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Abstract: Due to the possible effects of global warming, new materials that do not have a negative
impact on the environment are being studied. To serve a variety of industries and outdoor applica-
tions, it is necessary to consider the impact of photoluminosity on the performance of biocomposites
in order to accurately assess their durability characteristics and prevent substantial damage. Expo-
sure to photoluminosity can result in adverse effects such as discoloration, uneven surface, loss of
mass, and manipulation of the intrinsic mechanical properties of biocomposites. This study aims to
evaluate general charcoal from three pyrolysis temperatures to understand which charcoal is most
suitable for photoluminosity and whether higher pyrolysis temperatures have any significant effect
on photoluminosity. Porosity, morphology, Fourier transform infrared spectroscopy (FTIR), and
X-ray photoelectron spectroscopy of charcoal were analyzed. Charcoal obtained at a temperature of
800 ◦C demonstrates remarkable potential as a bioreinforcement in polymeric matrices, attributable
to its significantly higher porosity (81.08%) and hydrophobic properties. The biocomposites were
characterized for flexural strength, tensile strength, scanning electron microscopy (SEM), FTIR, and
x-ray diffraction (XRD). The results showed an improvement in tensile strength after exposure to
photoluminosity, with an increase of 69.24%, 68.98%, and 54.38% at temperatures of 400, 600, and
800 ◦C, respectively, in relation to the treatment control. It is notorious that the tensile strength and
modulus of elasticity after photoluminosity initially had a negative impact on mechanical strength,
the incorporation of charcoal from higher pyrolysis temperatures showed a substantial increase in
mechanical strength after exposure to photoluminosity, especially at 800 ◦C with breaking strength
of 53.40 MPa, and modulus of elasticity of 4364.30 MPA. Scanning electron microscopy revealed an
improvement in morphology, with a decrease in roughness at 800 ◦C, which led to greater adhesion
to the polyester matrix. These findings indicate promising prospects for a new type of biocomposite,
particularly in comparison with other polymeric compounds, especially in engineering applications
that are subject to direct interactions with the weather.
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1. Introduction

For generations, materials from non-renewable sources have been used across almost
all industry sectors. However, its excessive use and improper waste management have
resulted in alarming pollution and greenhouse gas emissions worldwide, affecting society
and the environment [1–4]. For instance, petroleum-based plastics, the first plastic genera-
tion, are associated with several environmental issues. When they are incinerated, a vast
amount of CO2, greenhouse gas emissions [5,6], and hazardous synthetic substances are
released, contributing to global warming and the deterioration of living beings’ health [7].
Moreover, due to their non-biodegradability, they cause air, land, and water pollution,
resulting in the death of wildlife, marine life, and avifauna [1,5,7–9].

In response to these environmental concerns, there exists an imperative need for
cleaner, sustainable, renewable product sources that can be locally produced. Thus, with
the environmental crisis faced in recent years, the search for products obtained from
sustainable resources is causing the technical–scientific environment to focus its research
and technologies on elaborating so-called “green materials”. Concerns about environmental
safety, reduction in greenhouse gas emissions, biodegradability, and mitigation of solid
waste have resulted in a boost in the production of materials that come from waste and, at
the same time, are renewable by nature [10–12]. This action includes the so-called industrial
symbiosis, where waste from one sector becomes a resource for the generation of a product
from another industry, effectively contributing to greater productivity of resources and
favoring the circular economy [13–15]. To promote efficiency, innovation, and sustainability,
several studies are investigating the combination of renewable waste with other materials
of synthetic origins, such as polymers, resulting in the generation of composite materials
with more sustainable characteristics [11,16–19].

Although ongoing research exists regarding the incorporation of charcoal as a reinforc-
ing component in polymeric composites, there is a noticeable lack of detailed information on
how the physicochemical properties of charcoal can influence the mechanical and thermal
characteristics of biocomposites. When it comes to composite production, the consideration
of their practical applicability is of paramount importance. Therefore, it is imperative to
investigate the factors that can impact the strength and performance of these materials.
Exposure to ultraviolet (UV) light plays a crucial role in the applications of polymeric
materials in outdoor environments, as UV-induced degradation often significantly reduces
the polymer’s lifespan [20]. Therefore, understanding how charcoal affects the resistance
of the biocomposite to UV degradation is of paramount importance, particularly when
these materials are intended for outdoor applications. In pursuit of developing innova-
tive materials and meeting the demand for performance improvements throughout the
product’s lifespan, it is crucial to conduct studies that investigate how photodegradation
can influence a material’s properties. There are some reports in the literature about the
increase in resistance to photoluminosity of some materials, such as asphalt, from the
addition of charcoal [7,21–23]. However, the originality of this work lies in the generation
of information on the influence of UV-c radiation on the properties of composites produced
with charcoal synthesized from the waste of Eucalyptus saligna processing, a subject not
found in the literature.

