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Abstract: Polyetheretherketone (PEEK) is widely used in dentistry owing to its exceptional properties,
including its natural appearance; however, existing surface treatment methods for bonding PEEK
have limitations. Autofocus laser cutters, known for their precise engraving and cutting capabilities,
offer potential for surface treatment of PEEK; thus, the objective of this study was to investigate
the creation of laser groove structures on PEEK to enhance its bonding capability with dental resin
cement. A dental computer-aided design and manufacturing system was used to fabricate PEEK
samples, and three groove patterns (circle, line, and grid) were generated on PEEK surfaces, with
air-abrasion used as the control group. The surface characteristics, cell viability, and bond strength
were evaluated, and the data were statistically analyzed using one-way analysis of variance and post
hoc Tukey’s tests (α = 0.05). Laser-treated PEEK exhibited a uniform texture with a groove depth
of approximately 39.4 µm, hydrophobic properties with a contact angle exceeding 90◦, a surface
roughness of 7.3–12.4 µm, consistent topography, and comparable cell viability compared with
untreated PEEK. Despite a decrease in bond strength after thermal cycling, no significant intergroup
differences were observed, except for the line-shaped laser pattern. These findings indicate that the
autofocus laser cutter effectively enhances the surface characteristics of PEEK by creating a uniform
texture and grooves, showing promise in improving bonding properties, even considering the impact
of thermal cycling effects.

Keywords: polyetheretherketone; surface treatment; autofocus laser; bond strength; CAD-CAM;
resin cement

1. Introduction

Polyetheretherketone (PEEK) is a semi-crystalline high-performance thermoplastic
polymer material formed by connecting a phenylene ring backbone through ether and
carbonyl bonds [1,2]. The stable structure of the phenyl rings renders PEEK molecules stiff,
while providing exceptional dimensional, thermal, and chemical stability [3,4]. PEEK’s
development began in aerospace and defense, then moved to industry [5,6]. By the late
1990s, it gained prominence in biomedicine due to its radiolucent nature, becoming a
favored choice over metal implants in surgeries and orthopedics [7]. Subsequently, PEEK
started being used in dentistry and was initially processed through casting techniques in
granular or tablet forms. With the flourishing of digital dentistry, PEEK materials were
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developed into disk-shaped blocks suitable for dental computer-aided design and manufac-
turing (CAD-CAM) systems, such as VESTAKEEP (Polyplastics-Evonik Corporation Ltd.
Japan) [8]. In addition to its mentioned physicochemical stability, PEEK’s low density of
1.4 g/cm3 is notable in dentistry for offering comfort and minimizing foreign body sensa-
tion in prosthetics [9]. PEEK’s elastic modulus (4–7 GPa), resembling that of the human
mandible or teeth, allows for strong shock absorption and pressure relief, rendering it
well-suited for dental implants or abutments, functioning as effective shock absorbers [10].
Previous research suggests PEEK’s strong biocompatibility with oral fibroblast cells, mini-
mal inflammation, and positive osseointegration, potentially even impacting biofilm and
reducing inflammation around implants [11–13]. Moreover, the easy reproducibility of
PEEK using digital fabrication techniques further enhances its appeal in the field of den-
tistry [14,15]. The convergence of these factors has increasingly highlighted PEEK’s role
and made it a favored material in dental applications [16].

