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Abstract: The relaxation time and frequency spectra are vital for constitutive models and for insight
into the viscoelastic properties of polymers, since, from the spectra, other material functions used to
describe rheological properties of various polymers can be uniquely determined. In recent decades the
non-integer order differential equations have attracted interest in the description of time-dependent
processes concerning relaxation phenomena. The fractional Maxwell model (FMM) is probably the
most known rheological model of non-integer order. However, the FMM spectrum has not yet been
studied and used to describe rheological materials. Therefore, the goal of the present paper was to
study the applicability of the relaxation spectrum of FMM to the description of the relaxation spectra
of polymers. Based on the known integral representation of the Mittag-Leffler two-parameter function,
analytical formulas describing relaxation time and frequency spectra of FMM model were derived.
Monotonicity of the spectra was analyzed and asymptotic properties were established. Relaxation
frequency spectrum grows for large frequencies with a positive power law, while the relaxation time
spectrum decays for large times with a negative power of time. Necessary and sufficient conditions
for the existence of the local extrema of the relaxation spectra were derived in the form of two
trigonometric inequalities. A simple procedure for checking the existence or absence of the spectra
extrema was developed. Direct analytical formulas for the local extrema, minima, and maxima are
given in terms of model fractional and viscoelastic parameters. The fractional model parameters,
non-integer orders of the stress and strain derivatives of FMM uniquely determine the existence of the
spectrum extrema. However, the viscoelastic parameters of the FMM, elastic modulus, and relaxation
time affect the maxima and minima of the relaxation spectra and the values of their local peaks. The
influence of model parameters on their local extrema was examined. Next, the applicability of the
continuous–discrete spectrum of FMM to describe Baumgaertel, Schausberger and Winter (BSW) and
unimodal Gauss-like relaxation spectra, commonly used to describe rheological properties of various
polymers, was examined. Numerical experiments have shown that by respective choice of the FMM
parameters, in particular by respective choice of the orders of fractional derivatives of the stress and
strain, a good fit for the relaxation modulus experiment data was obtained for polymers characterized
both by BSW and Gauss-like relaxation spectra. As a result, a good approximation of the real spectra
was reached. Thus, the viscoelastic relaxation spectrum of FMM, due to the availability of the two
extra degrees of freedom (non-integer orders of the stress and strain derivatives), provides deep
insights into the complex behavior of polymers and can be applied for a wide class of polymers with
unimodal relaxation spectra.

Keywords: viscoelasticity; relaxation spectrum; linear relaxation modulus; fractional Maxwell model;
spectrum monotonicity; local spectrum extrema; BSW spectrum

1. Introduction

For several decades, apart from the classical integer-order differential models, frac-
tional order rheological models have been widely adopted to describe the combined elastic
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and viscous properties of various polymers. In fractional calculus the operations of in-
tegration and differentiation are of non-integer (fractional) order [1]. Theoretical studies
have been devoted to the study of fractional-order rheological models, e.g., [2–6] and their
application to the description of polymers, for example, poly-isobutylene [4], polyurea and
PET [6], shape memory polymers [7], amorphous polymers [8], and flax fiber reinforced
polymer [9].

The viscoelastic behavior of polymers varies depending on the type of polymer [10,11],
therefore different fractional models have been and are still being developed. Exponential
relaxation is often modeled by classic or fractional Maxwell models [2,3]. When the Debye
decays show deviations from Maxwell models, solutions can be approximated by the
exponential stretched Kohlrausch–Williams–Watts (KWW) model [12,13]. To approximate
non-exponential relaxation, inverse power-laws were also used [14–17]. Simultaneously,
the relaxation processes described by fractional Maxwell model can be fitted by asymptotic
power-law for small and large times [3,18], while the KWW model fits fractional Maxwell
model for short times [3]. Fractional viscoelasticity, a new formalism introduced for
mathematical modeling of rheological materials [14], appears to be a solid tool to describe
the relaxation processes in polymers exhibiting both exponential and non-exponential type.
Fractional order models have gained research interest due to their improved flexibility and
better adjustment of their time-dependent properties, compared to those offered by their
classic, integer order, counterparts.

Fractional Maxwell and Kelvin–Voight models are probably the most known fractional
rheological models, similarly as for integer order differential viscoelastic models [2,4,5].
However, a deep insight into the complex behavior of polymers was also provided by the
viscoelastic relaxation spectrum [11,19,20]. The relaxation spectrum is vital for constitutive
models and for the insight into the properties of a viscoelastic material, since from the
relaxation spectrum other material functions used to describe rheological properties of
the material can be uniquely determined. Therefore, the spectrum is commonly used to
describe, analyze, compare, and improve the mechanical properties of polymers [20–24].

However, there are no papers concerning the relaxation spectra of the fractional order
viscoelastic models, even the fractional Maxwell model (FMM). Although Mainardi [4,25]
and Mainardi and Spada [5] gave a spectral representation of the product of the Mittag-
Leffler one-parameter function and power of time that provides the solution to the fractional
Maxwell model with identical orders of the stress and strain derivatives, it can be directly re-
lated to the niche the definition of the relaxation spectrum as the inverse Laplace transform
of the linear relaxation modulus. The possibility of using the FMM relaxation spectrum
for modelling the relaxation spectra of polymers has not been studied so far. Thus, the
determination and investigation of the relaxation spectrum of FMM is still an open issue.

Therefore, determination of the relaxation spectra of FMM, their analysis, and studying
the applicability of these spectra to description of the relaxation spectra of polymers were
the goals of the present paper.

First, starting from the known integral representation of the Mittag-Leffler two-
parameter function, the relaxation time and frequency spectra of the fractional Maxwell
model were derived in the form of direct analytical formulas. Next, the monotonicity of the
spectra was analyzed, and asymptotic properties were established. Necessary and sufficient
conditions for the existence of the local extrema of the relaxation spectra were derived in
the form of two trigonometric inequalities. Also, some necessary conditions for the local
extrema existence were given in the form of simpler inequalities. A fast procedure for
checking the existence or not of the spectra extrema was presented based on the necessary
and sufficient extreme conditions. Direct analytical formulas for the local extrema, minima
and maxima were given in terms of model fractional and viscoelastic parameters. The
fractional model parameters, namely non-integer orders of the stress and strain derivatives
of FMM, uniquely determine the existence of the spectrum extrema. However, the local
maxima and minima also depend on the relaxation time of FMM, and the values of the
local extrema are affected by the elastic modulus of FMM.
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Next, the applicability of the continuous spectrum of FMM to describe Baumgaertel,
Schausberger, and Winter (BSW) [26,27] and Gauss-like relaxation spectra was examined.
The BSW spectrum is often used to describe rheological properties of various polymers;
for example, polydisperse polymer melts [28,29], polymethylmethacrylate (PMMA) and
polybutadiene (PBD) [30], and polymer pelts [31]. Gauss-like distributions were used to
describe rheological properties of, e.g., poly(methyl methacrylate) [32], polyethylene [33],
native starch gels [34], polyacrylamide gels [35], and carboxymethylcellulose [36].

Numerical studies were conducted, and a good approximation of the real spectra was
reached. Thus, the viscoelastic relaxation spectrum of FMM can be applied for a wide class
of polymers with unimodal relaxation spectra. The applicability of the relaxation spectra of
fractional order viscoelastic models to the description of multimodal spectra will be the
subject of future research, with particular attention to bimodal spectra.

In Appendix A, the proofs and derivations of some mathematical formulas are given
to increase the clarity of the article.

2. Materials and Methods
2.1. Maxwell Model

Classic viscoelastic Maxwell model is the arrangement of ideal spring in a series with
a dashpot (see Figure 1a) described by the first order differential equation [11,37]:

dσ(t)
dt

+
E
η

σ(t) = E
dε(t)

dt
, (1)

where σ(t) and ε(t) denote the stress and strain, respectively, E is the elastic modulus of
the spring, and η means the viscosity of the dashpot. Assuming unit-step strain ε(t) the
uniaxial stress response of Maxwell model (1), i.e., the time-dependent relaxation modulus
σ(t) = G(t), has exponential type given by [11,37]

G(t) = Ee−
t

τr ,

with the relaxation time τr = η/E.
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2.2. Elementary Fractional Scott-Blair Model 
Elementary fractional Scott-Blair model [2,4,38] is described by the fractional dif-

ferential equation: 𝜎(𝑡) = 𝐸𝜏 ( ), (2)
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Figure 1. (a) Classic Maxwell model; (b) fractional Scott-Blair model of a non-integer positive order
α; (c) fractional Maxwell model; elastic modulus E, E1, E2, viscosity η, relaxation times τr, τ1, τ2.