2. Materials and Methods
2.1. Obtaining Charcoal

The charcoal came from the pyrolysis of Eucalyptus saligna wood from a ten-year-old
experimental plantation. Samples of this biomass were fragmented in a Wiley knife mill
and previously dried in an oven at 103 ± 2 ◦C. Pyrolysis was carried out in a metallic
reactor inside a muffle furnace at an initial temperature of 30 ◦C heating rate of 10 ◦C.min−1

until reaching the final temperature of 400, 600, and 800 ◦C, with a residence time of
120 min. These procedures followed the descriptions by Dias Júnior et al. (2020) [24].
Then, to obtain the charcoal, samples of the obtained charcoal were fragmented in an
MA-500 ball mill for three hours, and, subsequently, the material was sieved through a
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250 mesh sieve (0.056 mm) to homogenize the samples. Finally, the charcoals were dried at
103 ± 2 ◦C in an oven.

2.2. Characteristics of Charcoal

In order to understand how the characteristics of charcoal influence the biocomposites
produced, the porosity was determined following the descriptions of the Brazilian Associa-
tion of Technical Standards (ASMT) [25]. The evaluation of the structure of the material
was determined from the Scanning Confocal Microscopy, with the aid of the Confocal
Microscopic Olympus LEXT—3D Measuring L. Microscope 4000 (Evidente, Tóqui, Japão).
The images were captured through an objective lens of 50× magnification (numerical
aperture of 0.95, with a field of view of 0.26 mm × 0.26 mm and a sampling distance of
about 0.25 µm) and a light beam length of 405 nm. For image processing, the OLS4000 2.1
software was used. To better understand the aromatic structures (functional groups and
chemical bonds) of charcoal, a Fourier transform infrared spectroscopy (FTIR) analysis was
performed in the Bruker, Ettlingen e Germany (Tensor 27 model), using a total attenuated
reflectance (ATR) measuring the absorption of vibrations of the functional group in the
mid-infrared region between 2500 and 15,400 nm (4000–650 cm−1) and acquisition with
32 scans.

The nature of C and O present on the surface of charcoal was determined using a
K-Alpha spectrometer (Thermo Scientific), from the National Nanotechnology Laboratory
(LNNano) of the National Center for Research in Energy and Materials (CNPEM, Campinas,
Brazil), to carry out the spectroscopy analyses of X-ray photoelectrons (XPS). A monochro-
matic Al Kα X-ray source (λ = 1486.6 eV) with a power of 300 W, at a takeoff angle of
30◦ in relation to the surface of the samples, was used. Measurements took place under
high vacuum of 5 × 10−10 mbar at room temperature. The investigated area was 81 mm2.
The spectra were obtained in a binding energy range from 0 to 1150 eV, with three sweeps
with a passing energy of 160 eV and a resolution of 1 eV, whereas the Gaussian peak profiles
were used for spectral deconvolution of the C (1 s) spectral region.

2.3. Production of Biocomposites

Silicone molds (bicomponent elastomer vulcanizable at room temperature) were made
following the prescriptions of the dimensions of the flexion and traction tests. In the
production of biocomposites, commercially obtained polyester resin from the Redecenter
brand (São Paulo, Brazil) was used. Charcoals produced under different final pyrolysis
temperatures (400, 600, and 800 ◦C) were previously dried in an oven (103 ± 2 ◦C) and
used in proportions of 0 (control treatment) and 30%. In the process of homogenizing
the charcoal with the polymeric matrix, a Fisatom 713DS mechanical stirrer (Fisatom, São
Paulo, Brazil) was used, with a fixed time of three minutes or until homogenization was
noticed. After mixing, the samples were taken to a metal reactor that operated under
constant pressure at 90 KPa and room temperature (25 ◦C) for 24 h for the curing process.

