. The scan fields for substrate set-up A with an area
of 7 × 7 mm2 were laser-scanned in a forward–backward pattern, which was divided into
a chessboard pattern with four scan fields of 2.75 × 2.75 mm2 and a 0.25 mm overlap for
substrate set-up B.

Table 2. Laser powder bed fusion (LPBF) parameters for substrate set-ups A and B.

Parameter Unit Substrate Set-Up A Substrate Set-Up B

Laser beam diameter Bd in µm 200 200
Layer thickness Lt in µm 100 100
Hatch distance Hs in µm 46 200
Scan velocity Vs in mm/s 400 400–700
Laser power P in W 45–65 160–190

Volumetric energy
density VED in J/mm3 7–15 11–24

2.4. Thermal Analysis

A thermogravimetric analysis (TGA) was conducted using the thermobalance type
TGA/DSC 3+ (Mettler-Toledo GmbH, Gießen, Germany) with an accuracy of 1 µg to analyze
the degradation behavior of the adhesive and the CFRP. Prior to TGA, specimens were cut
with a diamond band saw 300 CL (EXAKT Advanced Technologies GmbH, Norderstedt,
Germany) and placed in a 70 µL alumina crucible. TGA measurements were performed
over a temperature range from 30 to 850 ◦C, with a purge gas flow of 50 mL/min and a
constant heating rate of 20 K/min. Nitrogen (N2) was used as the purge gas up to 650 ◦C,
above which the purging gas was switched to oxygen (O2).

A thermo-mechanical analysis (TMA) of the adhesive was performed with the analyti-
cal system TMA/SDTA 2+ (Mettler-Toledo GmbH, Gießen, Germany), with an accuracy
of 0.5 nm. For sample preparation, the adhesive was molded at a thickness of 2.3 mm
and cut to an area of 5 × 5 mm2. Thermal expansion in the thickness direction of the
adhesive was measured under a 20 mN static compressive force with a standard stamp.
The measurement was conducted at a 2 K/min constant heating rate over a temperature
range of 30 to 300 ◦C in an inert N2 atmosphere. The TMA of the AlSi12 foil was conducted
using a TMA 402 F1/F3 Hyperion dilatometer (Netzsch-Gerätebau GmbH, Selb, Germany)
with a vertical clamping holder to apply a 20 mN static tensile force. Prior to TMA, foil
samples with 6 × 30 mm2 were cut and clamped over a 14 to 15 mm distance. A constant
heating rate of 2 K/min was applied over a temperature range of 30 to 500 ◦C in an inert
N2 atmosphere.

2.5. Mechanical Characterization and Fractographic Investigations

Substrate set-up B enabled the scale up of the process and the manufacture of spec-
imens for a shear strength analysis in reference to DIN EN 1465:2009 [28]. However, the
sample configuration was significantly modified to apply shear forces at the interface
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between the AlSi12 volume and AlSi12 foil. The “mortise-and-tenon” joints introduced
by Silva et al. [23] are based on the interlocking of additively manufactured tenons with
corresponding cut-outs in a joining partner. This principle was applied by using a steel
counterbody with a fitting mortise; see Figure 3a. The CFRP, adhesive and steel joining
partner geometries were significantly oversized compared to the AlSi12 volume with di-
mensions of 5 × 5 × 5 mm3 to avoid their failure in shear strength testing; see Figure 3b.
To ensure a smooth powder coating over the AlSi12 foil during LPBF, the foil edge was
angled by 10◦ to the coating edge of the powder scraper; see Figure 3b. To prevent the
deflection and bending of the “mortise-and-tenon” system during mechanical testing, a
frame similar to DIN 65148:1986 [29] was manually bolted on the specimens. To compensate
for the asymmetry of the single-lap joints and ensure authentic shear failure, cap strips
were bonded to the CFRP substrate and integrated in the steel counterbody. Mechanical
testing was executed using the Schenck RSA100 universal testing machine under normal
temperature and pressure with a 100 kN load cell at a traverse speed of 1.5 mm/min and a
pre-load of 100 N. The test protocol was terminated when the maximum shear strength
decreased by 90%. The shear strength values of five samples per laser parameter were
averaged. A fracture analysis was conducted by means of top-view images with an Axio
Zoom.V16 light microscope (Carl Zeiss AG, Oberkochen, Germany).
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Figure 3. Concept of mechanical strength analysis: (a) specimen set-up for force introduction at the
AlSi12 volume/AlSi12 foil interface, (b) specimen geometry and dimensions.