2.2. Elementary Fractional Scott-Blair Model

Elementary fractional Scott-Blair model [2,4,38] is described by the fractional differen-
tial equation:

σ(t) = Eτα
r

dαε(t)
dtα

, (2)

where α is non-integer positive order of fractional derivative of the strain ε(t). Here,
dα

dtα f (x) = Dα
t f (x) means the fractional derivative operator in the sense of Caputo’s frac-
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tional derivative of a function f (x) of non-integer order α with respect to variable t and
with a starting point at t = 0, which is defined by [1,4]:

Dα
t f (t) =

1
Γ(n− α)

∫ t

0
(t− 1)n−α−1 dn

dtn f (t)dt,

where n− 1 < α < n and Γ(n) is Euler’s gamma function [1] (Equation (A.1.1)).
Assuming unit-step strain ε(t), the uniaxial stress response G(t) of fractional element

(2) is given by [2,4,38]:

G(t) =
E

Γ(1− α)

(
t
τr

)−α

, (3)

i.e., is represented by power of time law.
The fractional Scott-Blair model is an intermediate model between ideal spring

σ(t) = Eε(t) and the Newton’s model σ(t) = η
dε(t)

dt of ideal fluids represented by means of
an ideal dashpot of viscosity η. The elementary fractional element (2) is uniquely described
by three parameters (E, τr, α), as shown in Figure 1b. The first material described in 1944 by
Scott-Blair and Veinoglou [39] using the fractional inverse power model (3) was bitumen.
Following that, the inverse power-laws with various exponents were used for modelling
many relaxation processes which have been reviewed by Bonfanti et al. [14]. Winter and
Chambon [40] derived a power-type relaxation modulus with an exponent of −1/2 for
cross-linking polymers at their gel point, which were used to analyze polydimethylsiloxane
gel data. Likhtman and McLeish [15], studying the stress relaxation dynamics of linear
entangled polymers (polystyrene and polybutadiene), dismissed the BSW dynamics and
applied multiplicative exponential-power-laws models. Similar models were applied by
Kapnistos et al. [16] for modelling the stress relaxation for entangled ring polymers which
have a characteristic entanglement plateau.

2.3. Fractional Maxwell Model

Connecting in a series, by analogy to classic Maxwell model, two elementary fractional
Scott-Blair elements (E1, τ1, α) and (E2, τ2, β), see Figure 1c, we obtained fractional Maxwell
model (FMM) described by the fractional differential equation [2,4,38]:

τ
α−β
r

dα−βσ(t)
dtα−β

+ σ(t) = Eτα
r

dαε(t)
dtα

, (4)

where the parameters E and τr are uniquely defined by the model components parameters
according to [18]:

τr =

[
E1(τ1)

α

E2(τ2)
β

] 1
α−β

,

E =

 (E1τ1)
−β(τ1)

α(1−α)[
E2(τ2)

β
]−α


1

α−β

.

For details of model (4) construction see, for example, [2,18]. The relaxation modulus
G(t) of FMM (4) is known for an arbitrary 0 ≤ β ≤ α ≤ 1 and given by the formula [2,4,5]:

G(t) = E
(

t
τr

)−β

Eα−β,1−β

(
−
(

t
τr

)α−β
)

, (5)
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where Eκ,µ(x) is the generalized two-parameter Mittag-Leffler function defined by series
representation, convergent in the whole z-complex plane [1,2]:

Eκ,µ(x) = ∑∞
n=0

xn

Γ(κn + µ)
. (6)

The fractional Maxwell model (4) is uniquely defined by four parameters (E, τr, α, β),
while the classic Maxwell model (1) is defined by only two parameters (E, η), or equiva-
lently (E, τr).

2.4. Spectrum of Relaxation

In rheology, it is commonly assumed that the relaxation modulus G(t) has the follow-
ing integral representation [11,19]:

G(t) =
∫ ∞

0

H(τ)

τ
e−t/τdτ, (7)

or, equivalently, by [11]

G(t) =
∫ ∞

0

H(v)
v

e−tvdv, (8)

where H(τ) and H(v) characterize the distributions of relaxation times τ and relaxation
frequencies v, respectively. Equations (7) and (8) yield the formal definitions of the relax-
ation spectra [11,19], which are related by H(v) = H

(
1
v

)
. Although other definitions of the

relaxation spectrum are used in the literature, for example, in [4,21,24,25], the definitions
introduced by (7) and (8) dominate.

3. Results and Discussion

In this section, the relaxation spectra of the fractional Maxwell model (4) are derived
based on the known integral representation of two-parameter Mittag-Leffler function. Next,
the monotonicity of the spectra was analyzed, with a special emphasis on the existence
of the spectra local extrema. The analysis of the relaxation spectra monotonicity can be
reduced to the painstaking analysis of the properties and roots of some cubic function (third
order polynomial), whence it has been moved to appendices, where the proofs of most
results are given. The necessary and sufficient conditions for the existence of the spectra
extrema are derived in the form of two algebraic trigonometric inequalities. Asymptotic
properties of the spectra are also examined. A simple scheme for the examining of spectra
peaks existence and their determination is outlined. Due to the different forms of spectrum
description, two complementary cases, when α < 1 and α = 1, were studied separately.
Direct analytical formulas for the local extrema, minima, and maxima are derived. The
influence of FMM parameters on the spectra extrema was investigated by combining
analytical and numerical approaches. Finally, the applicability of the relaxation spectra of
FMM for describing the unimodal spectra was examined; both Gauss-like and Baumgaertel,
Schausberger, and Winter spectra were studied.

3.1. Relaxation Spectra of the Fractional Maxwell Model

In [1], the following representation of two-parameter Mittag-Leffler function Eκ,µ(z) (6)
was obtained for complex variable z such that |arg(z)| > πκ, 0 < κ ≤ 1 and µ < 1 + κ [1]
(Theorem 4.18, Equation (4.7.17)):

Eκ,µ(z) =
∫ ∞

0
K(κ, µ, r, z)dr, (9)

where the kernel function [1] (Equation (4.7.15)):

K(κ, µ, r, z) =
1

πκ
r

1−µ
κ e−r

1
κ rsin[π(1− µ)]− zsin[π(1− µ + κ)]

r2 − 2rzcos(πκ) + z2 . (10)
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Based on (9) and (10), the following result is derived in the Appendix A.1.

Proposition 1. Let 0 < β < α ≤ 1. Then the relaxation time spectrum of the fractional Maxwell
model (4) is given by:

H(τ) =
E
π

(
τ

τr

)−β sin(πα)
(

τ
τr

)α−β
+ sin(πβ)(

τ
τr

)2(α−β)
+ 2
(

τ
τr

)α−β
cos[π(α− β)] + 1

, (11)

or equivalently by

H(τ) =
E
π

(τr

τ

)α
( τr

τ

)α−βsin(πβ) + sin(πα)( τr
τ

)2(α−β)
+ 2
( τr

τ

)α−βcos(π(α− β)) + 1
, (12)

while the spectrum of relaxation frequencies is as follows

H(v) =
E
π
(τrv)α (τrv)α−βsin(πβ) + sin(πα)

(τrv)2(α−β) + 2(τrv)α−βcos[π(α− β)] + 1
. (13)

The last formula can also be obtained by anti-transforming of the Laplace trans-
form of G(t) (5) by using the complex Bromwich formula as outlined, for example,
by Mainardi [4,25] for one parameter Mittag-Leffler function.

Since undertaken assumptions sin (πβ) and sin (πα) are nonnegative and the expres-
sions from the denominators of (11) and (13) can be expressed in a common compact form

x2δ + 2xδcos [πδ] + 1 =
[

xδ + cos (πδ)
]2

+ sin2 (πδ),

where δ = α− β, the spectraH(τ) and H(v) are nonnegative definite, regardless of the sign
of cos [π(α− β)]. A few exemplary relaxation spectra H(v) (13) andH(τ) (11) are shown in
Figure 2 for different parameters α and β; the logarithmic scale is applied for the frequencies
and times axis. It is seen that the type of their monotonicity depends on parameters α and
β, thus on the orders of the stress and strain derivatives in FMM (4). Below, a detailed
analysis of the spectra monotonicity is performed, starting with the boundary conditions at
v = 0 and τ = 0 and their asymptotic properties.

Polymers 2023, 15, 3552 6 of 32 
 

 

ℋ(𝜏) = ( ) ( )( ) ( )  ,  (11) 

or equivalently by 

ℋ(𝜏) = ( ) ( )( ) ( ) , (12)

while the spectrum of relaxation frequencies is as follows 𝐻(𝑣) = (𝜏 𝑣) ( ) ( ) ( )( ) ( ) ( ) ( )  . (13) 

The last formula can also be obtained by anti-transforming of the Laplace transform 
of 𝐺(𝑡)  (5) by using the complex Bromwich formula as outlined, for example, by 
Mainardi [4,25] for one parameter Mittag-Leffler function. 

Since undertaken assumptions 𝑠𝑖𝑛 (𝜋𝛽) and 𝑠𝑖𝑛 (𝜋𝛼) are nonnegative and the ex-
pressions from the denominators of (11) and (13) can be expressed in a common compact 
form 𝑥 + 2𝑥 𝑐𝑜𝑠 𝜋𝛿 + 1 = 𝑥 + 𝑐𝑜𝑠  (𝜋𝛿) + 𝑠𝑖𝑛 (𝜋𝛿),   

where 𝛿 = 𝛼 − 𝛽, the spectra ℋ(𝜏) and 𝐻(𝑣) are nonnegative definite, regardless of the 
sign of 𝑐𝑜𝑠 𝜋(𝛼 − 𝛽) . A few exemplary relaxation spectra 𝐻(𝑣) (13) and ℋ(𝜏) (11) are 
shown in Figure 2 for different parameters 𝛼 and 𝛽; the logarithmic scale is applied for 
the frequencies and times axis. It is seen that the type of their monotonicity depends on 
parameters 𝛼 and 𝛽, thus on the orders of the stress and strain derivatives in FMM (4). 
Below, a detailed analysis of the spectra monotonicity is performed, starting with the 
boundary conditions at 𝑣 = 0 and 𝜏 = 0 and their asymptotic properties. 