To ensure a secure and strong bond with other dental materials, including resin cement,
acrylic resin, and composite resin [17,18], PEEK surfaces require adequate pretreatment,
typically mechanical and chemical pretreatments, before bonding [19]. Mechanical pretreat-
ment typically involves air-abrasion using alumina oxide particles [20,21], with optimal
parameters being a blasting pressure of 2 bar and an alumina particle size of 110 µm [22].
Chemical pretreatment often involves applying a primer containing methyl methacrylate
(MMA) to the surface of PEEK, effectively enhancing its bonding properties [23,24]. Con-
centrated acid etching is mainly accomplished using a piranha solution and sulfuric acid.
Research indicates that sulfuric acid etching effectively creates intricate surface pore struc-
tures and enhances bond strength [25,26], yet some studies, like Stawarczyk et al.’s research,
have shown that solely using sulfuric acid to etch PEEK can increase surface roughness and
surface energy, but it does not significantly enhance PEEK’s bonding strength [27]. Piranha
solution, comprising sulfuric acid and hydrogen peroxide, acts as a strong oxidizing agent
to remove organic residues from surfaces. Theoretically, it can enhance surface energy and
functional groups of PEEK, promoting potential chemical bonding with other materials;
however, Keul et al.’s research contradicts this, indicating that piranha solution does not
effectively improve bonding with composite resins [28]. Nonetheless, the use of concen-
trated acid etching presents safety challenges due to the highly toxic nature of the acid,
particularly in dental technician operations.

Many researchers have used lasers, including CO2 [29], neodymium-doped yttrium
aluminum garnet (Nd:YAG) [30,31], erbium-doped yttrium aluminum garnet (Er:YAG) [32],
erbium, chromium:yttrium-scandium-gallium-garnet [33], and potassium titanyl phosphate
(KTP) [34], to irradiate dental materials, resulting in improved bond strength. However,
the widespread adoption of computer numerical control (CNC) lasers in dental clinical
practice is hindered by limitations such as device size and laser source intensity. Therefore,
exploring alternative effective methods for surface treatment of PEEK to attain desirable
bonding effects is essential for expanding its clinical utility. Autofocus laser cutters (ALCs)
have found wide applications in material engraving, etching, and cutting, particularly in
the production of leather and metal jewelry, enabling precise and intricate effects [35,36].
ALCs operate through computer software for design and control. They autofocus the
laser beam energy onto the material surface according to the design file, enabling precise
engraving and etching [37,38]. While air-abrasion has gained significant clinical popularity,
the machinery associated with the blasting process might not always align with the specific
requirements of typical dental clinics. In situations where dental equipment requires repair,
executing surface treatments poses challenges and often involves the inconvenience of
dispatching items to dental laboratories. In contrast, ALCs offer distinct advantages. They
are compact, are easy to use, operate solely on power, and can be integrated with CAD-
CAM systems, allowing for customizable patterns and structures. They exhibit remarkable
versatility, enhancing their suitability for clinical settings. This underscores a notable shift,
as ALCs not only simplify operational demands but also amplify their practicality within
the realm of dental practice.
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The objective of this study was to use an ALC to create groove structures with vari-
ous morphologies on the surface of PEEK, with the aim of enhancing the bond strength
between PEEK and dental resin cement. The hypothesis tested was that the laser-created
groove structures would not yield a significant enhancement in the overall bonding efficacy
of PEEK.

2. Materials and Methods
2.1. Sample Preparation and Surface Pretreatment

All the materials used in this study are listed in Table 1. Experimental PEEK samples
(Polyplastics-Evonik Corporation Ltd., Tokyo, Japan) with a diameter and thickness of
10 mm and 2.5 mm, respectively, were designed and fabricated using a dental CAD-
CAM system (DGSHAPE DWX-52DCI; Roland DG Corp., Hamamatsu, Japan). A total of
146 pieces of PEEK samples were produced. The samples were cleaned with isopropanol,
followed by steam, and then air-dried. Subsequently, an ALC (cubiio 2; MUHERZ Limited,
Taiwan Branch (BVI), Taipei, Taiwan) was used to create groove structures on the PEEK
surface (Figure 1). The structures were divided into three patterns: CP group, circle patterns;
LP group, line patterns; and GP group, grid pattern. The ALC operated at a power of
20 W and speed of 8 mm/s, with five laser engraving passes performed on a specific area.
As a control group (NP group), aluminum oxide sand (Cobra; Renfert GmbH, Hilzingen,
Germany) was used for air-abrasion, with a blasting pressure of 0.2 MPa, particle size of
110 µm, sandblasting time of 10 s, and distance of 10 mm.