2.4. Photoluminosity Analysis of Biocomposites

The present invention refers to an innovative methodology for the treatment of photo-
luminosity in charcoal biocomposites, aiming to improve their properties and applications.
The patent process number that protects this innovation is BR 10 2022 026841 0. Our ap-
proach revolutionizes the field of biocomposites by developing a photoluminosity chamber
specially designed for this purpose, the concept of which is protected under intellectual
property. Figure 1 shows the photoluminosity chamber used in the process, built with
high-quality materials, notably MDF, and precisely sized to achieve optimal results. The
photoluminosity chamber has strategic dimensions of 50 cm long, 15 cm wide, and 40 cm
thick, providing a controlled environment for exposing the biocomposites to UV-c radiation.
With four UV-c tubular fluorescent lamps, each with a power of 8 W, we guarantee uniform
and effective irradiation, essential for the success of the methodology. The treatment pro-
cess is conducted with scientific rigor, exposing the biocomposites to UV-c radiation for
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a continuous period of 15 days. During this time, the photoluminosity chamber remains
hermetically closed, ensuring that no radiation or heat transfer takes place between the
biocomposites and the external environment. This controlled condition is essential for
obtaining reliable and reproducible results.
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Figure 1. (A) front view of the photoluminosity box and (B) view of the inside of the photoluminosity
box. Where: (I) thermocouple for measuring internal temperature, (II) switch, and (III) UV-c tubular
fluorescent lamps.

It is important to note that all tests were carried out in an environment under controlled
conditions, with a constant temperature of 22 ◦C and relative humidity of 44%. This
strict standardization of the environment guarantees that the results obtained are directly
attributable to the action of the photoluminosity chamber on charcoal biocomposites. In
conclusion, this innovation protected by patent BR 10 2022 026841 0 sets a new standard in
improving the properties of charcoal biocomposites through photoluminosity. The specially
developed chamber and controlled treatment conditions make this process invaluable,
offering significant advances in the field of using biocomposite materials.

Both the composite (0% charcoal) and the biocomposite (30% charcoal) had characteri-
zation analyses performed before and after the photoluminosity analysis.

2.5. Characterization of Carbonaceous Biocomposites

Flexural and tensile tests were performed according to the standards of the American
Society for Testing and Materials (ASTM) using the universal mechanical testing machine
model EMIC. Flexural strength (Figure A1—Appendix A) was delimited following the
parameters of the norm [26] and the test speed was maintained at 1 mm.min−1. The tensile
tests followed the prescriptions of the standard [27] and stretching speed of 3 mm.min−1. In
order to overcome experimental and instrumental errors, seven specimens were tested. For
visualization of the structures in scanning electron microscopy (SEM), the biocomposites
were fixed on a metal support with carbon tape and metalized with gold in a Balzers Union
SCD 030 system. This ensured the accurate scanning of secondary electrons during mi-
croscopy using a microscope scanner JSM-IT200 (Tokyo, Japan), operating at 10 kV to 50 µm
zoom. SEM images were acquired using the proprietary JEOL software (Akishima, Japan).
The functional groups of the biocomposites were investigated using Fourier transform
infrared spectroscopy (FTIR) performed in a Bruker equipment (Tensor 27 model), using
an attenuated total reflectance (ATR) accessory. The spectra were obtained in the 4000 to
600 cm−1 spectral region, with a resolution of 4 cm−1, and acquired with 32 scans. Samples
were also analyzed on a Rigaku MiniFlex 600 Diffractometer (Tokyo, Japan) equipped with
a copper tube operated at 40 mA and 45 kV. Scanning was performed between 5◦ and 100◦

in steps of 0.03◦/2θ, every 3 ◦C.min−1, to analyze the phase transformations, chemical
composition, and crystalline structure of the specimens.
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2.6. Data Analysis

Data were subjected to normality (Shapiro–Wilk) and homoscedasticity (Bartlett) tests.
Analysis of variance was carried out following a completely randomized design, with
seven replicates, with three response variables related to the final temperature of charcoal
pyrolysis (400, 600, and 800 ◦C). After detecting significant differences, the regression model
that best predicted the behavior of the data was adjusted. All analyses were performed at
95% probability. Dispersion measures (standard error) were provided to better understand
the confidence interval obtained for each studied property. R core Team software version
4.3.0 was used for all statistical analyses. The R core Team software 4.3.0 was used for all
statistical analyses.

