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Abstract: This study investigated the relationship between the structure and mechanical properties
of polycaprolactone (PCL) nanocomposites reinforced with baghdadite, a newly introduced bioactive
agent. The baghdadite nanoparticles were synthesised using the sol-gel method and incorporated
into PCL films using the solvent casting technique. The results showed that adding baghdadite to
PCL improved the nanocomposites’ tensile strength and elastic modulus, consistent with the results
obtained from the prediction models of mechanical properties. The tensile strength increased from
16 to 21 MPa, and the elastic modulus enhanced from 149 to 194 MPa with fillers compared to test
specimens without fillers. The thermal properties of the nanocomposites were also improved, with
the degradation temperature increasing from 388 °C to 402 °C when 10% baghdadite was added to
PCL. Furthermore, it was found that the nanocomposites containing baghdadite showed an apatite-
like layer on their surfaces when exposed to simulated body solution (SBF) for 28 days, especially in
the film containing 20% nanoparticles (PB20), which exhibited higher apatite density. The addition
of baghdadite nanoparticles into pure PCL also improved the viability of MG63 cells, increasing
the viability percentage on day five from 103 in PCL to 136 in PB20. Additionally, PB20 showed a
favourable degradation rate in PBS solution, increasing mass loss from 2.63 to 4.08 per cent over four
weeks. Overall, this study provides valuable insights into the structure-property relationships of
biodegradable-bioactive nanocomposites, particularly those reinforced with new bioactive agents.

Keywords: baghdadite; polycaprolactone; nanocomposite; composite films; bone tissue engineering;
solvent casting method; mechanical properties; thermal properties; biological properties

1. Introduction

One of medical science’s biggest challenges is eliminating bone defects [1]. Physical
injuries or illness may be the root of these defects. Nevertheless, statistics show that over
two million bone grafts are performed yearly, the second most common graft transplant
after blood transfusion [2]. The vast majority of bone injuries, due to the regeneration
ability of bone, can heal spontaneously under sufficient physiological and environmental
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conditions but not in significant defects due to some metabolic factors, level of defects,
or unstable biomechanical properties. However, the healing process of bone defects is
time-consuming. New bone generation takes place slowly because of a decreased blood
supply to the fracture site and an insufficiency of calcium and phosphorus to strengthen
and harden the new bone. So, bone grafts or substitute biomaterials emerge as therapeutic
strategies for clinical bone surgery to fill the bone defects for reconstructing large bone
segments [3,4].

The materials utilised in bone grafting are classified into three types: autografts, al-
lografts, and xenografts. Tissue-engineered biomaterials are an alternative option that
includes synthetic and biological-based substitutes [5,6]. Despite the promising results
of allogeneic and autologous transplantation, the risk of disease transmission, immune
incompatibility, confined availability, and donor site invalidism led to the assistance of
tissue engineering to repair and regenerate damaged tissue [7]. Although the best standard
clinical material for bone regeneration is autologous bone graft in osteoinduction and osteo-
conduction, there are concerns about donor site morbidity and the limited availability [8].
Compared with autografts, allografts have poorer integration characteristics with the host
healing tissues [9]. Xenografts, in addition to the drawbacks of allografts, pose the danger
of zoonotic disease transmission, and graft rejection is more probable and severe [10].

In the past decade, the urgent need for the development of clinical bone repair materi-
als with the same results as natural bone, the engineering bone tissue, has emerged and has
achieved rapid progress [11]. The bone accommodates a nanocomposite structure of poly-
meric collagen fibres and hydroxyapatite crystals [12]. The ideal alternative to bone should
be biocompatible, repair the bone defect quickly, and not cause an adverse inflammatory
response. However, it should be resorbable, osteoconductive, and osteoinductive [13]. Vari-
ous materials have been developed as bone graft replacements, such as metals, ceramics,
and polymers [14]. Therefore, due to the limitations of each category of material, composite
and nanocomposite grafts consisting of at least two different components are developed to
engineer and design grafts for targeted applications.

Nanocomposite polymers generally consist of polymers combined with inorganic/organic
fillers at a nanometre scale [15]. Compared to traditional micro composites, nanocomposites
exhibit improved mechanical and functional capabilities due to their interaction with
the polymer matrix. Utilising nanometric manufactured structures and the high surface
area-to-volume ratio that nanomaterials naturally possess, research to enhance material
characteristics has steadily increased over the last two decades [16]. Because nanoparticles
and polymers interact more efficiently, nanocomposite biomaterials or bio-nanocomposites
offer more flexibility when designing specific properties [5,17]. Comparing them to their
micro- and macro-composite counterparts, polymer nanocomposite biomaterials have
better mechanical properties [18].

Among various biomaterials, biodegradable polymers offer numerous applications
in the medical field, including biomedical devices, wound dressing, drug delivery and
fabrication of tissue engineering, orthopaedic regeneration applications, and temporary
prosthetic implants [19]. Poly(e-caprolactone) (PCL) is a biodegradable aliphatic polyester,
semi-crystalline, with a low glass transition temperature (approximately —60 °C) [20]. PCL
is a rigid polymer with relatively low tensile Young’s modulus and yield stress [21].

Aliphatic polyesters such as PCL have been widely investigated for biomedical appli-
cations because of their simultaneous biodegradability and biocompatibility [22]. However,
PCL has a slow degradation rate (in the range of 24 years) [23] and poor bioactivity, which
causes fibrous tissue formation [24]. PCL is the proper material for biomedical purposes,
but it faces challenges due to its low degradation rate and low mechanical properties,
which have limited its application [25]. Studies reveal that adding biomaterials such as
bioceramics increases the rate of bioactivity and mechanical properties [26,27]. PCL and
bioactive ceramics have been evaluated by composites such as 3-tricalcium phosphate [28],
bioglass [29], and hydroxyapatite [30].
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Studies show a promising potential for the PCL nanocomposite to be used widely in
the treatment of bone fractures through grafting [31]. The PCL nanocomposite appears to
play an integral part in restoring bone defects. Also, it can increase mechanical properties,
the rate of degradation, and bioactivity; these are required for bone tissue engineering.