Table 1. Materials used in the present study.

Product Name Composition Manufacturer Lot Number

VESTAKEEP (DC4450) 80% PEEK with 20% filler, including
titanium dioxide and 1% pigment

Polyplastics-Evonik
Corporation Ltd., Tokyo, Japan 57781699

G-CEM LinkForce

Paste A: bis-GMA, UDMA,
dimethacrylate, etc.

Paste B: bis-MEPP, UDMA,
dimethacrylate, etc.

GC Corp., Tokyo, Japan 022009

Cobra (110 µm) Al2O3, SiO2 Renfert GmbH, Hilzingen, Germany 2327409
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Figure 1. Autofocus laser cutter used in the current study.

2.2. Cell Culture and Cell Metabolic Activity: Biocompatibility Evaluation

The human gingival fibroblast-1 (HGF-1) cell line was obtained from ATCC (#CRL-
2014) and cultured in Dulbecco’s Modified Eagle Medium (DMEM) high glucose medium
supplemented with 10% fetal bovine serum, 100 g/mL streptomycin, and 100 U/mL
penicillin at 37 ◦C and 5% CO2. The medium was changed every three days. Cells
at confluence from passages 3–7 were used for subsequent experiments. Autoclaved
specimens (121 ◦C, 1.2 kg/cm2, 30 min) were transferred to a 24-well plate, and the HGF-1
cell line was seeded on top of each PEEK sample at a density of 3 × 106 cells/well. While
in direct contact, the HGF-1 cell line and PEEK samples (n = 3, N = 36) were incubated for 1,
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2, and 4 days, and cell metabolic activity was subsequently assessed using PrestoBlue cell
viability reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocol.

2.3. Surface Characterization Analysis

The surface morphology of the samples was observed using a dental microscope
at a magnification of 10× and an optical microscope (BA210; Motic Medical Diagnostic
Systems, Co., Ltd., Xiamen, China) at magnifications of 40× and 100×. Surface patterns
were observed and dimensions analyzed using a 3D optical microscope (VHX-700, Keyence
Taiwan, Co., Ltd., Taipei, Taiwan) at a magnification of 500×. A contact angle analyzer
(Phoenix Mini, Surface Electro Optics Co., Ltd., Gyeonggi-do, Republic of Korea) was
used to determine the surface wettability and surface free energy (SFE) of the treated
PEEK surfaces (n = 5 per group, N = 15). PEEK surface roughness (Ra) (n = 5 per group,
N = 15) was assessed within a 50 × 50 mm area using a stylus profilometer (DektakXT,
Bruker Taiwan Co., Ltd., Zhubei, Taiwan).

2.4. Bonding Strength Evaluation

A circular acrylic mold with an inner diameter of 5 mm was placed in the center of the
pretreated PEEK samples to establish the bonding area. Resin cement (G-CEM LinkForce;
GC Corp., Japan) was flowed into the mold, and a bonding cap was placed on top, applying
a pressure of 4.9 N. Preliminary light curing was performed for 3 s, followed by the removal
of excess resin cement and final light curing for 10 s. After completion of the bonding
process, the samples were maintained in a chamber at 37 ◦C for 60 min. The samples were
then divided into two groups (n = 10 per group, N = 80): one group was immersed in
distilled water at 37 ◦C for 24 h, and the other group underwent 5000 cycles of artificial
aging at 5–55 ◦C (ISO 10477 [39]). Shear bond strength (SBS) between the PEEK and resin
cement was tested using a universal material testing machine (JSV-H1000; Algol Instrument
Co., Ltd., Taoyuan, Taiwan), with shear force applied until fracture occurred. The mean
and standard deviation of all SBS values were calculated. Following bond strength analysis,
debonded surfaces were observed using a dental microscope at a magnification of 8× to
determine the failure mode, categorized as adhesive failure (A failure), cohesive failure (C
failure), or a combination of adhesive and cohesive failures (AC failure).