3. Results and Discussion
3.1. Characteristics of Charcoal

Porosity is one of the main characteristics present in charcoal that favors its use as
filler for the production of biocomposites. Considered a highly porous material, the volume
of charcoal can contain up to 85% pores, varying sizes, depending on the raw material
and pyrolysis temperature [28,29]. Figure A2 (Appendix A) elucidates that raising the
pyrolysis temperature results in more porous charcoal, possibly due to a more intense
removal of volatile materials present in the charcoal pores [30]. The pyrolysis temperature
of 800 ◦C (96.77%) further favored the formation of a porous structure, promoting better
adhesion with the polymer matrices and, consequently, greater mechanical resistance of
the biocomposites to be produced. The Confocal images (Figure A3—Appendix A) at
800 ◦C were marked by large numbers of pores. This characteristic is relevant for using the
material as a bioreinforcement, favoring better adhesion with polymer matrices.

The FTIR spectra of the materials (Figure A4—Appendix A) elucidated that the peaks
related to the stretching vibration of the asymmetric OH group, referring to the phenol,
alcohol, and carboxylic acid groups and water (3663 cm−1), those referring to vibration
and elongation of the CO double bond (1671 and 1728 cm−1), and those referring to double
bonds between aromatic carbons with olefin and aromatic structures (1500 cm−1), were
affected by increasing the pyrolysis temperature. The temperature of 800 ◦C favored the
formation of hydroxyl groups, which may have favored the interaction with the polymeric
matrix since its polarity was high [31].

Polarity is an important chemical property present in the material used for the pro-
duction of biocomposites, as it favors mechanical properties [32]. The changes in the
structure and chemical nature caused by the increase in the final pyrolysis temperature
of the charcoals are also confirmed by the increase in the intensity of the peaks attributed
to the aromatic/aliphatic groups in the XPS spectra (Figure A5—Appendix A). With the
increase in the final pyrolysis temperature, it is clear that the energy of the C-C/C-H group
dominates the composition of charcoal, which can be classified as hydrophobic [33–36].
Materials with greater hydrophobicity ensure better compatibility with polymers, which
favors the use of charcoal with higher pyrolysis temperatures to be used for the production
of biocomposites [32].

3.2. Biocomposites from Charcoal

The effect of pyrolysis temperature and photoluminosity on biocomposites reinforced
with charcoal flexural strength properties are shown in Figure 2A,B. The composite without
charcoal (control treatment) showed a resistance of 83.24 MPa. After the application of
photoluminosity, there was a decrease of 53% in flexural strength. It is different from
the modulus of elasticity, which presents a resistance of 2399.70 MPa, with an increase in
resistance of 8% after photoluminosity, thus favoring the use of the biocomposite produced
with charcoal for structural purposes.
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before and after photoluminosity: (A) flexural strength and (B) modulus of elasticity.

It is noticeable that the flexural properties of the biocomposites, both in terms of tensile
strength and modulus of elasticity, decreased after photoluminosity, with a decrease of
5%, 23%, 43%, and 57% for the flexural strength in the composite without fines (control
treatment) and in biocomposites, at temperatures of 400, 600, and 800 ◦C, respectively.

This behavior can be attributed to the decrease in adhesion of the fines/matrix, the
weakening of interfacial bonds, and structural changes in the macroscale of the biocompos-
ite. The same behavior occurred with bagasse fibers demonstrated by Lila et al. (2019) [37].
Studies on photoluminosity explain that the loss of mechanical performance after this
can be linked to a combination of several mechanisms, such as the predominant degra-
dation of the amorphous structure, plastification caused by moisture absorption, and
swelling stresses induced by the difference in expansion and contraction in the fines and
polymer matrix [38]. On the other hand, when changing the fines used in the produc-
tion of biocomposites, those obtained at 400 to those obtained at 800 ◦C, the modulus of
elasticity (Figure 2A) shows a trend in its behavior, decreasing in the initial stages of expo-
sure (3029, 37 MPa) and increasing at a temperature of 600 ◦C (3179.63 MPa) and 800 ◦C
(4364.3 MPa), showing superior resistance in the biocomposite produced at a higher tem-
perature (800 ◦C).