 
(a) (b) 

Figure 2. The spectra of the fractional Maxwell model (4) for elastic modulus 𝐸 = 0.5 × 10  Pa , 
relaxation time 𝜏 = 1 s : (a) relaxation frequency spectrum 𝐻(𝑣) (13) for 𝛼 = 0.9 and (b) relaxa-
tion time spectrum ℋ(𝜏) (11) for 𝛽 = 0.1 and the other parameters 𝛼, 𝛽 shown in the plots. 

Previously, an analytical formula for the relaxation spectrum was obtained for frac-
tional Maxwell model with identical orders of the stress and strain derivatives by 
Mainardi [4,25] using the complex Bromwich formula to invert the Laplace transform of 
(5) and bending the Bromwich path into the Hankel path. However, this formula, the 
properties of which were examined in [41], was derived for another definition of the re-
laxation spectrum. 

3.2. Relaxation Spectra of Elementary Fractional Scott-Blair Model 

Figure 2. The spectra of the fractional Maxwell model (4) for elastic modulus E = 0.5× 103 [Pa],
relaxation time τr = 1 [s]: (a) relaxation frequency spectrum H(v) (13) for α = 0.9 and (b) relaxation
time spectrumH(τ) (11) for β = 0.1 and the other parameters α, β shown in the plots.

Previously, an analytical formula for the relaxation spectrum was obtained for frac-
tional Maxwell model with identical orders of the stress and strain derivatives by



Polymers 2023, 15, 3552 7 of 32

Mainardi [4,25] using the complex Bromwich formula to invert the Laplace transform
of (5) and bending the Bromwich path into the Hankel path. However, this formula,
the properties of which were examined in [41], was derived for another definition of the
relaxation spectrum.

3.2. Relaxation Spectra of Elementary Fractional Scott-Blair Model

From (3) and (8), by the Laplace transform pair [1] (p. 311)

tµ−1

Γ(µ)
÷ 1

sµ , µ > 0

the relaxation frequency spectrum of (2) is obtained

H(v) =
E(τrv)α

Γ(1− α)Γ(α)
, (14)

whence the relaxation time spectrum is as follows

H(τ) =
E

Γ(1− α)Γ(α)

(τr

τ

)α
. (15)

Fixing α and sending β to α, by Equation (13), we obtain

H(v)→ E
2π

(τrv)αsin(πα) ,

as β→ α , whereas, by the reflection equation [1] (Equation (A.1.13))

Γ(1− α)Γ(α) =
π

sin(πα)
,

the formula follows

H(v)→ E(τrv)α

2 Γ(1− α)Γ(α)
(16)

Simultaneously, as β→ α, Equation (2) results in

2σ(t) = Eτα
r

dαε(t)
dtα

,

the relaxation spectrum of which, in view of (14), is described by the right-hand side expres-
sion of (16). The power nature of the relaxation modulus (3) and the relaxation spectra (15)
and (14) characterize the viscoelasticity of many materials; examples are given in [14]. Com-
bined power models may be necessary for complex polymers. Saphiannikova et al. [17]
proposed a versatile multi-scale theoretical approach for modelling viscoelasticity of the
homogenous rubbers, taking into account relaxation processes at different relaxation time
intervals. A four-interval power model with fractional exponents was designated in [17]
for a solution-polymerized styrene butadiene rubber.

3.3. Monotonicity of the Relaxation Spectra

The boundary conditions are characterized by the next proposition derived in
Appendix A.2.

Proposition 2. Let 0 < β < α ≤ 1. Then the relaxation frequency spectrum (13) of the fractional
Maxwell model (4) is such that

H(0) = 0, (17)

lim
v→∞

H(v) = +∞ , (18)
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while for the relaxation time spectrum (11) we have

lim
τ→0+

H(τ) = +∞ , (19)

lim
v→∞
H(τ) = 0 . (20)

Both spectra are unbounded. Relaxation frequency spectrum tends, with increasing
frequency v, to infinity; however, in view of (A4), the exponent of the power of frequency
is equal to max{2β− α, β}, i.e., is smaller than one. A few characteristics H(v) (13) are
shown in Figure 3 for two different relaxation frequency range, fixed α and five values of
β. However, in view of (18), from a mathematical point of view, spectrum H(v) tends to
infinity with growing v, and for physically sensible values of the relaxation frequency, the
characteristic H(v) takes a finite value of the order of E.
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Figure 3. Relaxation frequency spectrum H(v) (13) of the fractional Maxwell model (4) for α = 0.9,
β = 0.01, 0.05, 0.1, 0.2, 0.3, elastic modulus E = 0.5× 103 [Pa], relaxation time τr = 1 (s), and
frequency range 0 ≤ v ≤ vm, where (a) vm = 103 (s−1) and (b) vm = 104 (s−1).

Relaxation time spectrum is unbounded in the near neighborhood of zero and, in view
of (11), with increasing relaxation time τ decays to zero with a negative power law τ−β.

The monotonicity properties of both spectra are given below. Models (11) and (13) are
described in terms of the following coefficients defined by the model parameters:

c1 = sin(πβ), (21)

c2 = sin(πα), (22)

c3 = cos[π(α− β)]. (23)

Under the assumption 0 < β < α ≤ 1, the two first parameters are such that 0 < c1 ≤ 1
and 0 ≤ c2 ≤ 1, while the sign of c3 depends on specific values of α and β. The following
coefficients are also defined

c4 = (2β− α)c2 + 2αc1c3, (24)

c5 = (2α− β)c1 + 2βc2c3, (25)

to simplify further notations. Using standard trigonometric identities, coefficients c4 and c5
are expressed as explicit functions of α and β according to:

c4 = 2βsin(πα) + αsin[π(2β− α)], (26)
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c5 = 2αsin(πβ) + βsin[π(2α− β)]. (27)

Thus, under taken assumption the coefficient c5 > 0, but the sign of coefficient c4
depends on the relationship between the parameters α and β.

The following property, fundamental for the analysis of the spectra monotonic-
ity, results from the comparison of (12) and (13). For a mathematical justification, see
Appendix A.3.

Property 1. Let 0 < β < α ≤ 1. The relaxation frequency spectrum H(v) (13) has a local
maximum for relaxation frequency v = vmax > 0 and a local minimum for frequency v = vmin > 0,
if and only if the relaxation time spectrumH(τ) (11) has a local maximum for the time τ = τmax =

1
vmax

> 0 and a local minimum for τ = τmin = 1
vmin

> 0. Spectrum H(v) is a monotonically
increasing function if and only if spectrumH(τ) monotonically decreases.

Thus, the monotonicity of spectrum H(v) uniquely determines the monotonicity
of spectrum H(τ), and vice versa. The first simple, useful, necessary but not sufficient
condition for the existence of local extrema of H(v) andH(τ) is proved in the Appendix A.4.

Proposition 3. Let 0 < β < α ≤ 1. If the relaxation time H(τ) (11) and frequency H(v) (13)
spectra of the fractional Maxwell model (4) have local extrema for some times τ > 0 and frequencies
v > 0, then the coefficient c4 < 0, i.e., the following inequality holds

2βsin(πα) < αsin[π(α− 2β)]. (28)

Thus, if inequality (28) is not satisfied, then by simple contradiction, relaxation spectra
H(v) (13) andH(τ) (11) are, respectively, monotonically increasing and decreasing func-
tions. Inequality (28) implies the next, weaker, necessary condition of the existence of the
spectra local extrema, namely, the requirement that β < α/2.

It is demonstrated in Appendix A.5 that the further analysis, concerning the existence
of the spectra extrema is convenient to carry out separately in two different cases when α is
equal to one, or not. The analysis begins with the second case.

3.4. Analysis of the Relaxation Spectra Monotonicity for α < 1

Bearing in mind Proposition 3, assume for further analysis that c4 < 0. The existence
of the spectra local extrema is uniquely resolved by the following necessary and sufficient
condition proved in Appendix A.6.

Proposition 4. Let 0 < β < α < 1 be such that c4 < 0. The relaxation time H(τ) (11) and
frequency H(v) (13) spectra of the fractional Maxwell model (4) have local minima and maxima for
positive arguments if and only if[

c3
4

27[βc1]
3 −

c4c5

6[βc1]
2 +

αc2

2βc1

]2

+

[
3βc1c5 − c2

4

9[βc1]
2

]3

< 0, (29)

where the coefficients c1, c2, c4, and c5 are defined by (21), (22), (24), and (25), respectively. In the
opposite case, when the inequality[

c3
4

27[βc1]
3 −

c4c5

6[βc1]
2 +

αc2

2βc1

]2

+

[
3βc1c5 − c2

4

9[βc1]
2

]3

≥ 0, (30)

holds, then the relaxation frequency spectrum H(v) (13) is monotonically increasing function, while
the relaxation time spectrumH(τ) (11) is monotonically decreasing.
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Since for 0 < β < 1 the denominators in all fractions of the right-hand side of
inequality (29) are positive, this inequality can be rewritten in a more useful way for
numerical verification in an equivalent form

Ξ(α, β) < 0, (31)

where
Ξ(α, β) =

[
2c3

4 − 9βc1c4c5 + 27αc2(βc1)
2
]2

+ 4
[
3βc1c5 − c2

4

]3
. (32)

From the above proposition, in particular from inequality (29), the next necessary
condition for existence of the spectra local extrema follows; for derivation see Appendix A.7.