It is beneficial to fabricate thick films as a precursor to the creation of 3D scaffolds
since this method makes it easier to introduce individual factors and determine how they
affect cell growth. It is necessary to adequately analyse and optimise a film’s qualities
before considering using it as a substrate for cell culture. In order to create dense polymer
nanocomposite films, researchers have experimented with several processing methods.
Nanostructures can typically be incorporated into polymers using the solution method.
In this method, polymers are dissolved in an appropriate solvent containing nanoscale
particles, and in the next step, the solvent is evaporated or precipitated. Solvent casting,
which involves using a solvent in which the polymer is soluble, is a versatile, inexpensive,
and quick method for creating polymeric nanocomposite films [32].

Nanocomposite materials based on bioactive ceramics have mainly become the most
promising materials in bone defect repair due to their properties, such as excellent biocom-
patibility, osteoconductivity, mechanical strength, and osteogenic characteristics [33]. The
matrix function holds the bioceramics together and transfers the loads applied to the bulk
material. Also, bioceramics are the principal components of biocomposites that are suitable
and vital for guided bone-tissue regeneration [34].

Calcium silicate ceramics have superior biological characteristics, such as bioactiv-
ity, biocompatibility, and enhanced cell interaction [35]. Among various calcium silicate
ceramics, baghdadite (Ca3ZrSi;Oy) is of significant interest mainly because of its mechan-
ical and biological properties [36]. Furthermore, incorporating zirconium elements into
the crystal structure of calcium silicates enhances its physical, mechanical, and biological
properties [37]. For instance, researchers fabricated Ca3ZrSipOy scaffolds and showed an
extremely novel bone formation for baghdadite scaffolds [38].

The present study developed a new biodegradable PCL-baghdadite nanocomposite
using the solvent casting technique. The effect of the baghdadite addition on nanocompos-
ites” mechanical, thermal, biological, and surface morphology was evaluated to develop
bioactive, bioresorbable, and mechanically robust nano-biocomposites. According to the
authors’ literature reviews and the best of knowledge at this point in time, no studies have
been reported enlightening the correlations among the fabrication, structure, and proper-
ties of a PCL-based nano-biocomposite film reinforced with baghdadite as the bio-active
filler by the solvent casting method. This study was inspired by the natural structure of
bone, which contains apatite nanoparticles and collagen polymer. PCL was selected as a
matrix and reinforced with baghdadite nanoparticles to examine the physicochemical and
biological behaviour of the specimens used in applications of bone tissue engineering.

2. Materials and Methods
2.1. Materials

Calcium nitrate tetrahydrate, ethanol, and chloroform were obtained from Merck
(Darmstadt, Germany). Polycaprolactone (PCL) (p = 1.45 g/mL and Mn = 80,000) and
zirconium (IV) oxynitrate hydrate were purchased from Sigma-Aldrich (Burlington, MA,
USA), and Tetraethyl orthosilicate (TEOS) that was used as a Si source was provided by
Samchun Chemical Co (Pyeongtaek-si, Republic of Korea).

2.2. Preparation of Baghdadite Powder

Baghdadite powder with a nanostructure was synthesised via the sol-gel process de-
scribed in detail by Sadeghzade et al. [39]. To begin, initial materials were chosen, including
zirconium nitrate oxide (ZrO(NOj3);), calcium nitrate tetrahydrate (Ca(NO3);-4H0), and
tetraethyl orthosilicate (TEOS, (C,H50)45i). A mixture of TEOS, ethanol, and HNOs3
(2 M) was created with a molar ratio of 1:8:0.16 and stirred for half an hour. After-
wards, ZrO(NO3); and Ca(NOs3),-4H,O were incorporated into the mixture, ensuring



Polymers 2023, 15, 3617

4 of 24

a Zr/Ca/TEOS molar ratio of 1:3:2. This solution was stirred continuously for five hours.
Following this, the solution was maintained at 60 °C for a day and then dried at 100 °C
over two days, which resulted in a dry gel. This dry gel was annealed at 1150 °C for 3 h as
a final step.

2.3. Fabrication of PCL-Baghdadite Nanocomposites

The selection of the proper solvent system is the main factor in a suitable solution-
mixing process. The polymer solution’s viscosity and solvent conductivity depends on the
solvent density and polymer molecular weight [40]. The PCL solution with 10 v/v% chlo-
roform was prepared and stirred for 24 h to develop a homogenous solution. Baghdadite
nanoparticles were added and mixed to obtain a homogenous suspension.

Table 1 shows the designation of the samples with PCL matrix in various amounts
of baghdadite nanoparticles. The suspension was ultrasonically treated for 30 min before
casting to achieve a more uniform dispersion and remove bubbles. The suspension was
poured into the metallic mould and dried at room temperature for 24 h. After complete
drying, the films were detached from the mould.

Table 1. Designation of PCL nanocomposites and their composition.

PCL (wt.%) Baghdadite (wt.%) The Abbreviated Name
100.00 0.00 PCL
95.00 5.00 PB5
90.00 10.00 PB10
85.00 15.00 PB15
80.00 20.00 PB20
75.00 25.00 PB25
70.00 30.00 PB30

2.4. Morphological Characterisation of PCL-Baghdadite Films

Transition electron microscopy (TEM) (Philips EM208S, operating voltage 100 kV,
Amsterdam, The Netherlands) is used to determine the particle size and perform the
morphological studies of baghdadite powder. The sample’s surface morphology was
observed using scanning electron microscopy (SEM, Seron AIS 2100, Philips XL30, 30 kV
acceleration voltage, Uiwang, Republic of Korea).

The X-ray diffraction (XRD) was carried out using a Philips X'Pert MPD diffractome-
ter. BAGHDADITE’s nano crystallite size (D) was obtained using the modified Scherrer
equation in Equations (1) and (2) [41].