The control treatment showed tensile strength of 51.59 MPa and 20.19 MPa, before and
after photoluminosity, respectively. The tensile strength of the biocomposites with charcoal
(Figure 3) after photoluminosity obtained an increase of 69.24%, 68.98%, and 54.38% in the
biocomposites at 400, 600, and 800 ◦C, respectively, in relation to the control treatment. The
photoluminosity process increased the tensile strength of the biocomposites at temperatures
of 400 (22%), 600 (23%), and 800 ◦C (28%) compared to the control treatment.

This behavior supports that, since photoluminosity tends to reduce the tensile strength
of biocomposites, the addition of charcoal obtained with higher pyrolysis temperatures
(800 ◦C) is beneficial for obtaining a more structurally resistant material (Figures 2 and 3),
minimizing this loss of resistance, corroborating with trends of carbonaceous materials
found in the literature [8]. Carbon filler is a relevant component of polymeric biocomposites
due to its favorable properties and modification possibilities which, in combination with
suitable polymeric matrices, has a positive effect on the mechanical properties and resis-
tance of biocomposites to environmental agents and UV-C radiation [14]. The mechanical
performance of biocomposites after photoluminosity depends on the volumetric fraction of
the fines, the level of dispersion, and mainly the state of interfacial adhesion [38–40].



Polymers 2023, 15, 3788 7 of 17
Polymers 2023, 15, x FOR PEER REVIEW 7 of 18 
 

 

 

Figure 3. Tensile properties of charcoal biocomposites before and after photoluminosity. 

This behavior supports that, since photoluminosity tends to reduce the tensile 

strength of biocomposites, the addition of charcoal obtained with higher pyrolysis tem-

peratures (800 °C) is beneficial for obtaining a more structurally resistant material (Figures 

2 and 3), minimizing this loss of resistance, corroborating with trends of carbonaceous 

materials found in the literature [8]. Carbon filler is a relevant component of polymeric 

biocomposites due to its favorable properties and modification possibilities which, in 

combination with suitable polymeric matrices, has a positive effect on the mechanical 

properties and resistance of biocomposites to environmental agents and UV-C radiation 

[14]. The mechanical performance of biocomposites after photoluminosity depends on the 

volumetric fraction of the fines, the level of dispersion, and mainly the state of interfacial 

adhesion [38–40]. 

The microstructures of biocomposite surfaces are shown in Figure 3. Composites 

without fines (control treatment) showed a larger number of cracks and a rougher surface 

after the photoluminosity process (Figure 4A,B). This roughness can also be observed for 

biocomposites reinforced with carbon fines obtained at a pyrolysis temperature of 400 °C, 

making evident the low interaction between the fines and the polyester resin (Figure 4C,D), 

negatively influencing the resistance to flexion (Figure 2) and traction (Figure 3). However, 

when analyzing the biocomposites made with charcoal obtained at a higher final pyrolysis 

temperature (600 and 800 °C), it is noted that the roughness tends to decrease and the 

interaction between the fines and the polyester resin increases when subjected to the pro-

cess of photoluminosity (Figure 4E). These observations corroborate the results obtained 

in the mechanical tests (Figures 2 and 3). 

Figure 3. Tensile properties of charcoal biocomposites before and after photoluminosity.

The microstructures of biocomposite surfaces are shown in Figure 3. Composites
without fines (control treatment) showed a larger number of cracks and a rougher surface
after the photoluminosity process (Figure 4A,B). This roughness can also be observed for
biocomposites reinforced with carbon fines obtained at a pyrolysis temperature of 400 ◦C,
making evident the low interaction between the fines and the polyester resin (Figure 4C,D),
negatively influencing the resistance to flexion (Figure 2) and traction (Figure 3). However,
when analyzing the biocomposites made with charcoal obtained at a higher final pyrolysis
temperature (600 and 800 ◦C), it is noted that the roughness tends to decrease and the
interaction between the fines and the polyester resin increases when subjected to the process
of photoluminosity (Figure 4E). These observations corroborate the results obtained in the
mechanical tests (Figures 2 and 3).