Proposition 5. Let 0 < β < α < 1 be such that c4 < 0. If the relaxation frequency H(v) (13) and
timeH(τ) (11) spectra of the fractional Maxwell model (4) have local extrema for some frequencies
v > 0 and times τ > 0, then the following inequality holds

3βc1c5 < c2
4, (33)

where the coefficients c1, c4, and c5 are defined by (21), (24), and (25), which can be expressed in
equivalent form

β2cos(2πα)− 2βαcos(2πβ)− β(4− 3β)cos[2π(α− β)]+
α2cos[2π(2β− α)] < α2 + 4β2 − 6βα.

(34)

From Propositions 3, 4, and 5, the following simple scheme was followed to check if
there were local extrema of the relaxation spectra for given parameters α and β.

1. Check if the inequality c4 < 0, or equivalent (28), holds. If yes, go to step 2. Otherwise,
go to step 4.

2. Check if the inequality (33), or equivalent (34), holds. If yes, go to step 3. Otherwise,
go to step 4.

3. Check if the inequalities c4 < 0 and (29), or equivalent (31), hold. If yes, a local
extrema of both spectra H(v) andH(τ) exists. Otherwise, go to step 4.

4. Spectrum H(v) is a monotonically increasing function for all v > 0, while spectrum
H(τ) is a monotonically decreasing function for all τ > 0.

Checking in steps 1 and 2, if c4 < 0, equivalently (28), and next (33), hold, avoids verifi-
cation of the necessary and sufficient condition (29) in the case when they are not satisfied.

Both the necessary and sufficient conditions are formulated in terms of the α and β
parameters; they do not depend on the rheological model parameters E and τr. The sets of
the derivative order parameters α and β for which the necessary conditions (28) and (33)
hold are depicted in Figure 4, together with the set of all parameters α and β, for which the
local extrema of the spectra exist. As can be seen, the necessary and sufficient condition (33)
of Proposition 5 is a good approximation of the necessary and sufficient conditions of the
extrema existence specified by Proposition 4.

Below, the spectra extrema are determined and examined, separately, for α < 1 and
α = 1.
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of the fractional Maxwell model (4): necessary condition 1—c4 < 0 (equivalently (28)), necessary
condition 2—(33) and necessary and sufficient conditions c4 < 0 and (29).

3.5. Extrema of the Relaxation Spectra for α < 1

The following property results directly from Property 1 and the proofs of
Propositions 3 and 4.

Proposition 6. Let the parameters α and β be such that inequalities 0 < β < α < 1, c4 < 0 and
(29) are satisfied. Then:

(i) The relaxation frequency spectrum H(v) (13) of the fractional Maxwell model (4) has the local
maximum

vmax =
1
τr
(x3)

1
α−β , (35)

and the local minimum vmin > vmax given by

vmin =
1
τr
(x2)

1
α−β , (36)

when the inequality holds

c3
4

27[βc1]
3 −

c4c5

6[βc1]
2 +

αc2

2βc1
≥ 0, (37)

and equal to

vmin =
1
τr
(x1)

1
α−β , (38)

in the case opposite to inequality (37), where

x1 = −2rcos
(

θ

3

)
− c4

3βc1
, (39)

x2 = 2rcos
(

π − θ

3

)
− c4

3βc1
, (40)

x3 = 2rcos
(

π + θ

3

)
− c4

3βc1
, (41)
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with

r = sgn

(
c3

4

27[βc1]
3 −

c4c5

6[βc1]
2 +

αc2

2βc1

)√√√√∣∣∣∣∣3βc1c5 − c2
4

9[βc1]
2

∣∣∣∣∣, (42)

and the angle θ defined by

cos(θ) =

c3
4

27[βc1]
3 − c4c5

6[βc1]
2 +

αc2
2βc1

r3 , (43)

where the coefficients c1, c2, c4, and c5 are defined by (21), (22), (24), and (25), respectively,
sgn(·). denotes signum function.

(ii) The relaxation time spectrumH(τ) (11) has the local maximum

τmax =
τr

(x3)
1

α−β

, (44)

and the local minimum τmin < τmax given by

τmin =
τr

(x2)
1

α−β

, (45)

when the inequality (37) holds, while in the opposite case equal to

τmin =
τr

(x1)
1

α−β

. (46)

The relaxation time τr affects the E-independent extrema τmin, τmax, vmin, and vmax.
Dependence of the extrema on α and β is illustrated by the following figures. Figure 5a,b
shows the local minimum τmin (45), (46), and maximum τmax (44) for 0< β < α < 1; for α and
β such that spectrumH(τ) monotonically decreases, the plot is equal to zero. The colors
are specified by color bar added to the right. Figure 5c,d illustrate for 0.2 < α < 1 the range
of variation of vmax (35) and vmin (36), (38) as functions of α and β varying from the values
close to zero to that on the order of 106 and 1029, respectively. Dependence of vmax (35)
and vmin (36), (38) on parameter 0 < β < α for a few α is depicted, separately, in Figure 6.
However, from a practical point of view, mainly vmax is important, and this varies within
the frequencies for which the real spectra peaks occur. The selection of parameters α and
β, and even only β for a given α, allows us to shape the spectrum whose maximum peak
varies in a very wide range of frequencies.

The course of the spectrum H(τ) (11) is illustrated by Figure 7. In Figure 7a, the
spectrumH(τ) is depicted for a few values of β for fixed parameter α, while in Figure 7b
parameter β is fixed and the spectrum’s H(τ) dependence on changing α is illustrated.
In Figure 8 the relaxation frequency spectra H(v) (13) are given for other values of fixed
parameters α and β. The non-integer orders α and β uniquely determine the existence or
absence of local extrema of the relaxation spectra of the FMM model and, together with the
relaxation time τr, the values of local minima and maxima. The smaller the β is the higher
their local maxima, and the more concise their peaks are. Conversely, the greater the α, the
higher the maxima and the more pointed peaks.
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Figure 5. The local extrema of the relaxation spectra: (a) minimum 𝜏  (45), (46), and (b) maxi-
mum 𝜏  (44) of relaxation time spectrum ℋ(𝜏) (11) for parameters 0 <  𝛽 < 𝛼 < 1; (c) mini-
mum 𝑣  (36), (38), and (d) maximum 𝑣  (35) of the relaxation frequency spectrum 𝐻(𝑣) (13) 
for parameters 0.2 < 𝛼 < 1. Fixed relaxation time 𝜏 = 1 s . For 𝛼 and 𝛽, such that spectrum 𝐻(𝑣) monotonically increases, the plot is equal to zero. 

Figure 5. The local extrema of the relaxation spectra: (a) minimum τmin (45), (46), and (b) maximum
τmax (44) of relaxation time spectrum H(τ) (11) for parameters 0 < β < α < 1; (c) minimum vmin

(36), (38), and (d) maximum vmax (35) of the relaxation frequency spectrum H(v) (13) for parameters
0.2 < α < 1. Fixed relaxation time τr = 1 [s]. For α and β, such that spectrum H(v) monotonically
increases, the plot is equal to zero.
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Figure 6. The local maximum 𝑣  (35) of the relaxation frequency spectrum 𝐻(𝑣) (13) as a func-
tion of parameter 𝛽  for: (a) 𝛼 = 0.2,0.21,0.22,0.23,0.24 ; (b) 𝛼 = 0.25,0.3,0.35,0.4,0.45 ; (c) 𝛼 =0.5,0.55,0.6,0.65,0.7; (d) 𝛼 = 0.8,0.85,0.9,0.95,0.98; for 𝛼 and 𝛽, such that spectrum 𝐻(𝑣) mono-
tonically increases, the plot is equal to zero. Relaxation time 𝜏 = 1 s . 

The course of the spectrum ℋ(𝜏) (11) is illustrated by Figure 7. In Figure 7a, the 
spectrum ℋ(𝜏) is depicted for a few values of 𝛽 for fixed parameter 𝛼, while in Figure 
7b parameter 𝛽 is fixed and the spectrum’s ℋ(𝜏) dependence on changing 𝛼 is illus-
trated. In Figure 8 the relaxation frequency spectra 𝐻(𝑣) (13) are given for other values 
of fixed parameters 𝛼 and 𝛽. The non-integer orders 𝛼 and 𝛽 uniquely determine the 
existence or absence of local extrema of the relaxation spectra of the FMM model and, 
together with the relaxation time 𝜏 , the values of local minima and maxima. The smaller 
the 𝛽 is the higher their local maxima, and the more concise their peaks are. Conversely, 
the greater the 𝛼, the higher the maxima and the more pointed peaks. 