2.6. Macro- and Micro-Structural Characterization

Documentation of the specimens’ macroscopic structure after LPBF was carried out via
top-view bright-field light microscopy with Axio Zoom.V16 (Carl Zeiss AG, Oberkochen,
Germany). A microstructural analysis was performed on materialographic cross-sections.
Hence, the specimens were embedded in an epoxy-based mounting system (Struers GmbH,
Willich, Germany) to preserve their condition. After curing, the samples were cut per-
pendicular to the LPBF scanning direction and re-mounted for mechanical grinding and
polishing with the automatic preparation system Tegramin 30 (Struers GmbH, Willich,
Germany). Large-scale light microscope images of the entire specimen cross-section were
generated with Axio Imager Z.2 Vario (Carl Zeiss AG, Oberkochen, Germany). For im-
proved contrast between the adhesive and the CFRP matrix, the cross-section images were
post-processed to display the adhesive in green color.

3. Results
3.1. Substrate Set-Up A

The variation in the different process parameters, such as the laser power, did not
render reproducible adhesion and liable bonding between the AlSi12 powder and CFRP
substrate. Hence, the results are summarized using the laser parameter VED = 14.4 J/mm3

(Vs = 400 mm/s and P = 65 W) as an example. The cross-section in Figure 4b–e was cut



Polymers 2023, 15, 3839 7 of 16

transverse to the laser scanning direction, corresponding to the Y-axis in Figure 4e. LPBF of
ten powder layers, each with a 100 µm thickness, caused critical changes within the CFRP
compared to its initial state in Figure 4a. Matrix decomposition and fiber fracture led to
a partial removal of the first laminate layer to a depth of 250 µm. Close to the substrate,
AlSi12 particles were mainly in a loose or partially sintered state up to a 300–400 µm build
height, which corresponds to 3–4 powder layers in LPBF; see Figure 4d. In contrast, the
area in Figure 4c indicated melted AlSi12 powder with absorbed carbon particles/fibers at
the carbon fiber interface. Upper AlSi12 areas showed re-solidified melt spheres (balling)
with a diameter of up to 1 mm and a fine dendritic cast microstructure.
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Figure 4. Substrate set-up A: (a) cross-section [0/45/90/-45]s layers of CFRP M21/T800S (as-received),
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in re-solidified AlSi12, (d) surface-near CFRP substrate damage and substrate-near sintered AlSi12
particles, (e) re-solidified AlSi12 spheres; LM, BF.

3.2. Optimized Substrate Set-Up B

Substrate set-up B used a laminated AlSi12 foil on the CFRP surface as a substrate
interlayer for LPBF. A parameter study with VED = 11–24 J/mm3 was conducted with
variations in laser power and scan velocity; see Figure 5. The top-view images in Figure 5
show that the integration of the AlSi12 foil allowed for the build-up of AlSi12 layers in
LPBF for all studied values of VED = 11–24 J/mm3. The solidified AlSi12 volumes on top of
the AlSi12 foil had a porous surface structure, where the chessboard scanning pattern was
visible. With increasing VED > 14 J/mm3, the AlSi12 foils exhibited deformation, which
was detectable by means of light reflections in the periphery foil areas; see Figure 5.