L=KA/(Bcosb)=(KA/B)(1/cos b) 1)

Ln L =Ln(KA/B) + Ln(1/cos 6) (2)

where K is a constant related to crystallite shape, generally considered to be 0.9, 8 is the
peak width of the diffraction peak profile at half the maximum height achieved from small
crystallite size, and A is the X-ray wavelength in nanometres. The value of the  in the 26
axis of the diffraction profile is in radians [41].

2.5. Mechanical Characterisation and Modeling

The samples were prepared based on ASTM D 882 to characterise the tensile properties
of thin plastic films [42]. The tensile test was performed on a Testometric Hounsfield H25KS
universal testing machine (10 mm/min crosshead speed). The test specimen’s dimensions
were 0.08 x 10 x 50 mm. The standard deviations and average values were ascertained
from testing three samples of any nanocomposite system.

Also, the experimentally obtained mechanical properties of the fabricated composites
are compared using the models of Chow [43], Ponte Castaneda [44], Counto [45], and the
Generalised self-consistent scheme (Gscs) [46], Halpin Tsi [47] and Nielsen [48]. These
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analytical, semi-empirical models predict the elastic modulus of composite systems in
which filler particles modify the polymer matrix. In selected models, the particles are
assumed to be uniform in size and firmly bonded to the matrix. Both the filler and matrix
are homogeneous and isotropic, including the interaction of filler with filler. Factors such
as the volume fraction of particles, dispersed-phase Poisson’s ratio, Young’s modulus of
particles, and Young’s modulus of the matrix influence the relative Young’s modulus of
the composite.

2.6. Thermal Study

Thermogravimetric analysis (TGA) was used to study the thermal degradation of
the fabricated baghdadite/PCL nanocomposites using a TA Instruments STA (Bahr 503
system analyser, Munich, Germany). Specimens of roughly 10 mg were placed in alumina
containers and tested at a heating rate of 10 °C/min in a vacuum atmosphere with a
thermal gradient over a temperature confine of 25 to 600 °C. The thermal behaviour of the
baghdadite/PCL nanocomposites was studied using the differential scanning calorimetry
(DSC) device (Sanaf, Tehran, Iran) in a nitrogen atmosphere. The samples were heated
from —80 to 80 °C at a heating rate of 10 °C/min. The melting parameters were obtained
from the heating scans. In order to characterise the crystallinity of PCL and composite film
behaviour, Equation (3) was utilised, where X, is the degree of crystallinity, H ris the heat
of fusion obtained in experimental conditions, W), is the polymer weight fraction in the
composite system, and Hyygp is the heat of fusion for 100% crystalline polymer (for PCL, it
was considered 136 ] /g [49]).

H
Xer(%) = ——F—— % 100 3)
WP X Hfloo

2.7. In Vitro Bioactivity Evolution of Nanocomposite Films

The amount of bioactivity and, more precisely, the ability to form hydroxyapatite
on the surface of the nanocomposite structure were investigated by placing it in a sim-
ulated body solution (SBF). The simulated body solution was prepared by the Boehner
method [50]. PCL films consisting of various amounts of baghdadite nanopowder (n = 4)
witha 10 mm x 10 mm dimension were immersed in SBF solution (pH 7.4) at 37 °C for four
weeks. The pH value of SBF solutions containing samples was measured through the soak-
ing time, utilising a pH meter (Metrohm, Herisau, Switzerland). Furthermore, EDS analyses
and SEM were used to examine the apatite-formation capacity on the sample’s surface.

2.8. Ion Release Study

The samples’ calcium, silicon, and phosphorous ion release profiles were recorded
using Inductively Coupled Plasma Mass Spectrometry (ICP-OS, Varian, ES 730, Palo Alto,
CA, USA) for 28 days. Nanocomposite samples that were 300 microns thick were immersed
in the Simulated Body Fluid (SBF) at 37 °C. Each time, the ion concentrations were assessed
related to the amount of fresh medium, and the collective concentration of released ions
was reported over 28 days.

2.9. Degradation Test

The mass loss method was used according to ASTM F1635 to measure the degradation
rate of nanocomposites [51]. In this method, the films of 10 x 10 mm? were first weighed
(3 pieces for each composition). After this stage, the samples were placed in phosphate-
buffered saline solution (pH = 7.4) at a steady temperature of 37 °C. The films were set in
phosphate-buffered saline (PBS) solution for 7, 14, 21, and 28 days. The washed samples
were then placed in the desiccator until the specimens were dried out entirely and weighed
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again. The destruction rate of samples (percentage of degradability) was calculated using
the following equation:

% Mass loss = [(Wy — W)/ W] x 100 4)

where W) is the original initial weight while W; is the weight at time ¢ after drying (after
soaking in PBS). The alterations in the surface morphology of samples were investigated
utilising SEM images after the degradation period.

2.10. Biocompatibility of Nanocomposite Films

The cytotoxicity of PCL-based films was investigated by an indirect 3-(4,5-dimethylthiazol-
2-y1)-2,5-diphenyltetra-zolium-bromide (MTT, Sigma, Saint Louis, MO, USA) assay. To ensure
the removal of solvents and disinfect any contamination toward in vitro cell experiments,
all films were washed with 70% volume ethanol in water and then dried. MG63 cells
(human osteoblast cells purchased from the Royan Institute, Teheran, Iran) were used as
favourable cell types for investigating the biocompatibility of the nanocomposite films with
osteoblasts. A total of 10* cells/mL were seeded on the PCL-based composites in 96-well
plates for 24 h using Eagle’s medium Alpha modified supplemented with 10% fetal bovine
serum (FBS) and 1% streptomycin/penicillin under standard culture conditions (5% CO,
and 100% humidity, 37 °C). The media was refreshed every two days. After removing
the medium on days 1, 3, and 5, 100 pL MTT agent was inoculated into each well and
incubated for 4 h. Next, 100 uL. DMSO was added to the well to dissolve the formazan
crystals, and the ELISA Reader (Stat Fax-2100, Miami, FL, USA) was used for detecting
absorbance (at 545 nm).