  
(a) (b) 

Figure 6. The local maximum vmax (35) of the relaxation frequency spectrum H(v) (13) as a function
of parameter β for for: (a) α = 0.2, 0.21, 0.22, 0.23, 0.24; (b) α = 0.25, 0.3, 0.35, 0.4, 0.45; (c) α = 0.5,
0.55, 0.6, 0.65, 0.7; (d) α = 0.8, 0.85, 0.9, 0.95, 0.98; for α and β, such that spectrum H(v) monotonically
increases, the plot is equal to zero. Relaxation time τr = 1 [s].
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The course of the spectrum ℋ(𝜏) (11) is illustrated by Figure 7. In Figure 7a, the 
spectrum ℋ(𝜏) is depicted for a few values of 𝛽 for fixed parameter 𝛼, while in Figure 
7b parameter 𝛽 is fixed and the spectrum’s ℋ(𝜏) dependence on changing 𝛼 is illus-
trated. In Figure 8 the relaxation frequency spectra 𝐻(𝑣) (13) are given for other values 
of fixed parameters 𝛼 and 𝛽. The non-integer orders 𝛼 and 𝛽 uniquely determine the 
existence or absence of local extrema of the relaxation spectra of the FMM model and, 
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the 𝛽 is the higher their local maxima, and the more concise their peaks are. Conversely, 
the greater the 𝛼, the higher the maxima and the more pointed peaks. 
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Figure 7. Relaxation time spectrum H(τ) (11) of the fractional Maxwell model (4) for: (a) α = 0.9
and β = 0.05, 0.1, 0.15, 0.2, 0.25; (b) β = 0.15 and α = 0.8, 0.85, 0.9, 0.95, 0.98. Elastic modulus
E = 0.5× 104 [Pa], and relaxation time τr = 1 [s].
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3.6. Analysis of the Relaxation Spectra Monotonicity for α = 1

For α = 1, the relaxation spectrumH(τ) (11) is given by

H(τ) =
E
π

(
τ

τr

)−β sin(πβ)(
τ
τr

)2(1−β)
− 2
(

τ
τr

)1−β
cos(πβ) + 1

, (47)

or according to (12) by the formula

H(τ) =
E
π

( τr
τ

)2−βsin(πβ)( τr
τ

)2(1−β) − 2
( τr

τ

)1−βcos(πβ) + 1
, (48)

while, by (13), spectrum H(v) is described by

H(v) =
E
π

(τrv)2−βsin(πβ)

(τrv)2(1−β) − 2(τrv)1−βcos(πβ) + 1
. (49)
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For α = 1, by (26), the necessary condition for the existence of the extrema specified in
Proposition 3, i.e., c4 < 0, is equivalent to

c4 = sin[π(2β− 1)] = −sin(2βπ) < 0,

i.e., is fulfilled whenever β < 1
2 .

The monotonicity of the spectra is resolved by the next result proved in Appendix A.8.
The necessary and sufficient conditions for the existence of local extrema and formulas
describing them are given.

Proposition 7. Let 0 < β < 1
2 and α = 1. The spectra of relaxation frequencies H(v) (49) and

times H(τ) (47) of the fractional Maxwell model (4) have local minima and maxima for positive
arguments, if and only if parameter β is such that the following inequality holds

cos2(πβ) > β(2− β). (50)

Then:

(i) The relaxation frequency spectrum H(v) (49) has the local maximum

vmax =
1
τr

[
cos(πβ)−

√
cos2(πβ)− β(2− β)

β

] 1
1−β

, (51)

and the local minimum vmin > vmax given by

vmin =
1
τr

[
cos(πβ) +

√
cos2(πβ)− β(2− β)

β

] 1
1−β

. (52)

(ii) The relaxation time spectrumH(τ) (47) has the local maximum

τmax =
τr[

cos(πβ)−
√

cos2(πβ)−β(2−β)
β

] 1
1−β

, (53)

and the local minimum τmin < τmax given by

τmin =
τr[

cos(πβ)+
√

cos2(πβ)−β(2−β)
β

] 1
1−β

. (54)

If β is such that inequality (50) does not hold, thenH(τ) (47) and H(v) (49) are monotonically
decreasing and increasing functions, respectively.

A complete set of 0 < β < 1
2 for which the necessary and sufficient condition (50)

holds is as follows: 0 < β < 0.263516.

3.7. Extrema of the Relaxation Spectra for α = 1

The frequencies vmax, vmin and the times τmax, τmin are uniquely determined by β and
τr. The extrema as functions of the parameter β are shown in Figure 9 for β satisfying
the necessary and sufficient condition (50); the relaxation time τr = 1 [s] is assumed. In
Figure 9b, for vmin, the logarithmic scale is applied. The peak frequency vmax increases
with increasing frequency, therefore τmax decreases. Decreasing with increasing β, vmin
means that spectrum H(v) (49) increases monotonically to infinity for lower relaxation
frequencies. In turn, being smaller with increasing β times τmin means that spectrumH(τ)
(47) decreases faster for relaxation times smaller than τmin.
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Since, in view of (51) and (53), vmax = 1/τmax, by (49) and (48), the equality
H(vmax) = H(τmax) holds. Similarly, H(vmin) = H(τmin). By (51) and (49), the local
maximum of the spectra is as follows

H(vmax) = H(τmax) =
E

π(1− β)β
β

1−β

[
cos(πβ)−

√
cos2(πβ)− β(2− β)

] 2−β
1−β sin(πβ)

cos2(πβ)− β− cos(πβ)
√

cos2(πβ)− β(2− β)
, (55)

while, in view of (52), local minimum is given by

H(vmin) = H(τmin) =
E

π(1− β)β
β

1−β

[
cos(πβ) +

√
cos2(πβ)− β(2− β)

] 2−β
1−β sin(πβ)

cos2(πβ)− β + cos(πβ)
√

cos2(πβ)− β(2− β)
. (56)

Thus, for 0 < β < 0.263516 the quotient

H(vmax)

H(vmin)
=

cos2(πβ)− β + cos(πβ)
√

cos2(πβ)− β(2− β)

cos2(πβ)− β− cos(πβ)
√

cos2(πβ)− β(2− β)
·

[
cos(πβ)−

√
cos2(πβ)− β(2− β)

] 2−β
1−β

[
cos(πβ) +

√
cos2(πβ)− β(2− β)

] 2−β
1−β

,

monotonically decreases, from infinity to one. The maxima (55) and minima (56) are
uniquely determined by β and elastic modulus E. Since they are proportional to E, only
the dependence on parameter β is illustrated in Figure 10 for fixed E; a logarithmic scale
was used for the vertical axis.
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Figure 10. The local maxima H(vmax) = H(τmax) (55) and minima H(vmin) = H(τmin) (56) of the
relaxation spectra H(v) (49) andH(τ) (47), as the functions of parameter β fulfilling the necessary
and sufficient condition (50). Elastic modulus E = 0.5× 104 [Pa].

In conclusion, the relaxation time τr and parameter β uniquely determine the extrema
relaxation times and frequencies. In turn, the extreme values of the spectra depend on the
elastic modulus E and β. The course of the spectrum H(v) (49) is illustrated by Figure 11,
where the spectrum H(v) (49) is depicted for a few values of β; in Figure 11b the logarithmic
scale is used for the relaxation frequency axis to expose both the maxima and minima of
the characteristics. In Figure 12, the relaxation time spectra H(τ) are given for the same
parameters β; the logarithmic scale is used for the relaxation times axis.
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Figure 11. Relaxation frequency spectrum H(v) (49) of the of the fractional Maxwell model (4) for
α = 1, β = 0.05, 0.1, 0.15, 0.2, 0.25, elastic modulus E = 0.5× 104 (Pa), τr = 1 (s), and frequency
range 0 ≤ v ≤ vm, where: (a) vm = 4

(
s−1) and (b) vm = 3.5× 103 (s−1).

From Figures 11 and 12 it is seen that the lower β is, the higher its local maximum
H(vmax) = H(τmax) is, and the more concise this peak is. Thus, the order parameter β
influences both the ‘height’ of the spectrum peak and its ‘width’. The relaxation frequencies
and times of the peaks also depends on the relaxation time τr—the bigger their ‘height’,
the bigger the elastic modulus E is. Therefore, by the respective choice of the three model
parameters (E, τr, β ), a wide class of the unimodal relaxation spectra can be described.
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Figure 12. Relaxation time spectrum H(τ) (47) of the fractional Maxwell model (4) for α = 1,
β = 0.05, 0.1, 0.15, 0.2, 0.25, E = 0.5× 104 (Pa), τr = 1 (s), and range of times: (a) 10−1 < τ ≤ 10
and (b) 10−4 < τ ≤ 5 (s).

3.8. Identification

The spectrum, not being directly accessible by measurement, is recovered from re-
laxation stress [42–44] or oscillatory shear data [19,29,45,46] by using an appropriate iden-
tification method. Identification consists of selecting, within the chosen class of models
given by (4) with the relaxation modulus described by (5), such a model, which ensures the
best approximation to the measurement data. To clarify the description, model G(t) (5) is
denoted as

GM(t, g) = E
(

t
τr

)−β

Eα−β,1−β

(
−
(

t
τr

)α−β
)

, (57)

where the subscript ‘M’ means the model and

g =
[
α β E τr

]T (58)

is a 4-element vector of unknown coefficients of the model. The relaxation time spectrum
H(τ) (11) for parameters g (58) will be hereinafter referred to as H(τ, g), by analogy
spectrum of the relaxation frequency H(v) (13) as H(v, g ), to emphasize the dependence
on the determined parameters of the model.

Suppose a certain identification experiment (stress relaxation test [11,35,37]) resulted
in a set of measurements of the relaxation modulus

{
G(ti) = G(ti) + z(ti)

}
at the sampling

instants ti ≥ 0, i = 1, . . . , N, where z(ti) is the measurement noise. Following [44,47], as a
measure of the model accuracy, the mean quadratic index is taken

QN(g) =
1
N ∑N

i=1

[
G(ti)− GM(ti, g)

]2. (59)

Thus, the optimal identification of FMM model defined by (4) or (57) consists of
determining the model parameters minimizing the index QN(g), i.e., in solving the non-
linear least-squares problem

min
g

QN(g) = QN(g∗). (60)

When the optimal parameter g∗ is determined, the spectra of FMM are described by
H(τ, g∗) and H(v, g∗) according to the formulas (11) and (13), respectively.