Cross-sections of the specimens were cut and mounted perpendicular to the laser
scanning direction of the chessboard scan strategy in LPBF (Figure 5). The results in Figure 6
enabled in-depth microstructural analyses of the density and pore formation in the AlSi12
volume, as well as of the debonding and deformation of the AlSi12 foil. Segmentation
and quantification of the cross-section images regarding solid areas and pores revealed
density values of ρ% = 67–91% for the AlSi12 volume. The samples showed an increasing
density and a reduced lack of fusion porosity at elevated VED, due to an increasing laser
power or a decreasing scan velocity; see Figure 6a. Samples with a higher porosity revealed
solid structures as narrow lines at a width of about 200 µm, corresponding to the hatch
spacing of the laser beam. Specimens with higher VED > 18 J/mm3 fused in the horizontal
direction and overcame the linear AlSi12 structures, while the proportion of small round
pores increased simultaneously. Samples with low AlSi12 foil deformation with P = 160 W
and Vs = 400–700 mm/s were selected for full-area cross-section images in Figure 6b. At
higher scan speeds, the bonding between the AlSi12 foil and adhesive layer was intact,
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while a reduction in the scan velocity caused partial to full debonding as well as significant
deformation of the AlSi12 foil.
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Polymers 2023, 15, 3839 9 of 16

3.3. Thermal Analysis

TGA of the used CFRP showed that matrix degradation started at about 325 ◦C under
an inert N2 atmosphere, reaching a plateau at 650 ◦C after 22.5% mass loss of the sample;
see Figure 7a. The maximum degradation rate was observed at TPeak = 416 ◦C according to
the onset point method. At a subsequent measurement in an oxygen-flooded environment
in the range of 650–850 ◦C, the remaining components were oxidized and converted into
H2O and CO2, which resulted in further mass loss leaving back char and other carbon
fiber residues of around 15% of the total mass. TGA of the adhesive indicated significant
mass loss starting at 300 ◦C with maximum degradation rates at TPeak1 = 360 ◦C and
TPeak 2 = 436 ◦C reaching a plateau at 500 ◦C after 90% mass loss; see Figure 7a.
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(b) TMA for AlSi12 foil in rolling direction (RD) and transverse direction (TD) as well as adhesive
TEROSONTM EP5065.

TMA of the epoxy adhesive was conducted from 30 to 300 ◦C. The results in Figure 7b
show an average coefficient of thermal expansion (CTE) of about 370 × 10−6/K resulting in
about 10% thermal expansion when heated to 300 ◦C. Thermal expansion of the AlSi12 foil
was measured both in the rolling direction (RD) from the foil manufacturing process and in
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the transverse direction (TD). In the rolling direction, an average CTE of 30 × 10−6/K was
observed, whereas the foil had a higher average value of 48 × 10−6/K in the transverse
direction. In general, the foil exhibited significantly lower thermal expansion than the
adhesive, reaching a linear elongation of <1.5% at 300 ◦C and <2.5% when further heated
up to 500 ◦C.

3.4. Shear Strength of CFRP/Al Joints and Fracture Patterns

Based on the processing window determined within the parameter study for substrate set-
up B, mechanical characterization was carried for samples with the following laser parameter
settings: VED = 11–13 J/mm3 (Vs = 700 mm/s and P = 160–180 W). The microstructural analy-
sis of these parameters in Figure 8a revealed debonding of the AlSi12 foil for VED = 12 J/mm3.
This was related to the decentral positioning of scan fields on the AlSi12 foil sections (Figure 5)
due to the insufficient measuring precision of the scanner head position prior to LPBF, which
resulted in a reduction in the underlying adhesive bond area.
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sections of VED = 11–13 J/mm3, Vs = 700 mm/s and P = 160–180 W; (b) crack initiation at the AlSi12
foil/adhesive interface; (c) failure mechanism in mechanical strength analysis; LM, BF.