When comparing the flexural strength before and after the photoluminosity, it is
verified that the resistance decreased with the effect of the photoluminosity process. This
decrease may be due to exposure to UV-c radiation, which can affect the polymer structure
of the material, preventing the polymer molecular chains from diffusing and migrating
to the surface of the polymer growth face [41–43]. Large amounts of cracks are notorious
(Figure 4), which may favor the rupture of the biocomposites in a central way, a behavior
shown in flexural strength (Figure 2).

It is observed that as the pyrolysis temperature increases, the biocomposites exposed
to photoluminosity have fewer microvoids, cavities, and gaps between the fines and
the matrix. As a result of the photoluminosity process, it is observed that cavities and
microvoids in the fracture surfaces of biocomposites decrease the interfacial bond between
bioreinforcement and polymer. As indicated by Mendes et al. [43], the hydrophobic nature
of bioreinforcements makes them compatible with hydrophobic thermoplastic polymers,
such as polyester resin, revalidating the behavior found in XPS (Figure A5—Appendix A).
The spaces formed are one of the parameters that express the quality of the interfacial
connection between the fines, and the polymeric matrix. As the number of gaps increases,
the quality of the interfacial bond decreases [41–50]. In this context, when biocomposites
containing fines obtained at higher pyrolysis temperatures are analyzed, the smaller the
number of gaps observed between the fines and the matrix subject to photoluminosity.
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before photoluminosity; (B) composite after photoluminosity; (C) biocomposites with charcoal
obtained at 400 ◦C before photoluminosity; (D) biocomposites with charcoal obtained at 400 ◦C
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The biocomposite’s chemical changes in the control treatments provided by the photo-
luminosity, were investigated by the FTIR technique. Figure 5 shows the FTIR spectra of
the resin without adding charcoal and the composites without fines (control treatment).
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with charcoal obtained at different pyrolysis temperatures (A) before photoluminosity and (B) after
photoluminosity.

The chemical structure of polyester resin contains an aromatic ring attached to a
carbon of the aliphatic hydrocarbon chain of the monomer unit (Figure A6—Appendix A).
As expected, the FTIR spectrum referring to the material without the addition of carbon
fines has a typical profile of the polystyrene polymer, with bands in the region between
3060–2800 cm−1, which are characteristic of the absorption of aliphatic and aromatic C-H
stretching vibrations mode. The absorption band located at 1720 cm−1 corresponds to
the C=O stretching vibration, which may be present in regions of the polymeric chain
due to the use of organic peroxide as a radical initiator (crosslinking initiator) during the
polymerization reaction. Still, in the FTIR spectrum of the resin, the absorption bands
present between 1600 and 1450 cm−1 are attributed to the C=C stretching vibration in
aromatic compounds. The aliphatic C-H bending is observed in the absorption band at
1375 cm−1. C-O stretching vibration absorption bands appear at 1250 cm−1, and in the
region between 1150 and 1050 cm−1. The absorption bands attributed to the out-of-plane
C-H bending vibrations present in the ring appear between 900 and 675 cm−1 [51].

Photoluminosity can lead to changes in the chemical structure of the resin, such as the
abstraction of hydrogen atoms from the polymeric chain, forming unsaturated groups [51],
or the formation of free radicals [52], among others. These changes in the structure of the
molecule can result in changes in the FTIR profile, mainly in the absorption region due to
the presence of carbonyl groups (1830–1600 cm−1) and C-H (~3500 cm−1) [43]. Usually, the
absorption band located around 1720 cm−1 may convolve into more absorption bands as
photoluminosity progresses. Furthermore, the appearance of absorption bands in the region
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of 3500 cm−1, or their increase in intensity, would confirm the effect of photoluminosity
on the polymeric chain [53]. However, these aspects were not seen in the FTIR spectra
of the photodegraded polymeric resin investigated in this work. On the other hand, the
absorption bands located at 988 and 652 cm−1 (out-of-plane C-H bending vibrations)
shifted to lower wavenumbers, probably due to the influence of structural changes in the
photodegraded polymeric chain, such as conjugation effects [51].

The FTIR spectra of the composites showed similar profiles to the polyester spectrum,
indicating that there were no significant structural changes in the composites that could
be detected by photoluminosity. However, some absorption bands changed their intensi-
ties after the incorporation of charcoal in the resin, probably caused by the filling of the
spaces distributed along the polymeric matrix by charcoal particles. Furthermore, the
charcoal added to the resin can interact with the polymer via π–π interactions between the
graphitic structure and the aromatic units of the polyester, also causing this variation in the
magnitude of some spectral bands [20,23,38,39].