2.5. Statistical Analysis

The sample size for each group was calculated based on a G*Power software (version
3.1.9.6) with 80% power and 0.05 level of significance, which enabled clinically justified
recommendations. Statistical software (SPSS, version 19, IBM Corporation, USA) was
utilized to compute the mean and standard deviation for the entire dataset. Prior to
further analysis, the normal distribution and variance homogeneity of all values underwent
assessment through the Shapiro–Wilk test and Levene’s test, respectively. As the data in this
study displayed a normal distribution, parametric analysis methods were employed. The
biocompatibility evaluation experiments were replicated thrice for each specific assay. To
analyze the data, we employed one-way analysis of variance (ANOVA). The comparisons
among the results of surface wettability, SFE, and Ra values were performed using one-way
ANOVA. Additionally, the SBS of PEEK and dental resin cement, after being subjected to
various groove structures and thermal cycling, was assessed using two-way ANOVA. All
comparisons among the multiple groups (CP, LP, GP, and NP) were examined through post
hoc Tukey’s honest significant difference test. The significance level for all analyses was set
at 5%.

3. Results
3.1. Surface Characteristics: Biological and Physical Properties

Microscope observations revealed a uniform texture on the PEEK surface, with dark
areas corresponding to laser-created grooves, and lighter regions representing the PEEK
materials (Figure 2). Further analysis using a 3D optical microscope revealed that the
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depth of the laser-created groove was approximately 39.45 µm (Figure 3). In group GP, the
laser-induced grooves exhibited a melting phenomenon caused by the dense mesh-like
structure, leading to reduced exposure of the PEEK material (Figure 2).
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Figure 4 illustrates the cell metabolic activity of the HGF-1 cell line in direct contact
with PEEK material. The analysis results revealed that laser surface-treated PEEK showed
comparable cell metabolic activity to untreated PEEK (p > 0.05). Furthermore, both treated
and untreated PEEK samples did not significantly differ (p > 0.05) in cell metabolic activity
compared with the blank control containing only DMEM. The samples exhibited a surface
roughness ranging from 7.3 to 12.4 µm, and their surface topography remained consistent
(Figure 5). Regarding surface wettability, all laser-treated samples demonstrated hydropho-
bic properties, with contact angles exceeding 90◦. Specifically, group GP exhibited contact
angles exceeding 100◦ (Figure 5), and the SFE ranged from 13.8 to 19.3 mN/m.
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Figure 5. Surface roughness (Ra) measured using a stylus profilometer, and contact angle (CA) and
surface free energy (SFE) determined using a contact angle analyzer. CA results are reported in
degrees, whereas SFE results are expressed in mN/m.

3.2. Bonding Performance: Bond Strength and Durability

Figure 6 shows the results of the SBS test and failure mode analysis. Prior to the
artificial aging test, all samples exceeded the ISO 10477 specification [39] of a 5 MPa
bond strength (Figure 6A). Among the tested groups, the GP group exhibited the highest
SBS (8.01 MPa), followed by the CP (7.09 MPa), NP (5.73 MPa), and LP (5.62 MPa) groups.
However, after undergoing the artificial aging test, SBS decreased for all samples (Figure 6B).
The LP group exhibited the highest reduction rate (20.36%), followed by the CP (15.38%),
NP (7.91%), and GP (7.80%) groups. Nevertheless, no significant differences were found
among the groups (p > 0.473), although only the LP group fell below the 5 MPa standard
(ISO 10477 [39]). In a comparison among groups, prior to artificial aging, the GP group
exhibited a significantly higher SBS compared with the NP and CP groups (p < 0.05), and
the CP group showed significantly higher SBS compared with the LP group (p < 0.05). After
artificial aging, only the GP and NP groups differed significantly in terms of SBS (p < 0.05).
Figure 6C presents the results of the debonded fracture surfaces after SBS testing, where
the A failure mode was the predominant failure type, and only the CP and GP groups, in
the nonaged cycle groups, had one sample with an AC failure.
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4. Discussion