During mechanical testing, force was applied transverse to the laser scanning direction
of the AlSi12 volume. In order to determine the shear strength of the hybrid joints, the
maximum force values were related to the bonding area between the AlSi12 volume and
foil (5 × 5 mm2). Figure 9a shows the averaged shear strength values of five individual
measurements for each laser parameter, as well as the minimum and maximum values
from the test series (error bars). Samples prepared with VED = 11 J/mm3 had an average
shear strength of τ = 19.3 MPa, with a minimum of 9.8 MPa and a maximum of 26.0 MPa.
For VED = 12 J/mm3, the shear strength increased up to τ = 23.3 MPa, with a value
range of 17.1–27.7 MPa. The shear strength level remained constant for VED= 13 J/mm3

with τ = 21.8 MPa, while the value range decreased significantly to 20.3–23.7 MPa. A
post-mortem analysis of the broken composite samples demonstrated two significantly
different fracture mechanisms according to the achieved shear strength values. Specimens
with shear strength values τ < 20 MPa mainly exhibited adhesive failure at the AlSi12
volume/foil interface along the applied shear plane, while melting lenses as counterparts of
the AlSi12 volume were visible on the AlSi12 foil; see Figure 9b. Specimens with τ > 20 MPa
showed cohesive failure within the AlSi12 foil, whereas fracture occurred along the edge
of the AlSi12 volume facing away from the tensile direction. Since the counter stresses
were the highest in the AlSi12 volume, cracks propagated along its edges. The resulting
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displacement of the AlSi12 volume along the force direction caused adhesive fracture at
the AlSi12 foil/adhesive interface. VED = 13 J/mm3 achieved exclusive failure through
the thickness of the AlSi12 foil at τ > 20 MPa, marking the threshold for reproducible and
liable welding at the AlSi12 volume/foil interface.
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4. Discussion
4.1. Substrate Set-Up A: Challenges and Optimization

As the results for substrate set-up A showed, different thermal properties and laser
absorption coefficients of the used materials had a critical influence on the CFRP substrate
integrity and the melting behavior of the AlSi12 powder and, therefore, on their bonding.
The TGA findings related to the investigated CFRP are in accordance with the observations
reported by Tranchard et al. for a similar CFRP [30]. Hence, the decomposition temperature
(TPeak = 416 ◦C) of the thermally sensitive polymer matrix was significantly lower than
the melting point of the AlSi12 powder (Tm = 577 ± 1 ◦C [31]). In addition, the aluminum
required a high laser energy density in LPBF due to its low absorption for NIR and its high
thermal conductivity [32]. The used laser parameter (VED = 14.4 J/mm3) corresponded to
an areal energy density of 1.44 J/mm2, which exceeded the threshold for matrix ablation
(0.37 J/mm2) for the used CFRP as determined by Schanz et al. [24]. The resulting matrix
decomposition products generated a gas recoil pressure, which removed the applied AlSi12
powder layer from the CFRP surface. The underlying carbon fibers with a high NIR
absorptivity [33] fractured when heated up due to their contraction by negative thermal
expansion along the fiber direction (between −0.1 and −0.7 × 10−6/K [21]).

As the AlSi12 powder was repeatedly removed from the CFRP surface, the pow-
der layer thickness gradually increased after each scan. The increasing heat capacity of
the thicker powder layer reduced the substrate near temperatures to a level where the
decomposition of the matrix material, as the most thermally sensitive component, was
prevented. Chueh et al. used the same effect in side-by-side LPBF of metal–polymer hy-
brids to overcome mutual material degradation by processing the powders with a specific
gap as a thermal barrier [7]. Consequently, the AlSi12 powder remained on the CFRP
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surface and fused under the formation of balling, which Zhang et al. attributed to the high
surface tension of the aluminum melt, attaining the energetically most favorable state of a
sphere [34]. Moreover, Eustathopoulos et al. showed that the passivating oxide layer on
aluminum particles prevented liquid-phase equilibrium and reduced melt fluidity when
T < 860 ◦C [35]. Therefore, according to the literature, aluminum melt exhibits contact an-
gles > 90◦ on graphite substrates at short contact times and moderate temperatures [35–37].
As a result, no reproducible wetting and bonding of the AlSi12 melt on the carbon fibers
could be achieved in LPBF within substrate set-up A.