There are known methods of identifying FMM either by direct minimization of the
index QN(g), or by approximate identification methods, according to which the original
identification task (60) is replaced by a simpler task that gives an approximate solution. An
example of such a method is the scheme proposed by Stankiewicz [18]. However, the task
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itself (60) is not the subject of this paper, so it will not be discussed in detail here. Since it
was desirable to accurately determine the model of the relaxation modulus GM(t, g) (57),
the function MLFFIT2 provided by Podlubny [48] for fitting data using the two parameters
Mittag-Leffler function multiplied by a power function was used to determine it. This
procedure has been introduced and described in detail in [49]. All four parameters of the
model will be selected optimally.

Both unimodal and multimodal, especially bimodal, relaxation spectra are used to
describe viscoelastic properties of polymers. Bearing in mind the unimodal character
of the spectra (11) and (13), the applicability of these spectra for describing commonly
used models of polymer spectra was examined. Both Gauss-like distributions and BSW
spectra dominating in the rheology of polymers [36,50] were considered. All models were
simulated in Matlab R2022a, using the special function erfc for the Gauss-like distributions.
Functions MLFFIT2 [48] and MLF [51], provided by Podlubny, were used.

3.9. Applicability of the FMM Spectra to Modelling Gaussian Spectra

In this section, relaxation spectra of the fractional Maxwell model are applied to mod-
elling the relaxation spectra described by the unimodal Gauss-like distributions. Although
studies confirming the use of the BSW spectrum for various polymers prevail, thereby
research concerning them does not require justification, there are also studies indicating
the use of the Gaussian spectrum for some polymeric materials, including biopolymers.
In [52], the linear viscoelastic behavior of commercial polypropylenes is studied under the
assumption that the relaxation spectrum takes the shape of a log-normal distribution, which
is in agreement with the linear viscoelasticity theory by providing limiting values, contrary
to BSW model. Museau et al. [32] applied a Gaussian distribution of the relaxation times,
modified to introduce asymmetry of the relaxation process and to describe viscoelasticity
in poly(methyl methacrylate). Recently, the spectra of a Gaussian character for bimodal
polyethylene were determined by Kwakye-Nimo et al. [33] (Figures 4b and 8b), for glass
by Wang et al. [53] (Figure 2), and for soft polyacrylamide gels by Pérez-Calixto et al. [35]
(Figure A4). The spectra of various biopolymers studied by many researchers are also Gaus-
sian in nature, for example, some (wheat, potato, corn, and banana) native starch gels [34]
(Figures 6b, 7 and 9a), xanthan gum water solution [36] (Figures 6 and 10), carboxymethyl-
cellulose (CMC) [36] (Figures 6 and 11), wood [54] (Figure 7), and [55] (Figures 2 and 3),
fresh egg white-hydrocolloids [36] (Figures 6 and 14). Gauss-type spectra have been tested
when developing new viscoelastic models and identification methods, for example, in [56]
(Figure 2), [57] (Figures 9, 11, and 17) and [58] (Figures 2, 3, 6, 7–11, and 14). Two examples
with different relaxation times are shown.

3.9.1. Example 1

Consider the viscoelastic material of relaxation spectrum described by the unimodal
Gauss-like distribution:

H(τ) = ϑe−(
1
τ−m)

2
/q/τ, (61)

where the parameters are as follows [44]: ϑ = 31520 Pa·s, m = 0.0912 s−1 and
q = 3.25× 10−3 s−2. The related relaxation modulus is [34]:

G(t) =
√

πq
2

ϑ e
1
4 t2q−mter f c

(
1
2 tq−m
√

q

)
. (62)

In the experiment, N = 1000 sampling instants ti were generated with the constant
period in the time interval T = [0, 200] with seconds chosen in view of the course of
the modulus G(t) (62). Additive measurement noises z(ti) were selected independently
by random choice with uniform distribution on the interval [−5, 5] Pa. The optimal
parameters of the model (57) are determined

g∗ =
[
α∗ β∗ E∗ τ∗r

]T
=
[
0.935 0.025 3.0682× 103 Pa 13.13358 s

]T , (63)
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the mean square relative identification index defined by

JN(g) =
1
N ∑N

i=1

[
G(ti)− GM(ti, g)

]2[
G(ti)

]2 . (64)

is JN(g∗) = 0.00907. The course of the optimal FMM GM(t, g∗) and the real characteristic
G(t) (62) are summarized in Figure 13a, where the measurements G(ti) of the real modulus
G(t) (62) are marked. The relaxation time spectrumH(τ, g∗) (11) is plotted in Figure 13b,
together with the spectrum (61) of the real material.
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Figure 13. For the “real” material from Example 1 and the fractional Maxwell model (57) with optimal
parameters g∗ (63) are presented: (a) the measurements G(ti) of the real relaxation modulus G(t) (62)
(red points) and model GM(t, g∗ ) (57); (b) real relaxation time spectrum H(τ) (61) (solid red line)
and the spectrum modelH(τ, g∗ ) (11).

3.9.2. Example 2

Now, the parameters of the Gauss-like distribution (61) are as follows: ϑ = 31.52 Pa·s,
m = 1.253 s−1, and q = 9.73× 10−2 s−2. In the experiment, N = 1000 sampling instants
ti were generated with the constant period in the time interval T = [0, 8] seconds cho-
sen in view of the course of the modulus G(t) (62). Additive measurement noises z(ti)
were selected independently by random choice with uniform distribution on the interval
[−0.05, 0.05] Pa. The optimal parameters of the model (57) are determined

g∗ =
[
α∗ β∗ E∗ τ∗r

]T
=
[
0.983 0.017 17.77816 Pa 0.81568 s

]T , (65)

the optimal mean square identification index (59) is QN(g∗) = 1.6615788× 10−2
[
Pa2
]
.

The optimal FMM GM(t, g∗) and the real modulus G(t) (62) are plotted in Figure 14a. The
relaxation time spectrum H(τ, g∗ ) (11) is plotted in Figure 14b, together with the real
material spectrum (61).

3.10. Applicability of the FMM Spectra to Modelling BSW Spectra

Consider the spectrum of relaxation times introduced by Baumgaertel, Schausberger,
and Winter [26,27],

H(τ) =

{
β1

(
τ

τc

)ρ1

+ β2

(
τ

τc

)ρ2
}

e−
τ

τmax , (66)

which is known to be effective in describing polydisperse polymer melts [28,29], with the
parameters [29]: β1 = 6.276× 104 Pa, β2 = 1.27× 105 Pa, τc = 2.481 s, τmax = 2.564× 104 s,
ρ1 = 0.25 and ρ2 = −0.5. The corresponding ‘real’ relaxation modulus G(t) is given by
(7). In the experiment, N time instants ti were sampled with the constant period in the
time interval T = [0, T]. The results of the numerical experiment for several values of
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N and T are given in Table 1 and illustrated by Figures 12 and 13. In Figure 15, the real
material spectrum (66) along with the model H(τ, g∗ ) (11) and real modulus G(t) fitted
by the optimal FMM GM(t, g∗), are plotted for the first three experiments. Since the fit of
the model to the measurement data is very good and the waveforms of the characteristics
for the relaxation modulus practically coincide with the measurement points and do not
differ between each other, only the spectra are presented for three subsequent numerical
experiments in Figure 16. These spectra also almost merge, however the maximum peak
increases slightly with a growing number of measurement points N and decreases with
increasing experiment time T.
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Figure 14. For the “real” material from Example 2 and the fractional Maxwell model (57) with optimal
parameters g∗ (65) are presented: (a) the measurements G(ti) of the real relaxation modulus G(t) (62)
(red points) and model GM(t, g∗ ) (57); (b) real relaxation time spectrum H(τ) (61) (solid red line)
and the spectrum modelH(τ, g∗ ) (11).

Table 1. The parameters of the optimal models for the BSW spectrum H(τ) (66) (62) in successive
numerical experiments: number of numerical experiment n, number of measurements N, the time
horizon of the experiment T, mean quadratic identification index QN(g∗) (59), and mean relative
quadratic identification index JN(g∗) (64), and the optimal FMM parameters α∗, β∗, E∗, and τ∗r .

n N T [s] QN(g*) [Pa2] JN(g*) α* β* E* [Pa] τ*
r [s]

1 1000 500 1.5247 × 10−3 5.9182 × 10−6 0.802746 0.078769 12.89118 5.0226 × 103

2 2000 500 2.4712 × 10−3 7.8212 × 10−6 0.853718 0.08208 12.67277 4.8057 × 103

3 2000 1000 1.3271 × 10−3 6.8742 × 10−6 0.716114 0.07468 13.16061 5.7473 × 103

4 3000 1000 1.6420 × 10−3 7.6078 × 10−6 0.731290 0.07648 13.00037 5.8162 × 103

5 4000 1000 1.9309 × 10−3 8.1768 × 10−6 0.74252 0.07774 12.89206 5.8528 × 103

6 5000 1000 2.2048 × 10−3 8.72088 × 10−6 0.751992 0.07872 12.80960 5.8698 × 103

7 6000 1000 2.4493 × 10−3 9.08398 × 10−6 0.760015 0.07951 12.74484 5.8762 × 103

8 7000 1000 2.7029 × 10−3 9.56398 × 10−6 0.765044 0.08008 12.69891 5.8907 × 103

9 7000 1500 1.7812 × 10−3 8.9981 × 10−6 0.717188 0.07632 13.01787 5.9833 × 103

10 7000 2000 1.3794 × 10−3 9.2961 × 10−6 0.700429 0.074402 13.19768 5.9004 × 103
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Figure 15. Relaxation modulus G(t) (red points) of the “real” material described by BSW spectrum
H(τ) (66) (solid red line) and the fractional Maxwell model GM(t, g∗ ) (57) and relaxation time
spectraH(τ, g∗ ) (11), the model optimal parameters g∗ are given in Table 1 for: (a,b) experiment 1;
(c,d) experiment 2; (e,f) experiment 3.
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spectra applicability to modelling BSW and Gauss-like spectra demonstrated that the 
viscoelastic relaxation spectrum of FMM can be applied for a wide class of polymers with 
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freedom, non-integer orders of the stress and strain derivatives, which provides deep 
insight into the complex behavior of polymers. 