This phenomenon was more evident in the FTIR spectra of the composites containing
charcoal obtained at the highest pyrolysis temperatures (600 and 800 ◦C), which have
better organization of their chemical structure promoted by the increase in the pyrolysis
temperature. The more organized structure of charcoal results in materials with better
hydrophobicity and, therefore, with a greater tendency to disperse uniformly in the inter-
crossed polymeric chain, thus reducing the gaps formed in the polymerization process [54].
These characteristics can also be evidenced by the variation in the intensity of the ab-
sorption peaks observed in the spectra of the composites [55]. Figure 6 shows the X-ray
diffractograms of the composites before and after photoluminosity.
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A typical diffraction profile of amorphous materials with high carbon content in the
composition is observed (Figure 6), which can be seen by the presence of two broad peaks
centered on 2θ de ~20◦ e 43◦ [56]. X-ray diffractograms did not show significant changes
in the structure of biocomposites after ultraviolet irradiation. However, a slight increase
in peak intensity close to 20◦ was observed in all composites, probably due to the greater
structural ordering of the polymeric chain caused by the photoluminosity process.

4. Practical Applications and Future Perspective

The results obtained in this work show promising results on the evaluation of resis-
tance to exposure of biocomposites to UV-c radiation. With this information, it is possible
to establish durability parameters of the material according to its exposure to weather
conditions. The charcoal fines showed significant results, indicating that the presence of
these bioreinforcements, especially those produced at higher temperatures (800 ◦C), reduce
the negative impacts of UV-c exposure on the mechanical, chemical, and thermal properties
of the biocomposites. Such characteristics can be considered as promoting increased dura-
bility of biocomposites, which can enable their use for different applications that demand a
series of structural efforts and varied exposure to climatic and environmental conditions.
With more information about the resistance and durability of biocomposites exposed to
photoluminosity conditions, it will be possible to direct, in a more straightforward way,
these materials to the civil construction and automotive industries, which demand high
resistance of materials to environmental exposures.

5. Conclusions

The pyrolysis temperature and the demonstrated porosity is of significant relevance, as
higher temperatures result in a more porous structure, favoring more effective interactions
with the polymer matrices. An in-depth porosity analysis revealed that higher pyrolysis
temperatures, notably those around 800 ◦C, led to the formation of a more porous carbon
structure, thus increasing the mechanical strength of the biocomposites. In this context, the
mentioned temperature plays a crucial role in promoting the generation of hydroxyl groups,
which optimize adhesion to polymer matrices. The observations related to the effect of
photoluminosity on the mechanical strength of the material further deepen our understand-
ing. Although photoluminity initially had a negative impact on mechanical strength, the
incorporation of charcoal from higher pyrolysis temperatures showed a substantial increase
in mechanical strength after exposure. As a result of the photoluminosity process, it is
observed that cavities and microvoids in the fracture surfaces of biocomposites decrease
the interfacial bond between bioreinforcement and polymer. The hydrophobic nature of
the bioreinforcements makes them compatible with hydrophobic thermoplastic polymers
such as polyester resin, revalidating the behavior found in XPS. This phenomenon was
more evident in the FTIR spectra of the composites containing charcoal obtained at the
highest pyrolysis temperatures (800 ◦C), which show better organization of their chemical
structure promoted by the increase in the pyrolysis temperature. The more organized
structure of charcoal results in materials with better hydrophobicity and, therefore, with a
greater tendency to disperse evenly in the polymer chain, thus reducing the gaps formed
in the polymerization process.

Finally, these findings have a significant impact on the durability of carbon-reinforced
biocomposites, particularly those from higher pyrolysis temperatures. This behavior pro-
vides a promising path for applications in demanding sectors such as civil and automotive
engineering, where materials that resist these environmental conditions are required.

6. Patents

In this article, an innovative methodological approach aimed at the effects of photolu-
minosity in biocomposites is presented. The objective is to obtain a deeper understanding
of their behavior in order to improve the properties and expand the application possibilities
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of these materials. The legal protection of this innovation is ensured through the patent
process number BR 10 2022 026841 0.
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