Laser engraving technology uses high-energy laser beams for noncontact surface
engraving of materials [40,41]. The ALC is equipped with sensors and a control system
that monitors the laser beam’s focal point position and automatically adjusts the cutting
head’s height [37,38], optimizing cutting quality, reducing costs, and enhancing production
efficiency and consistency [40,42]. Based on the present results, the ALC is proposed as a
novel tool for surface treatment of PEEK to improve its properties and enhance bonding
with resin cement. Existing literature confirms PEEK’s excellent biocompatibility [43,44],
raising concerns about potential impacts on biocompatibility after laser treatment. However,
direct culturing of laser-treated PEEK samples with the HGF-1 cell line resulted in no
significant differences compared with untreated or blank samples, suggesting that ALCs do
not compromise PEEK’s biocompatibility (Figure 4). Regarding the potential cytotoxicity
of ALP, although it was not examined in our experiment, it is important to highlight the
study conducted by Peng et al. [12]. They conducted a cytotoxicity comparison among
various materials, including the same PEEK (VESTAKEEP) we utilized, as well as zirconia
and titanium, using primary human oral fibroblasts (HOFs). Their findings revealed no
statistically significant difference in cytotoxicity activity among HOFs exposed to different
extracts, implying that VESTAKEEP is non-cytotoxic. With comparable outcomes in cellular
activity and cytotoxicity, our experiment suggests that ALP treatment does not influence
cellular activity, thereby implying that ALP is unlikely to cause cytotoxic effects.

Researchers have used CNC lasers (e.g., Nd:YAG, Er:YAG, and KTP) for pretreating
restorative materials [29–32,34], significantly improving bonding performance by modi-
fying the surface characteristics. However, these CNC lasers have high laser density and
intensity, and their bulky nature limits convenience and practicality in dental practice. The
compact size and lower emission intensities of ALCs make them a promising device for
dental clinical practice [45]. Surface characteristics analysis (Figure 5) of ALC-treated PEEK
samples revealed laser grooves with Ra values of 7.3–12.4 µm, comparable to Ra values
obtained by Tsuka et al. [30] and Shabib et al. [31] (approximately 15.3 µm) after Nd:YVO4
laser treatment. Furthermore, Kimura et al. [46] reported an increase in the contact an-
gle of PEEK surfaces from 116.1◦ to 126.5◦ following Nd:YVO4 laser treatment, aligning
with the hydrophobic changes observed in the current study. Notably, ALC exhibits a
similar capacity to modify material surface characteristics as Nd:YVO4 laser or other CNC
laser systems.

The current study used ALC for PEEK surface treatment, resulting in improved bond
strength between PEEK and resin, effectively refuting the null hypothesis. Tsuka et al. [30]
and Shabib et al. [31] reported a SBS range of 13.2–16.3 MPa for PEEK surfaces treated with
an Nd:YVO4 laser, and Ulgey et al. [34] achieved SBS values of 16.4 MPa and 11.3 Mpa
when treating PEEK surfaces with Nd:YAG and KTP lasers, combined with a nanohybrid
composite, respectively. In the current study, ALC-treated PEEK surfaces exhibited an SBS
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with resin cement ranging from 5.62 to 8.01 MPa before artificial aging (Figure 6). Although
these SBS values were lower than those achieved with CNC lasers, they still exceeded
the clinical threshold of 5 MPa specified by ISO 10477 [39]. Notably, the exclusion of
primer smearing might have contributed to the lower SBS values in this study. MMA-based
primers, such as visio.link (bredent, Senden, Germany) or HC primer (Shofu, Kyoto, Japan),
have been reported in the literature to enhance bond strength between inert surfaces of
high-performance polymer-based materials [18,23]. Incorporating a discussion on primer
smearing in future considerations could lead to higher SBS values.