The MG63 cells viability was calculated using Equation (5), where A is the absorbance
of the treated sample, and A}, and A, are the blank (DMSO) and control (tissue culture
plate) (TCP) absorbances, respectively.

% relative cell viability = [(As — Ap)/(Ac — Ap)] x 100 (5)

Also, the morphology of MG63 cells on PCL-based composite films was investi-
gated using SEM images. A DAPI staining of living MG63 cell nucleus (4/,6-diamidino-2-
phenylindole, blue fluorescence in live cells) in contact with PCL and PCL-based composite
films was used to examine the proliferation of the cells. After washing with PBS, MG63 cells
were fixed in 10% paraformaldehyde (Sigma Aldrich, Darmstadt, Germany) for 20 min,
stained with DAPI, and photographed using a fluorescence microscope (Nikon TE 2000-U,
Tokyo, Japan).

2.11. Statical Analysis

GraphPad Prism Software evaluated statistical analysis (V.6). Every experiment was
performed at least three times, and the mean and standard deviation of the results were
published (SD). Differences were declared significant at a probability error (p) of p < 0.05.

3. Results and Discussion
3.1. Characterisation of Baghdadite Powder

The XRD pattern of synthesised baghdadite powder is presented in Figure 1a. The
XRD pattern wholly matched with the standard card of baghdadite (JCPDS 00-016-0155),
confirming the presence and synthesis of pure baghdadite with no impurities. According to
the modified Scherrer equation, the crystallite size of baghdadite was measured at around
25 nm.
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Figure 1. (a) XRD pattern of nano-baghdadite, (b) TEM image, (c) crystal structure [52], and (d) the
formation mechanism of synthesised baghdadite powder.

Figure 1b presents the TEM image of the synthesised baghdadite powder. As illus-
trated, the particles display a distinct spherical shape, emphasising the successful fabrica-
tion process. The size of these baghdadite particles was found to be within the 20-70 nm
range, confirming their classification as nanoparticles. Furthermore, the mean particle
size of the baghdadite was determined to be approximately 30 nm. Similar grain sizes for
baghdadite crystals have been reported in previous findings [39]. Particle agglomeration is
noticeable alongside the relatively uniform distribution of baghdadite within the matrix.
This agglomeration signifies the high surface energy inherent in nanoparticles and their
propensity to form clusters, corroborating earlier reports [53,54].

Baghdadite (CasZrSi;Oy) features a monoclinic crystal structure, as depicted in Figure 1c,
which is a component of the CaO-ZrO,-5iO, system. Baghdadite is categorised under
the cuspidine group, a collection of silicates with a typical formula M4(SiO7)X;. Here, M
represents a cation of variable charge and ionic radii that typically occupy an octahedral
space, while X can be OH, F, or O. As depicted in Figure 1c, baghdadite presents ZrOg
with six Zr-O distances that vary from 1.97 A to 2.2 A [55]. Figure 1d depicts the process
of baghdadite formation. The initial step involves the hydrolysis of TEOS (reaction 1).
Provided a sufficient amount of ethanol (H*) and a catalyst, such as HNO3, are used
in this study, complete hydrolysis of TEOS can occur, as outlined in reaction 2. Before
large silica molecules form a polymeric network in the solution through a condensation
process, Zr** and Ca?* are introduced to the solution to prevent segregation. Following
these steps, the next phase of baghdadite synthesis can be seen as reaction 3 in Figure 1d.
Various orthosilicates with different unit cells and symmetry patterns can connect with
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these octahedral walls. A second distinguishing feature of these minerals is the ionic
distribution within the polyhedron, which is tied to their crystal chemistry [55].

3.2. Morphological Properties

The XRD patterns of the baghdadite-reinforced nanocomposites at different nanopow-
der loadings are shown in Figure 2. The XRD pattern in the case of pure PCL shows the
presence of a semi-crystalline structure due to the existence of hydrogen bonds of the
hydroxyl groups [56]. The XRD peak intensities of PCL demonstrate the main and highest
peaks of PCL occurring between 20 < 26 < 25°, while the prominent baghdadite peaks are
located at 29 < 20 < 33°. Although these two patterns do not overlap prominent constituent
peaks, the increase in baghdadite wt.% exhibits an opposite effect on PCL’s peak intensity
since PCL’s characteristic peak moves toward the lower angles.

B: Baghdadite
P: PCL

PCL

B PB5

5 PB10

P ,,__ S 2. PBIS
B

N NN
__‘/\—\__._/L 5 PB25
P B R —

PB30

B Baghdadite

i
|

=
ml®

20 22 24 26 28 30 32 34
20 (degree)

Figure 2. XRD patterns of PCL, PB5, PB10, PB15, PB20, PB25, and PB30. The change in colour from
top to bottom indicates an increase in baghdadite.

Moreover, the results in the case of composite films indicate that adding baghdadite
nanoparticles into PCL leads to a decline in the size of crystallites, as seen in Figure 2. In
this regard, De Menezes et al. [57] reported a similar behaviour. The results, additionally,
exhibit that pure PCL and PB30 lead to the most significant and lowest size of crystals,
respectively, of all other nanocomposites. The findings could be connected to the presence
of filler inclusions among the polymer chains acting as nucleating sites for crystal formation.
This result is consistent with Khan et al.’s research [58] on the effect of particles on polymer
chain crystallinity. The observations could also be considered as the high evaporation
rate of the solvent. This acts as a barrier against the growth of crystallites in the PCL
matrix. Polycaprolactone’s decrease in crystal peak intensity demonstrates that baghdadite
particles are distributed and dispersed in the polymer matrix.

The SEM images were used to determine the dispersion and distribution of fillers
within the matrix after processing. Figure 3 represents the surface morphology of the
pure PCL and those of nanocomposites reinforced with 10 to 30 wt.% of baghdadite. The
images show that the fabrication process yields an appropriate relative level of dispersion,
as represented by the baghdadite powder. The increase in the amount of baghdadite in
the parent polymer does not significantly alter the distribution level of fillers in the matrix.
However, with the rise of reinforcing particles in the composite, agglomeration increased
too [59].
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Figure 3. SEM images of baghdadite/PCL nanocomposites. (a) PCL, (b) PB10, (c) PB20, and (d) PB30.