The described challenges of a direct processing strategy (substrate set-up A) required
a thermal barrier between the high temperatures in LPBF and the thermally degradable
polymer matrix of the CFRP. As the current study focused on the vertical build-up and
simultaneous bonding of AlSi12 on CFRP, a solid interlayer was integrated at the substrate
surface. In addition, depending on the material of the interlayer, the wettability and
adhesion of the hybrid joint could be significantly improved. This interlayer approach
was already successfully implemented for other material combinations in multimaterial
LPBF, such as dissimilar metals [14], metal–ceramic [16] or metal–graphite composites [20].
With regard to metal–polymer composites, this was confirmed through the findings of
Rezzoug et al., who modified CFRP with a superficial aluminum mesh layer to increase
the adhesion strength of metal coatings in thermal spraying [38]. Accordingly, substrate
set-up B was developed, which involved the lamination of an AlSi12 foil to the CFRP prior
to LPBF.

4.2. Substrate Set-Up B: Microstructure, Thermal and Mechanical Properties

The laser parameter study with substrate set-up B revealed the potential of LPBF as
a joining method for hybrid composites through the direct build-up of AlSi12 on top of a
modified AlSi12 foil/CFRP substrate. The density and pore formation of the built AlSi12
volume correlated with the applied VED with variations in laser power and scan velocity.
This corresponded to Louvis et al. stating that those two parameters mainly determine
melt pool properties through laser intensity and exposure time per increment [39]. The
lack of fusion porosity, binding defects and balling effects between single layers and lines
were therefore reduced with increasing VED, which is attributed to increased melt pool
dimensions and reduced melt viscosity in the literature [40,41]. These interrelationships
became obvious when linear AlSi12 structures fused, as the theoretical hatch overlap
of 0% was exceeded with higher melt pool dimensions. However, the literature shows
a positive influence of a low beam overlap due to the reflective behavior of the solid
compared to the powder bed [39]. Visible hydrogen porosity in the form of small round
pores, which increased with increasing VED, resulted from the hygroscopic properties of
aluminum. According to Weingarten et al., this is caused by higher cooling rates promoting
the incorporation of vaporized hydrogen in the melt [42].

Since density increased in line with increasing VED, the proportion and quality of the
weld bonds at the AlSi12 volume/foil interface also improved. However, the deformation
and partial debonding of the AlSi12 foil from the substrate started at elevated VED, leading
to an opposing trend when correlating VED with the remaining bond area between the
AlSi12 foil and adhesive. This was due to the increasing heating and cooling rates in LPBF,
leading to inhomogeneous temperature profiles in the powder bed and the formation of
residual stresses during re-solidification as described by Jiang et al. [43]. Since the residual
stresses in the AlSi12 volume and foil exerted shear forces at the adhesive interface, small
cracks formed at the scan field edges, which propagated in- and outwards with increasing
VED; see Figure 8b. According to Jiang et al., thermal stresses accumulate at the scan
field edges in LPBF, where the cooling rates are the highest [43]. The deformation of the
already debonded AlSi12 foil is further amplified by the mechanical impact of the scraper
movement during subsequent powder re-coating processes.

The high thermal conductivity of the AlSi12 powder and foil led to increasing tem-
peratures and thus to the thermal expansion of the underlying substrate layers. Since the
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adhesive and CFRP polymers were both epoxy-based, they exhibited similar thermal expan-
sion [44]. Accordingly, their interfacial bonding remained intact. However, the TMA results
of the AlSi12 foil and the adhesive demonstrated significant differences in their thermal
expansion behavior. Pramanik et al. noted that mismatched thermal expansion properties
in dissimilar material bonds generate interfacial shear stresses that could potentially lead
to joint failure [2]. Additionally, the thermal degradation of the adhesive above 325 ◦C
supported the debonding of the AlSi12 foil due to material loss.

Thermally induced stresses and decomposition became more pronounced at higher
VED, leading to significant debonding and deformation of the AlSi12 foil above a threshold
value of VED > 14 J/mm3. However, parameter combinations with VED ≤ 13 J/mm3 had
a negligible degree of debonding, which allowed for the quantification of their adhesion
strength via mechanical testing. The AlSi12/CFRP joints within the process window
achieved shear strength values comparable to those of other additive-manufacturing-based
joining methods for metal–polymer hybrids found in the literature [11,13,20]. Moreover,
the shear strength even competed with that of conventional joining methods, e.g., Al/CFRP
bonds with the same epoxy-based adhesive studied by Schanz et al. [25].