The applicability of the relaxation spectra of fractional order viscoelastic models to 
the description of multimodal spectra will be the subject of future research, with partic-

Figure 16. Relaxation spectra of the “real” material described by BSW spectrum H(τ) (66) (solid
red line) and relaxation time spectra H(τ, g∗ ) (11) of the fractional Maxwell model for numerical
experiments: (a) n = 4, 5, 6; (b) n = 7, 8, 9, 10. The optimal parameters g∗ are given in Table 1.

4. Conclusions

Analytical formulas describing relaxation time and frequency spectra of FMM were
given. The analytical studies proved that:

1. Necessary and sufficient conditions for the existence of the local extrema, minima,
and maxima of the relaxation spectra are given by two algebraic inequalities.

2. Only two fractional model parameters, the non-integer orders of the stress and strain
derivatives, uniquely determine the existence of the spectrum extrema.

3. The local minima and maxima of the relaxation spectra are described by direct analyt-
ical formulas.

4. The local extrema depend on fractional model parameters and on the relaxation time
of FMM.

5. The spectrum values for the local extrema are affected by the elastic modulus of FMM,
i.e., by all four model parameters.

Analytical analysis combined with numerical studies of model monotonicity and
the spectra applicability to modelling BSW and Gauss-like spectra demonstrated that the
viscoelastic relaxation spectrum of FMM can be applied for a wide class of polymers with
unimodal relaxation spectra. This is due to the availability of the two extra degrees of
freedom, non-integer orders of the stress and strain derivatives, which provides deep
insight into the complex behavior of polymers.

The applicability of the relaxation spectra of fractional order viscoelastic models to
the description of multimodal spectra will be the subject of future research, with particular
attention to bimodal spectra that characterize many polymers. A respective modification
of the fractional Maxwell model is then necessary. Since the identification of FMM is, in
general, difficult, mainly due to the form of the relaxation modulus model form given by
the product of Mittag-Leffler and power functions, approximate identification methods
are still needed. Future research will be focused on this issue. Multi-scale combined
power-law Scott-Blair model or FMM is a dilemma that may accompany the modelling
of polymers governed by power-laws. It sets another research direction in the field of
fractional viscoelasticity of polymers.
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Appendix A

Appendix A.1. Derivation of Proposition 1

Consider spectral representation (9), (10) of the Mittag-Leffler function. Let us put
µ = 1− β and κ = α− β. By the assumptions 0 < β < α ≤ 1, the parameter 0 < κ < 1

and, simultaneously, parameter µ = 1− β < 1 + κ. For real z = −
(

t
τr

)α−β
the argument

|arg(z)| = π > πκ, thus the formula (9) holds and take the form

Eα−β,1−β

(
−
(

t
τr

)α−β
)

=
∫ ∞

0
K

(
α− β, 1− β, r,−

(
t
τr

)α−β
)

dr, (A1)

with

K
(

α− β, 1− β, r,−
(

t
τr

)α−β
)
=

1
π(α−β)

r
β

α−β e−r
1

α−β rsin(πβ)+( t
τr )

α−β
sin(πα)

r2+2r( t
τr )

α−β
cos[π(α−β)]+( t

τr )
2(α−β) .

(A2)

In view of (A2), the integral on the right-hand side of (A1) takes the form

Eα−β,1−β

(
−
(

t
τr

)α−β
)
=

1
π(α−β)

∫ ∞
0 r

β
α−β e−r

1
α−β rsin(πβ)+( t

τr )
α−β

sin(πα)

r2+2r( t
τr )

α−β
cos[π(α−β)]+( t

τr )
2(α−β) dr,

whence, by applying the substitution r
1

α−β = tv, after algebraic manipulations we obtain

Eα−β,1−β

(
−
(

t
τr

)α−β
)
=

τα
r

π

(
t
τr

)β ∫ ∞
0

(τrv)α−βsin(πβ)+sin(πα)

(τrv)2(α−β)+2(τrv)α−βcos[π(α−β)]+1
vα−1e−tvdv.

(A3)

Combining (5), (A1) and (A3) yield

G(t) = E
τα

r
π

∫ ∞

0

(τrv)α−βsin(πβ) + sin(πα)

(τrv)2(α−β) + 2(τrv)α−βcos[π(α− β)] + 1
vα−1e−tvdv,

whence, by virtue of (8) model, (13) results. By the relationH(τ) = H
(

1
τ

)
, we immediately

obtain Equation (12), which can be rewritten as formula (11); proposition is derived. �

Appendix A.2. Derivation of Proposition 2

Since all exponents in powers of the expression (τrv) in (13) are positive, the first
boundary condition (17) is obvious. The spectrum (13) can be equivalently expressed as

H(v) =
E
π
· (τrv)βsin(πβ) + sin(πα)(τrv)2β−α

1 + 2(τrv)−(α−β)cos[π(α− β)] + (τrv)−2(α−β)
, (A4)

where the denominator of the right-hand side tends to 1, as v→ ∞ , while the nominator
tends to infinity regardless of the sign of the expression 2β− α, as v→ ∞ , whence the
second boundary condition (18) follows. By the relation H(τ) = H

(
1
τ

)
, (19) and (20)

directly follow from (18) and (17), respectively. �
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Appendix A.3. Proof of Property 1

The analysis of the spectra monotonicity is based on the formulas (12) and (13) describ-
ingH(τ) and H(v), respectively. It is convenient to express these functions in equivalent,
joint and more useful for further analysis form. Let us introduce the function

ϕ(x) = x
β

α−β
c1x2 + c2x

x2 + 2c3x + 1
, (A5)

where the coefficients c1, c2, and c3 are defined by (21), (22), and (23). For

x = (τrv)α−β, (A6)

by (13), (A5), and (A6), we have

H(v) =
E
π

ϕ(x)
∣∣∣∣
x=(τrv)α−β

. (A7)

If
x =

(τr

τ

)α−β
, (A8)

then by (A5) and (12)

H(τ) =
E
π

ϕ(x)
∣∣∣∣
x=( τr

τ )α−β
. (A9)

By (A7)
dH(v)

dv
=

(α− β)Eτr

π
(τrv)α−β−1 dϕ(x)

dx

∣∣∣∣
x=(τrv)α−β

, (A10)

while by (A9)
dH(τ)

dτ
= − (α− β)E

πτr

(τr

τ

)α−β+1 dϕ(x)
dx

∣∣∣∣
x=( τr

τ )α−β
. (A11)

The comparison of the two above formulas directly implies Property 1. �

Appendix A.4. Proof of Proposition 3

In view of (A10) and (A11), to study the monotonicity of the spectra H(v) andH(τ)
for positive arguments, it is enough to analyze the monotonicity of ϕ(x) (A5). The first
derivative of ϕ(x) (A5) is as follows

dϕ(x)
dx

=

1
α−β x

β
α−β ψ(x)

[x2 + 2c3x + 1]2
, (A12)

where the function ψ(x) in nominator is given by

ψ(x) = βc1x3 + [(2β− α)c2 + 2αc1c3]x2 + [(2α− β)c1 + 2βc2c3]x + αc2,

and can be expressed as

ψ(x) = βc1x3 + c4x2 + c5x + αc2, (A13)

with the coefficients c4 and c5 defined by (24) and (25), respectively. Since, under the
assumptions 0 < β < α ≤ 1, coefficients βc1 and c5 are positive and αc2 ≥ 0, then
inequality c4 < 0 is necessary, but not sufficient, for the existence of the local extreme of
ϕ(x); Proposition 3 follows. �
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Appendix A.5. Introduction to the Necessary and Sufficient Extrema Conditions

The properties of the cubic function ψ(x) (A13) and in consequence the monotonicity
of the relaxation spectrum depends on the relationship between the parameters α and β.

Since the denominator on the right-hand side of (A12) and the multiplier x
β

α−β in (A12)
are positive for all x > 0, both the sign of the derivative dϕ(x)/dx and their nonzero real
roots, if they exist, are identical to those of ψ(x). Thus, in view of (A10), (A11), and (A12),
function ϕ(x) and in consequence the relaxation spectra H(v) andH(τ) have local extrema,
the local maximum for the relaxation frequency v = vmax > 0 and the local minimum for
the minimum frequency v = vmin > 0, if and only if the respective xmax = (τrvmax)

α−β > 0
(c.f., (A6)) and xmin = (τrvmin)

α−β > 0 are the roots of the cubic function ψ(x) (A13).
Thus, the existence, or not, of two positive real roots of the function ψ(x) is basic for the
spectrum monotonicity.