Airborne particle abrasion is widely used to treat various materials, including tita-
nium alloys, zirconia ceramics, and thermoplastic high-performance polymers. In previous
studies, the influence of different sandblasting conditions, such as particle size and blasting
pressure, on the SBS of zirconia with composite resin [47], as well as PEEK with resin
cement [22], was explored. Drawing on insights gained in the PEEK investigation [22],
optimal conditions for airborne particle abrasion of PEEK in clinical applications involved
using 110 µm alumina particles at a jet pressure of 0.2 MPa. PEEK samples treated un-
der these conditions initially exhibited an SBS of 7.43 MPa, which decreased slightly to
6.68 MPa after artificial aging. These results suggest that this specific condition offers a
satisfactory balance between bond strength and durability, preserving the integrity of PEEK
without causing damage. Although the LP group fell below the desired threshold of 5 MPa
(ISO 10477 [39]), both the CP and GP groups exhibited SBS values comparable to those
achieved with air-abrasion and showed resistance to artificial aging. Therefore, ALCs can
be considered a viable alternative surface treatment method, with the added advantage
of automated operation, reducing human-induced variables and enhancing precision and
homogeneity, leading to minimized errors, time-saving, and cost reduction.

Comparing the SBS of the CP group (with concentric circle patterns) and GP group
(with grid patterns), the former exhibited slightly lower values. Specifically, the CP group
showed an SBS of 7.09 MPa and 6.00 MPa for the nonaged and aged groups, respectively,
whereas the GP group exhibited an SBS of 8.01 MPa and 7.36 MPa for the nonaged and aged
groups, respectively. However, the statistical analysis revealed no significant difference
between the two groups (nonaged group, p = 0.541; aged group, p = 0.209). From a clinical
perspective, the concentric circle pattern may offer advantages owing to its alignment
with the tooth axis, providing enhanced resistance against occlusal forces and mastication.
Considering both experimental data and the clinical perspective, creating concentric circle
patterns through laser engraving might represent the optimal design structure.

The current study possesses certain limitations. Firstly, it is crucial to note that the
impact of ALC on PEEK could potentially lead to irreversible carbonization, thus compro-
mising its visual appeal and aesthetic appearance. Secondly, a compelling need exists for
enhanced precision in ALC equipment to enhance its effectiveness. Moreover, the evolving
landscape of material surface treatments encompasses multifaceted approaches, including
combining physical ALC with chemical primer applications. Notably, bonding performance
is intricately linked to factors like the types of resin cement used. In this specific study, only
one type of resin cement was employed (G-CEM Link Force, GC), potentially failing to
comprehensively represent the entire spectrum of available resin cements in contemporary
clinical dentistry. The aforementioned limitations and issues require further exploration
and refinement in future research endeavors. This step is vital in facilitating the broader
adoption of ALC within dental clinical practice.

5. Conclusions

The ALC was shown to be an impressive option for surface treatment, as evidenced
through the remarkable uniform texture and intricate grooves it creates. These features
contribute to its effectiveness in enhancing the surface characteristics of PEEK. Laser-treated
PEEK exhibits hydrophobic properties, consistent surface topography, and comparable cell
viability to that of untreated PEEK, further affirming the effectiveness of the ALC approach.
Although the bond strength of all samples was affected by artificial aging, intriguing
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dynamics between different treatment groups emerged from intergroup comparisons.
Overall, this study emphasizes the potential of laser surface treatment to enhance PEEK’s
bond with resin cement, thus advancing its applicability in dentistry. Nevertheless, it is
important to note that the irreversible carbonization caused by the laser process might
affect the material’s appearance, which highlights the need for meticulous evaluation of
aesthetic considerations in dental clinical scenarios.
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