3.3. Thermal Properties

The thermal characteristics of the specimens were assessed to determine better key
interplays between the structure and the eventual mechanical response of the samples.
Figure 4 shows the DSC traces obtained by thermal characterisation of 0-30 wt.% baghda-
dite reinforced PCL. The DSC analysis results reveal that the melting temperature of the
PCL specimen decreases from 76.1 °C to 72.3 °C and 71.6 °C when 5% and 10% of baghda-
dite are used. The results also indicate that the melting temperature of the nanocomposites
remains invariant and reaches ~73.4 °C by adding a higher wt.% of baghdadite.
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Figure 4. DSC thermographs of PCL, PB5, PB10, PB15, PB20, PB25, and PB30. The change in colour
from top to bottom indicates the decrease in baghdadite.

The observations could be correlated to the presence of competitive effects that in-
dependently contribute to the melting point of composites. First, adding baghdadite
nanoparticles to PCL could decrease crystal thickness since the particles provide a more
significant number of nucleating sites, as described earlier. It has been broadly reported
that thinner crystallites result in lower melting temperatures. Second, the greater density
of the added filler at higher loading produces more pinning sites, which impede crystal
growth in composites loaded with a high wt.% of baghdadite. This phenomenon influences
both primary nucleation rate and crystal/spherulite growth.

Table 2 shows the degree of crystallinity of PCL and composite films. In general,
with the addition of baghdadite, a decrease in the degree of crystallinity of the composites
is observed at first. The crystallinity degree, Xcr, decreased when fillers were added to
composites (the most significant decrease in the sample containing 10 wt.% Baghdadite). In
nanocomposite films, crystallisation behaviour may be decreased due to reduced mobility
of the polymer chains caused by fast nucleation on the surface of the filler.

Table 2. Crystallisation parameters of PCL and composite films (% of crystallisation).

PCL PB5 PB10 PB15 PB20 PB25 PB30
81.9 72.4 51.6 59.6 67.6 67.2 64.6

However, with the increase in the baghdadite’s weight percentage, the crystallinity
level increases again and remains almost constant in the same range. In contrast, the
increase in filler content (15 wt.% and more) made this effect less prominent. Heteroge-
neous nucleation on the surfaces of the fillers may be the primary process behind the
matrix’s crystallisation behaviour in polymer/filler composites [60]. Therefore, depending
on the nucleation abilities and baghdadite wt.%, the values of Xcr may be increased or
diminished in different content of baghdadite-PCL composites. Similarly, the effect of filler
addition on the crystallinity properties of polymer composites was investigated by other
researchers [61-63]. The nucleation is hampered due to increasing the filler content, as
previously indicated, and the values of Xcr closer to levels of the neat PCL. This outcome
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is explained by the ability of the filler’s more significant volume fraction to counteract
agglomeration at higher filler contents.

Representative DTA tests were performed to understand better specimens’ thermal
behaviour concerning changes in the composites structure. Figure 5a indicates that adding
10 wt.% baghdadite to the neat PCL increases the degradation temperature from 388 °C
to 402 °C. Likewise, the TG test showed the same results (Figure 5b), confirming the
increase in degradation temperature. The findings corroborate the hypothesis that bagh-
dadite/PCL composites exhibit a more significant thermal damage threshold than pure
PCL by enhancing the interaction at the interface of baghdadite and PCL. It can be con-
cluded that baghdadite contributes relatively to improving the thermal stability of PCL
nanocomposite films.
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Figure 5. (a) DTA, (b) derivative of TG, and (c¢) TG curves of PCL, baghdadite, and PB10 as a function
of temperature.

Representative TGA analyses of specimens during the heating scan are shown in
Figure 5c. This Figure illustrates the mass loss of the PCL and baghdadite phases compared
with that observed in composites with 10 wt.% baghdadite reinforced PCL. The results reveal
that all the mass of pure PCL is decomposed when the temperature reaches 600 °C. In contrast,
the thermal stability of 10 wt.% PCL nanocomposites has improved compared with that of
pure PCL. The outcomes are consistent with the findings of Abdolmohammadi et al. [64],
where adding calcium carbonate to PCL improved its thermal and mechanical properties.
The mass loss traces further show the reduction in mass loss of specimens reinforced with
10 wt.% baghdadite and indicate that 75% of the mass is evaporated during the thermal
scan of specimens from room temperature to 600 °C. This temperature variation may be
attributed to a transition from the simple chain scission degradation process that is typical
of raw PCL [65] to a more complicated, two-step nucleation-driven degradation process,
which implies the degradation process begins at discrete points (in the presence of baghda-
dite) and then spreads to the remaining polymer [66]. The TGA representative curves also
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signify a mass loss of ~7% in the case of pure baghdadite at the end of the heating scan.
The results obtained can be attributed to the presence of moisture in baghdadite samples,
which cannot be avoided due to the time scale from sample preparation for testing.

3.4. Mechanical Properties

The tensile strengths, Young’s modulus, and strain rate of the pure PCL film and the
PCL-baghdadite nanocomposite films are represented in Figure 6. It is clearly shown that
pure PCL attains the lowest tensile stress strength among all fabricated composites. In
contrast, the PB20 yields the most significant strength, around 20 MPa. Moreover, as shown
in Figure 6, the elongation values of films decrease by adding baghdadite. Particularly after
PB10, the strain rate of all samples is under 450%.
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Figure 6. (a) Tensile strength, (b) Young’s modulus, and (c) strain rate of Baghdadite/PCL nanocom-
posites films. Significant differences between the samples are shown by “*” (p < 0.05).

