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Abstract: The extensive use of non-biodegradable plastic products has resulted in significant environ-
mental problems caused by their accumulation in landfills and their proliferation into water bodies.
Biodegradable polymers offer a potential solution to mitigate these issues through the utilization of re-
newable resources which are abundantly available and biodegradable, making them environmentally
friendly. However, biodegradable polymers face challenges such as relatively low mechanical strength
and thermal resistance, relatively inferior gas barrier properties, low processability, and economic
viability. To overcome these limitations, researchers are investigating the incorporation of nanofillers,
specifically bentonite clay, into biodegradable polymeric matrices. Bentonite clay is an aluminum
phyllosilicate with interesting properties such as a high cation exchange capacity, a large surface area,
and environmental compatibility. However, achieving complete dispersion of nanoclays in polymeric
matrices remains a challenge due to these materials’ hydrophilic and hydrophobic nature. Several
methods are employed to prepare polymer–clay nanocomposites, including solution casting, melt
extrusion, spraying, inkjet printing, and electrospinning. Biodegradable polymeric nanocomposites
are versatile and promising in various industrial applications such as electromagnetic shielding,
energy storage, electronics, and flexible electronics. Additionally, combining bentonite clay with
other fillers such as graphene can significantly reduce production costs compared to the exclusive use
of carbon nanotubes or metallic fillers in the matrix. This work reviews the development of bentonite
clay-based composites with biodegradable polymers for multifunctional applications. The composi-
tion, structure, preparation methods, and characterization techniques of these nanocomposites are
discussed, along with the challenges and future directions in this field.

Keywords: biodegradable polymer; bentonite clay; thermal; morphological; mechanical properties

1. Introduction

In recent years, the use of products based on non-biodegradable, synthetic plastics has
increased enormously. It has generated a high quantity of plastic waste which accumulates
in landfills, causing significant environmental problems [1,2]. Plastic waste also finds its
way into water bodies, disintegrating into microplastics which then manifest as microplas-
tics in drinking water. Plastic waste is also consumed by marine life, resulting in adverse
effects. Studies have shown that approximately 300 million tons of plastics derived from
fossil hydrocarbon resources are produced annually worldwide, and this is expected to
keep increasing [1,3].
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Due to the high degradation resistance and extended time for the decomposition of
non-biodegradable polymers, these polymers have significantly contributed to environ-
mental problems. To alleviate these problems caused by non-biodegradable polymers, the
use of biopolymer and biodegradable polymers is a viable alternative due to the renewa-
bility of their sources, availability, biodegradability, and eco-friendliness [4–6]. Biodegrad-
able polymers have similar properties to conventional polymers; thus, these can replace
non-biodegradable conventional polymers in many applications such as packaging, medi-
cal devices, drug capsules, personal hygiene products, and agricultural applications [2].
Biodegradable polymers are largely derived from renewable agricultural feedstock such as
starch and cellulose [7]. Although biopolymers are fully biodegradable, they present short-
comings such as relatively low mechanical resistance, inferior gas barrier properties, low
processability, and poor economic viability related to their production. Thus, these proper-
ties must be improved to cover a vast range of properties provided by non-biodegradable
polymeric materials [8]. This can be achieved by modifying biodegradable polymers
through the incorporation of functional nanofillers such as clays into their matrices to
form polymer nanocomposites. The incorporation of nanofillers aims to improve polymer
properties such as thermal, mechanical, and other physical properties when compared to
the virgin polymer [9–13] and consequently, to extend their applications in belligerent envi-
ronments [13–16]. To accomplish the desired properties of polymer nanocomposites, the
surface of inorganic nanofillers is typically modified to promote their uniform dispersion
throughout the polymer matrix and enhance interfacial interaction with the organic matrix
(Figure 1). Several works have reported the effect of sheet silicate clays (phyllosilicates) in
modifying polymer matrices. Phyllosilicate montmorillonite has been studied widely as
a functional nanofiller for polymer matrices [13,17–19]. This work reports on the recent
advances in bentonite (a montmorillonite clay) as nanofillers for biodegradable polymer
matrices. Bentonite is an absorbent aluminum phyllosilicate principally consisting of mont-
morillonite (MMT). It is a sedimentary rock comprising a high clay content with a typical
2:1 layered structure known as smectites containing sodium and calcium ions between the
layers [20]. Montmorillonite, which belongs to the smectites group, is considered a major
mineral for bentonite [20].