In accordance with the microstructure, the mechanical strength correlated with the laser
parameters, reaching superior adhesion at the AlSi12 volume/foil interface with higher VED.
When the structural integrity of the AlSi12 volume/foil weld bonds reached τ > 20 MPa,
cohesive failure of the AlSi12 foil occurred due to the force introduction into the volume body
and resulting stress concentrations at its edge; see Figure 8c. The debonding of the AlSi12
foil at the scan field edges created a multi-axial stress state in this region involving normal
and shear stresses. The combination of stress modes I and II exceeded the tensile strength of
τ = 185 ± 2 MPa of the AlSi12 foil, which was why failure occurred through the cross-section
of the foil.

In 2020, Laursen et al. found that density levels < 95% were critical for the mechanical
properties of LPBF volumes from AlSi10Mg [45], as porosity-induced stress concentrations
cause crack formation resulting in unexpected fracture during application [46]. However,
post-treatment strategies for pore reduction in LPBF volumes, such as hot isostatic pressing,
require high temperatures of 350–500 ◦C [47], which would lead to the decomposition of
the thermally sensitive polymer matrix in the hybrid composite. An increase in the bulk
density of AlSi12 volumes could be enabled by an increase in VED at a certain distance from
the substrate, which was demonstrated by Gibson et al. for LPBF of Ti6Al4V on carbon fiber
woven fabrics [22]. Based on the current fracture mechanism, decreased densities < 80%
have no critical impact on the bond strength of the hybrid joint.

5. Conclusions

The aim of this study was to develop an innovative joining method for flexible and
functional hybrid metal–polymer composites through additive manufacturing via LPBF,
focusing on the fusion and simultaneous bonding of AlSi12 powder with a CFRP substrate.
Since the thermal properties of the dissimilar materials inhibited a direct build-up of AlSi12
on the CFRP surface, an AlSi12 foil was used as an interlayer for thermal shielding and
improved wettability. Within this optimized substrate set-up, the feasibility of hybrid
joining via LPBF was demonstrated, while the following challenges were identified for
process implementation:

• LPBF led to thermally induced stresses in the AlSi12 volume and the AlSi12 foil, as
well as shear stresses at the AlSi12 foil/adhesive interface, which caused adhesive
failure and debonding, even at a lower laser energy input.

• In addition to the porosity of the AlSi12 powder layers, VED also correlated with the
development of thermally induced stresses and the resulting substrate failure, setting
a VED limit ≤ 14 J/mm3 for LPBF.

• Since the AlSi12 volume density increased with increasing VED, the opposing trends
for a reliable bond strength defined a narrow process window of VED = 11–13 J/mm3.
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Within this process window, the bonding strength of the hybrid joints was quantified
using a novel mechanical testing method, leading to the following conclusions:

• VED ≤ 12 J/mm3 generated insufficient welds at the AlSi12 volume/foil interface,
where an adhesive fracture occurred at shear strength values τ < 20 MPa.

• VED ≥ 13 J/mm3 demonstrated sufficient fusion of the AlSi12 powder with the AlSi12
foil, constantly reaching shear strength values τ > 20 MPa. However, minor AlSi12 foil
debonding at the AlSi12 volume edges led to a multi-axial stress state within the foil,
resulting in its cohesive failure.

In summary, the results for the bond strength of the presented LPBF-based hybrid joints
are not only comparable to those of other innovative joining methods from the literature,
but can also compete with those of commercial joining processes. As the feasibility of the
presented LPBF-based joining method is demonstrated in this study, future work will address
the production of innovative and complex joint geometries with internal features, such as
cable or cooling channels. Future upscaling should therefore consider the thermal process
limitations and their dependence on the bond dimension and geometry. Moreover, based
on the flexibility of the AlSi12 foil integration during CFRP production, bond design is only
limited by the accessibility of the joining area for powder application and laser processing.
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