Figure 7a shows the results of prediction models compared to the experimental data.
Figure 7b indicates the error percentages of the models based on baghdadite wt.%. The
highest and lowest error percentages in the prediction of the elastic modulus of composite
in Conto are 31.29 and 0.76, in Ponte Castaneda are 26.15 and 0.65, in Chow are 15.21 and
2.74, and in GSCS are 14.34 and 0.68 Mpa.
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Figure 7. (a) Elastic modulus of experimental results and prediction models of PCL, PB5, PB10, PB15,
PB20, PB25, and PB30. (b) Error percentages of prediction elastic modulus of selected models in
different baghdadite wt.%.

In the case of reinforced composites, the matrix mostly bonds the loading. Particle
dispersion in the matrix impedes molecular chain movement [67]. This explains why the
PCL composite containing baghdadite was of higher strength than the pure PCL. The mod-
ulus decreases as the filler is added due to large agglomerates acting as cracking initiation
sites as the filler amount increases. The modulus decreases as the filler is added due to
large agglomerates acting as cracking initiation sites as the filler amount increases [68]. The
results are consistent with a study published on HA as a filler in polymer composites [69]. A
poorly dispersed matrix may result in the agglomeration of HA particles in the composite,
resulting in poor strength properties [70].

The results show that Ponte Castaneda has proper adaptability up to 20% baghdadite,
where the error rate is less than 10%. In PB25 and PB30, the error slope increases as the
error increases to 25% and 30%, respectively. Therefore, this model can provide a suitable
estimate of the elastic modulus up to 20 wt.% baghdadite particles in polycaprolactone.
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Formerly, Bergstrom et al. [71] reported that this model predicted the experimental data up
to 25% of the filler volume fraction.

Chow’s model has a very conservative estimate of the effect of increasing the per-
centage of baghdadite on the increase in strength of the composite. Its elastic modulus is
best estimated at 30% baghdadite wt.% because of this reason. While in Counto and Ponte
Castaneda’s models after PB20, the elastic modulus increases significantly and causes more
error in the estimates, this model has a more accurate estimate.

Counto is the best model until 20% of the filler. The error of this model in this interval
is less than 5%. Halpin Tsi and Nielsen have similar behaviour in estimating the strength
value, with the difference that Nielsen always predicts more conservative numbers of
elastic modulus. At 25% by weight of baghdadite, four models (Halpin Tsi, Nielsen, CGSC,
and Chow) predict the elastic modulus of the composites with an error of less than 10%.
The generalised self-consistent scheme shows the most accurate prediction in PB25. Also,
based on the results, the two GSCS and Chow models with a high weight percentage (30)
have proper accuracy with less than 10% error. Mainly, GSCS has fewer approximations
than the four models.

As shown in Figure 6, adding the baghdadite particles enhances the mechanical
properties as theoretically expected [72]. The observations suggest that a proper interfacial
interaction exists at the baghdadite nanoparticles and polymer interface and an appropriate
level of baghdadite dispersion [73]. The results thus signify quite good bonding at the
interface of the baghdadite polymer, corroborating that the reinforcement phase shares
its mechanical properties with the parent PCL matrix. Moreover, it is clearly shown that
the tensile strength and elastic modulus concurrently decrease at the more significant
loadings of the reinforcements. This result was also obtained by Liang et al. [74]. This
finding could be attributed to various mechanisms available due to the filler—filler and
filler-polymer interactions.

The agglomeration of baghdadite particles decreases the surface-to-volume ratio
(specific volume) and the available surface area between the reinforcements and polymer.
Thus, a reduction in the level of interfacial load transfer [17]. Moreover, as explained earlier,
it has been frequently shown that fillers might act as nucleating agents in the formation of
crystals in semi-crystalline polymers. The mechanical properties that are reduced when
more remarkable filler contents are used could be attributed to the amount and size of the
crystals created in the matrix [75]. The other reason worth mentioning is the slippage sites
among the reinforcements when the surface of the particles has not been well-wetted by
the polymer phase resulting in an agglomerated phase and, consequently, the existence
of interfacial voids and micro-crack sites. Previous studies have widely reported that the
agglomeration phase cannot be effortlessly avoided during the nanocomposites’ fabrication
process, particularly at more remarkable filler contents. The extensive surface area of the
reinforcement phase at the nano-size level is one main factor leading to the poor dispersion
of nanoscale materials in a polymer matrix [76,77].

Since the presented models do not consider cases such as particle size, particle inter-
action, and the distribution of particles in matrixes. Further, with the increase in weight
percentage, due to the high surface energy of the nanoparticles, they become agglomerated,
their level of uniformity in the field decreases, the probability of creating bubbles in the
sample increases, and the amount of interaction between the particle and the matrix de-
creases. As a result, the mechanical properties reduce, so in the theoretical models, ideally
considering conditions, an increase in weight percentage leads to more volume occupied
by the filler material and, finally, an increase in mechanical properties in the ideal situation.

3.5. Bioactivity Assessment

Three compounds were selected for bioactivity evaluation. Figure 8a—d show the SEM
images, XRD patterns, and energy dispersive X-ray analysis (EDS) of PCL, PB10, and PB20
after 28 days of immersion in the simulated body solution (SBF), respectively.
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Figure 8. SEM images and EDS of samples after 28 days of soaking in SBF solution on the surface of
(a) PCL, (b) PB10, and (c) PB20. (d) EDS analysis of composite films after 28 days of immersion in
the SBF solution. (Percentage distribution of elements in PCL, PB10, and PB20). (e) XRD patterns of
composite films after 28 days of immersion in the SBF solution.

While no apatite of the angular crystal shape was formed on the PCL film, white parti-
cles were observed on the pure PCL surface. Their morphology is entirely different from
the spherical morphology of hydroxyapatite particles. These particles are the precipitation
of salt crystals from the simulated body solution compounds; therefore, the PCL film does
not have much bone growth potential. Formerly, similar behaviour was noted for many
polymers and polycaprolactone [78-80]. The images show the growth of hydroxyapatite
particles on the film surfaces containing baghdadite particles. However, the PB20 has a
higher apatite density, and the accumulation of white apatite precipitation can be seen on
the sample’s surface, suggesting a high degree of bioactivity.