Due to βc1 > 0, lim
x→∞

ψ(x) = +∞ and lim
x→−∞

ψ(x) = −∞. Simultaneously,

ψ(0) = αc2 > 0 whenever α < 1 and ψ(0) = αc2 = 0 for α = 1. Thus, in further
analysis, two different cases should be distinguished, when α is equal to one, or not. �

Appendix A.6. Proof of Proposition 4

If parameter α < 1, then the cubic function ψ(x) has at least one real root on the
negative real axis. The necessary and sufficient conditions of the existence of three real
roots of third order polynomials are known, as well as the analytical methods for their
computation. The algebraic solution of the cubic equation can be derived in a number of
different ways. Cardano’s method, dated 1545, and Vieta’s method published in 1615 are
the most known. The two methods are combined here and applied to the cubic equation
ψ(x) = 0, which, in view of (A13), takes the form:

βc1x3 + c4x2 + c5x + αc2 = 0. (A14)

Dividing Equation (A14) by the coefficient βc1 and applying the standard substitution

x = z− c4

3βc1
, (A15)

we obtain the so-called depressed cubic equation with the zero quadratic term coefficient:

z3 + 3pz + 2q = 0, (A16)

where the parameters p and q are such that

3p =
3βc1c5 − c2

4

3[βc1]
2 , (A17)

2q =
2c3

4

27[βc1]
3 −

c4c5

3[βc1]
2 +

αc2

βc1
. (A18)

The number and types of the roots are uniquely determined by the determinant of the
cubic equation defined as follows

D = q2 + p3. (A19)

The depressed cubic Equation (A16) has three real roots if and only if D ≤ 0. Thus,
if D > 0, then ψ(x) and also derivative dϕ(x)

dx (A12) is positive for all x > 0. Therefore,
spectrum H(v) is a monotonically increasing function, and spectrumH(τ) decreases with
increasing τ.

Let us analyze two cases in detail: (a) D = 0, (b) D < 0.
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Appendix A.6.1. Case (a). The Determinant D = 0

If the determinant D = 0, then Equation (A16) and consequently (A14) have multiple
real roots, all of their roots are real.

If p = q = 0, i.e., 3βc1c5 = c2
4 and 2c3

4− 9c4c5βc1 + 27αc2[βc1]
2 = 0, which is equivalent

to 9αβc1c2 = c4c5 and implies c4c5 > 0, the triple root is such that x1_3 = − c4
3βc1

= − c5
c4

< 0;
for derivation, Equation (A20) given below may be used. Thus, ψ(x) > 0 for all x > 0,
spectra H(v) andH(τ) are monotonically increasing and decreasing functions.

If p3 = −q2 6= 0, then Equation (A16) has two real roots, and one of them is double. It
may be proved that single root is negative. Even if the double root is positive, the function
ψ(x), whence also derivative dϕ(x)

dx (A12), is positive on both sides of the root, being an
inflection point (i.e., saddle point) of the function ϕ(x). Thus, the respective relaxation
frequency and time are the inflection points of the monotonically increasing and decreasing
spectra H(v) andH(τ), respectively. Combining the spectra monotonicity for D = 0, with
the monotonicity in case D > 0 yields Proposition 4 with inequality (30), resulting directly
from (A19), (A17), and (A18).

Appendix A.6.2. Case (b). The Determinant D < 0

If D < 0, then the cubic Equation (A16) roots are obtained by Viète’s formulas [59]
in terms of trigonometric functions (except when p = 0, but it is not the case for D < 0),
which, in view of (A15) for the original third order Equation (A14), results in the three
different real roots:

x1 = −2rcos
(

θ

3

)
− c4

3βc1
, (A20)

x2 = 2rcos
(

π − θ

3

)
− c4

3βc1
, (A21)

x3 = 2rcos
(

π + θ

3

)
− c4

3βc1
, (A22)

where
r = sgn(q)

√
|p|, (A23)

and the angle θ is such that

cos(θ) =
q
r3 . (A24)

The condition D < 0, in view of (A19), implies p < 0, and next

0 ≤ |q| < |p|
√
|p|,

whence, by (A24), the next inequality results

0 ≤ cos(θ) =
q

sgn(q)|p|
√
|p|

=
|q|

|p|
√
|p|

< 1.

Thus, the angle θ is such that

0 < θ = arc cos
( q

r3

)
≤ π

2
.

If q > 0, then by (A23), r > 0 and the inequalities occur

−2rcos
(

θ

3

)
< 0 < 2rcos

(
π + θ

3

)
< 2rcos

(
π − θ

3

)
,
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whence, in view of (A20), (A21), (A22), having in mind the monotonicity of ψ(x) and the
assumption c4 < 0, we conclude that

x1 < 0 < x3 < x2.

If q < 0, then r < 0 and we have the inequalities

−2rcos
(

θ

3

)
> 0 > 2rcos

(
π + θ

3

)
> 2rcos

(
π − θ

3

)
,

whence, from the assumption c4 < 0 and monotonicity of ψ(x), the relation results

x1 > x3 > 0 > x2.

If q = 0, then r > 0 and, by (A24), cos(θ) = 0, whence θ = π
2 and, by c4 < 0, the three

real roots are such that
x1 < 0 < x3 < x2.

Proposition 4 has been proved, where inequality (29) means that the determinant
D < 0 simply results from (A17), (A18), and (A19). �

Appendix A.7. Derivation of Proposition 5

If the relaxation frequency (13) and time (11) spectra have extrema, then inequality
(29) holds, i.e., in particular the second summand of its left-hand side is negative, whence
inequality (33) results. By standard trigonometric identities, we have

c2
4 = [2βsin(πα) + αsin[π(2β− α)]]2 = [2βsin(πα)]2 + [αsin[π(2β− α)]]2+

4βsin(πα)αsin[π(2β− α)],

and next
c2

4 = 2β2[1− cos(2πα)] + 1
2 α2[1− cos(2π(2β− α))]+

2βcos(2π(α− β))− 2βcos(2πβ).
(A25)

By (21) and (27)

c1c5 = 2αsin(πβ)sin(πβ) + βsin(πβ)sin[π(2α− β)],

which can be expressed as

c1c5 = α[1− cos(2πβ)] +
1
2

βcos[2π(β− α)]− 1
2

βcos(2πα). (A26)

Combining (A26), (A25), and (33), after algebraic manipulations, yields

−βαcos(2πβ) + 3
2 β2cos[2π(β− α)] < − 1

2 β2cos(2πα) + 1
2 α2 + 2β2−

3βα− 1
2 α2cos[2π(2β− α)] + 2βcos[2π(α− β)].

Hence, by virtue of the parity of the cosine function, we obtain

−βαcos(2πβ) < − 1
2 β2cos(2πα) + 1

2 α2 + 2β2 − 3βα− 1
2 α2cos[2π(2β− α)]+(

2β− 3
2 β2)cos[2π(α− β)],

which is equivalent to (34). The proposition is proved. �
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Appendix A.8. Proof of Proposition 7

Now, by (48) and (49), function ϕ(x) (A5), due to (A7) and (A9) important for an
analysis of the spectrum monotonicity, takes a simple form described by

ϕ(x) = x
β

1−β
c1x2

x2 − 2c6x + 1
, (A27)

with the argument x given by (A6) and (A8), where parameter

c6 = cos(πβ).

From (A27), in straightforward way, we have

dϕ(x)
dx

=
c1

1− β
x

1
1−β

ψ1(x)

[x2 − 2c6x + 1]2
,

where the function ψ1(x) in the nominator is as follows

ψ1(x) = βx2 − 2c6x + 2− β.

Since ψ1(0) = 2− β > 0, the stationary point equation dϕ(x)
dx = 0 has for x > 0 two

positive real roots, if and only if the determinant

∆1 = 4c2
6 − 4β(2− β) = 4

[
cos2(πβ)− β(2− β)

]
, (A28)

of the square equation ψ1(x) = 0 is nonnegative, i.e.,

cos2(πβ) ≥ β(2− β), (A29)

and, simultaneously,
(
2c6 −

√
∆1
)
> 0, which, due to (A28), is equivalent to

cos(πβ) >
√

cos2(πβ)− β(2− β). (A30)

Then,

x1 =
2c6 −

√
∆1

2β
=

cos(πβ)−
√

cos2(πβ)− β(2− β)

β
, (A31)

corresponds to vmax, while vmin is determined by

x2 =
2c6 +

√
∆1

2β
=

cos(πβ) +
√

cos2(πβ)− β(2− β)

β
. (A32)

In the special case, when ∆1 = 0 and cos(πβ) =
√

β(2− β) > 0, the double root

x1 = x2 = cos(πβ)
β =

√
2−β

β is the inflection point of the increasing function ϕ(x), thus
spectrum H(v) (13) increases for all v > 0, while H(τ) is a monotonically decreasing
function. Thus, bearing in mind inequality (A29) corresponding to ∆1 ≥ 0, the local
extrema there exist, if and only if inequalities

cos2(πβ) > β(2− β), (A33)

and (A30) are satisfied. Inequality (A33) is rewritten as (50). The fulfilment of inequality
(50) implies the fulfilment of (A30). Bearing in mind Property 1 and the previous analysis,
formulas (51), (53), (54), and (52) result directly from (A31) and (A32). Proposition 7 is
proved. �
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