As seen in Figure 8d, the precipitation on the PCL film’s surface is rich in sodium and
chlorine, resulting from the body’s simulated solution. Sediments formed on composite
films containing baghdadite nanoparticles contain calcium and phosphorus. The calcium-
to-phosphorus atomic ratio is approximately 1.74 (PB10) and 1.67 (PB20). These atomic
ratios of calcium are very close to the phosphorus of apatite (1.67) [81], which exhibits the
apatite formation on the surfaces of the composite film. Therefore, it could be concluded
that raising the number of nanoparticles could increase the bioactivity of the specimens.

XRD pattern of specimens (Figure 8e) indicated sharp peaks at 26 = 31° belonged to
hydroxyapatite, which confirmed the bioactivity of PCL-based films containing baghdadite
particles. Similar results, reported by Soleymani et al. [82], confirmed the bioactivity of
baghdadite nanoparticles. They developed chitosan/PCL baghdadite nanocomposite as a
bioactive coating for magnesium alloys [82].
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3.6. Ion Release Study and pH Evaluation

Figure 9a—c show the trend of variations in the calcium, phosphorus, and silicon ion
concentrations after 28 days in the simulated body solution. These curves are plotted
from the inductively coupled plasma mass spectrometry (ICP) test results. According to
studies [83,84], silicon release in the baghdadite compound due to ion transfer between
the baghdadite nanoparticles and the ions in the simulated body solution is the principal
bioactive factor of baghdadite films. As a result of this displacement, the silicate bonds
of baghdadite (Si-O-Si) are broken, and the Si-OH bonds (hydrophilic groups of silanol)
are formed on the surface of the nanoparticles. The ion concentration variations in the
simulated body solution after 28 days of immersion (Figure 9a—c) also release silicon ions
and reduce the percentage of calcium and phosphorus ions. These results confirm that the
apatite phase deposition is present on the surface.

Ion Concentration
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Figure 9. Changes in the concentration of Ca, P, and Si ions in SBF solution during 28 days of
immersion of films including (a) PCL, (b) PB10, and (c) PB20. (d) XRD patterns of composite films
after 28 days of immersion in the SBF solution.

By releasing silicon ions from baghdadite nanoparticles into the SBF and forming
silanol groups, suitable places are provided for phosphorus and calcium ion deposition
from the simulated body solution [85]. Accordingly, the increase in the bioactivity of
composite films using baghdadite nanoparticles is due to their partial dissolution and
release of silicon ions, which provide a suitable surface place on the films for apatite
formation. In addition, it seems that the separation of baghdadite nanoparticles exposed to
the SBF increases the surface roughness of the film and provides suitable germination sites
for the apatite phase to grow.

With a further increase in baghdadite nanoparticles in composite samples, the amount
of calcium absorption from the SBF and the formation of more apatite on the surface of
the films increases, so the concentration of this ion, according to Figure 9a—c, gradually
decreases in the simulated body solution. Figure 9d shows the pH changes of the SBF
solution at different immersion times in films containing different amounts of baghdadite
nanoparticles. The pH of the SBF initially increases over a 28-day period, which is 7.8 and
8.1 for PB10 and PB20, respectively. Subsequently, these values decrease and reach 7.3 and
7.7 at the end of 28 days. In the case of pure PCL, the pH decreases slowly to about 7.2. The
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reduction in pH is because of the slight degradation of the polymer chains and the release
of small polymer chains with acidic ends, as mentioned in other research [86,87].

The acidic products due to the degradation of PCL enters the solution and leads
to a slight decline in the pH of the solution. During the first weeks, the dissolution of
baghdadite particles leads to replacing silicon and calcium ions with H* ions from the SBF
solution, increasing the pH. Then, with the deposition of calcium and phosphorus on the
films and their concentration in the solution, the alkaline environment decreases, and the
pH decreases again. In fact, within the first weeks, particle dissolution is predominant. In
the end, sedimentation and apatite formation are the leading causes of pH changes.

3.7. Degradability Assessment

Figure 10 shows scanning electron microscopic images and the degradability of com-
posite films after 28 days of immersion in PBS solution, respectively.

0 7 14 21 28
Day

Figure 10. SEM images of (a) PCL, (b) PB10, and (c) PB20 after 28 days of immersion in the PBS
solution. (d) Graph of the weight loss percentage of different composite films as a function of
baghdadite wt.%.

As seen in the images, the degree of degradability grows by increasing the baghdadite
content. Most of the rupture points are located in the vicinity of baghdadite particles. The
findings reveal an increase in the rate of degradation of fabricated films in the presence
of this bioceramic in PBS solution. It was previously noted that PCL has a low rate
of degradation and bioactivity, which could be modified by composite construction to
improve its biological properties, as mentioned in previous studies [25]. As can be seen
from Figure 10, the increase in baghdadite nanopowder content has led to the further
weight loss of the composite films. After about one week of immersion of the samples
in the phosphate-buffered solution, the weight loss rate of the samples becomes almost
constant. Over time, the weight loss of all of the films also increases, so that at the end of
day twenty-eighth, the weight loss of PCL, PB10, and PB20 is 2.63 & 1.3%, 3.18 £ 1.5%, and
4.08 £ 1.69%, respectively.

The separation of silicon ions due to the nanometre-sized baghdadite in the construc-
tion causes the hydrolysis of 5i-O-5i groups on the surface. It forms hydrophilic (S5i-OH)
groups, separating silicon and breaking the bonds containing this particle. Due to the
interfacial interaction between ceramic nanoparticles and the polymer matrix, the pres-
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ence of these groups at the interface increases the two components of film degradation.
Furthermore, the increase in the degradation rate of the film caused by adding ceramic
nanoparticles could be attributed to the increased reaction surface of the solution. In
addition, it could enhance samples’ surface roughness [88,89].

3.8. Biocompatibility of PCL-Based Composite Films

MTT results for composite films after 1, 3, and 5 days are indicated in Figure 11a. MG63
cell viability ratios on PCL, PB10, PB20, and PB30 films are shown in Figure 11b. Also, for
better confirmation of film cytocompatibility, SEM images are presented in Figure 12.
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Figure 11. (a) Cell survival of MG63 cells cultured on the nanocomposite films and (b) cell viability
ratio of the nanocomposite films on day 5/day 1. Significant differences between the samples are
shown by “*” (p < 0.05).

Figure 11 shows that cell growth increased regardless of the baghdadite percentages,
increasing the culture time, which shows the biocompatibility of all fabricated films. After
five days of cell culture, the number of living cells is almost twice as high as after one day
of culture. As shown in Figure 12, some cells are marked for easier identification. The
SEM images in Figure 12 revealed the excellent attachment of cells on the specimen surface,
attributed to the Si, Ca, and Zr ions’ ability for bone cells to attach to the substrate. On
the other hand, there is an apparent relationship between the extracted ions and cellular
activity. Therefore, the presence of Si, Ca, and Zr ions in the culture media should be the
main reason for better cell attachment, viability, and proliferation on PCL films containing
baghdadite. Similar results were reported in the Pahlevanzadeh et al. study [85], which
confirmed that incorporating baghdadite into PCL-containing substrates can enhance
osteoblasts attachment and viability. The Si ions in this ceramic, including the silica group,
may be negatively charged due to their lower isoelectric point, releasing the Si-OH groups
in the media. The Si-OH groups could join functional groups containing growth factors,
providing suitable sites on the Si-containing ceramics for cell growth [90].

Another effect on cell viability and adhesion is from porosity and film pores. Similarly,
Wu et al. [91] reported that pores with suitable sizes could create desirable binding sites
for cell attachment. Regarding the effects mentioned above, the sample with 20 wt.% of
baghdadite exhibited optimal conditions for the sample’s biocompatibility. Also, in the
Bedair et al. [92] study, poly(lactide-co-glycolide) (PLGA) composites containing magne-
sium hydroxide (MH) nanoparticles were fabricated via a solvent casting technique and
modified with polydopamine (PDA) for morphogenetic protein-2 (BMP2) delivery. Their
results demonstrated that a PLGA /MH scaffold could improve MC3T3-E1 cell proliferation
and osteogenic differentiation, revealing ceramic-containing substrates” appropriate cell
behaviour [92]. In another study by Chahal et al. [93], better cell activity and particularly
more mineralisation of extracellular matrix were observed for calcium phosphate-loaded
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poly(ethylene glycol) scaffolds, which can confirm the favourable effect of Ca-containing
ceramics on bone regeneration.
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Figure 12. SEM image of MG63 cells cultured on (a) PCL, (b) PB10, (c) PB20, and (d) PB30 films.
Yellow arrows mark some cells for easier identification.

Since PCL is a hydrophobic polymer with a very low degradation rate, utilisation of
that as a coating cannot be a suitable suggestion. In this regard, in this study, opposite
of Arefpour et al. [94], PCL is used as one part of nanocomposite films. Therefore, an
improvement in cell behaviour is expected. On the other hand, the PCL coating can entrap
baghdadite nanoparticles and prevent the release of favourable ions for bone regeneration
from films, which is solved in this study.

The positive effect of baghdadite on higher viability and proliferation of both PB20
and PB30 is shown by DAPI staining of the MG63 cells cultured on the composite films in
Figure 13. This effect may be attributed to baghdadite’s bioactivity and release of silicon and
zirconium ions, which accelerates cell activity. The results show that adding Baghdadite to
PCL creates a suitable substrate for the growth and promotion of MG63 cells in composite
films. Also, with increasing cultivation time, cell growth and expansion in all samples were
observed, resulting from the appropriate biocompatibility of composite films. But in PB20
and PB30, the cell growth and expansion rate are more impressive, which aligns with the
viability test results.
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Figure 13. DAPI staining of MG63 cells on day 1 of culture: (a) PCL, (b) PB10, (c) PB20, and (d) PB30
films, and Day 5 of culture on composite films: (e) PCL, (f) PB10, (g) PB20, and (h) PB30.

A study by Ramaswamy Y et al. [95] explored how baghdadite affected human
osteoblast-like cells, osteoclasts, and endothelial cells. Their findings are consistent with
current results in that proper baghdadite cell interaction, where baghdadite, as compared to
wollastonite, promoted cell proliferation and differentiation and facilitated the attachment
of human osteoblast-like cells with a systematised cytoskeleton structure. Additionally,
researchers have demonstrated that baghdadite has beneficial effects on the development
and growth of cells [96].

4. Conclusions

This study focuses on developing biodegradable-bioactive nanocomposites using
baghdadite nanoparticles as a reinforcement phase. The baghdadite was synthesised using
the sol-gel method, and the PCL-based nanocomposites were fabricated with 0-30 wt.%
baghdadite using the solvent-casting technique. The nano size of baghdadite particles
was obtained from TEM images, and measuring the crystallite size of baghdadite powder
was carried out with a modified Scherrer equation. The results of the tensile strength, the
DSC, DTA, and TG characterisation showed that adding baghdadite to PCL improved the
mechanical and thermal properties. Six modelling cases were considered to predict the
composite system’s effective modulus. Analytical prediction models could give a good
approximation of the mechanical properties.

Moreover, the baghdadite/PCL composites demonstrated enhanced bioactivity and
apatite formation on the surface of composite films. The results of the degradability test
showed that with the increase in baghdadite nanoparticles, the amount of decomposition
of silicon-containing groups increased, and the rate of degradation of composite films
increased compared to pure PCL films. The cell culture results indicated that the bagh-
dadite particles positively affected cell growth, and the optimal composition contained
20 wt.% baghdadite, considering its mechanical properties. The findings also revealed that
baghdadite could replace the existing bioactive fillers to fabricate biodegradable-bioactive
bio-/nanocomposites with improved mechanical and thermal performance.

Overall, the study suggests that baghdadite is a promising alternative bioactive filler
for fabricating biodegradable-bioactive nanocomposites with improved properties for bone
regeneration applications.
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