Bentonite also presents common impurities such as calcite, feldspar, quartz, mica,
and organic matter. These offer a secondary impact on the thermal stability and cation
exchange capacity of bentonites [20,21]. Among the traditional ceramics, bentonite is one
of the inorganic nanofillers most used by researchers in different applications such as civil
engineering, iron ore palletization, animal and poultry feed pelletization, paints, cosmetics,
pharmaceuticals, and wastewater treatment [22]. This is justified because bentonite has
a high cation exchange capacity and surface area [23], and other important properties
such as thixotropy, hydration, swelling capacity, the capacity to bond, impermeability,
and plasticity [22]. Bentonite is environment-friendly and available on a large scale. Is
also relatively inexpensive. However, one of the principal concerns when incorporating
nanoclays (e.g., bentonite) into a polymer matrix is the difficulty in uniformly dispersing
them in the matrix. An entirely exfoliated structure (i.e., structure in which the silicate
layers are fully and regularly distributed in the continuous polymeric matrix) is required to
improve the mechanical properties. However, the tendency of silicate-based nanofillers
to agglomerate within polymer matrices is generally difficult to overcome [24]. This is
because most polymers are hydrophobic, whereas silicates are hydrophilic. Therefore, it is
necessary to pretreat the clay prior to dispersing it in the polymer matrix to enhance its
compatibility with the hydrophilic polymer [24–26]. The conversion of hydrophilic silicates
into organophilic is one of the most reliable methods used to enhance the compatibility of
clays and polymers. In this method, hydrated cations in the galleries of clays are substituted
by cations from surfactants, e.g., alkyl or hydroxyl ammonium cations [27,28]. When this
occurs, the basal spacing of the clay layers increases and the surface energy of the clays
decreases. Thus, compatibility with hydrophobic polymers is improved and polymer
chains can enter the galleries under defined processing conditions [24,29].
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Junior et al. [2] reported in their study that the preparation of bionanocomposites with
a small amount of inorganic filler was an effective procedure for enhancing some of the
biodegradable polymer properties, such as thermal, mechanical, and barrier properties
when compared to the corresponding neat polymer. Thus, bentonite is one of lamellar
silicates mostly used by researchers as an inorganic filler due to the aforementioned rea-
sons [2]. For the preparation of polymer–clay nanocomposites, different methods, such as
solution casting, melt extrusion, in situ polymerization, are used. However, the choice of
these methods depends on the type of nanofillers, interfacial interaction, and the level of
dispersion of the nanofillers into the polymer matrix to obtain the desired biodegradable
polymer nanocomposites for multifunctional applications.

The development of more efficient and cost-effective functional materials for industrial
applications with a reduced environmental footprint, which are easier to process and are
biodegradable at the end of their useful lives, has attracted more attention in academia
and industry. Depending on the final properties, multifunctional biodegradable polymer
nanocomposites can be suitable for various industrial applications such as electromag-
netic (EM) shielding, energy storage, electronics, and embedded capacitor applications.
This clay can be combined with other fillers (e.g., graphene) and incorporated into fully
biodegradable polymers (e.g., polysaccharides) to develop exciting materials for flexible
electronics applications. Therefore, this combination of bentonite clay with other fillers
could significantly lower production costs when compared with only the use of carbon
nanotubes or metallic fillers.

This work deals with the progress made in developing biodegradable polymer-based
bentonite clay nanocomposites for multifunctional applications. Furthermore, a brief de-
scription of the composition and structure of bentonite clay, different preparation methods,
and characterization of the thermal, mechanical, microstructure properties of biodegradable
polymer-based bentonite nanocomposites are discussed. Finally, conclusions are drawn
and new challenges are discussed.
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Figure 1. Schematic illustration of the nanocomposite structures. Three main types of morphology,
including agglomerates, intercalated, and exfoliated structures of polymer-based clay nanocomposites
can be obtained. Reprinted with permission from Ref. [30]. Copyright 2021, MDPI.

2. Bentonite Clay: Classification, Composition, and Structure

The structure of bentonite consists of two basic building blocks: the aluminum oc-
tahedral sheets and silica tetrahedral sheets, as illustrated in Figure 2. A single unit cell
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comprises one aluminum octahedral sheet sandwiched between two tetrahedral silica
sheets [31]. The layered silicates present a slight negative charge, which is compensated
by exchangeable cations in the intermediate layers. In addition, the charge is weak where
cations Na+, Ca2+, and Mg2+ may be adsorbed with a connected hydration shell or hy-
dration sphere. Thus, the cations contained in the clay can be substituted through ion
exchange [31].
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Generally, depending on the dominant exchangeable cations, there are two types of ben-
tonite clays: sodium (Na) bentonite and calcium (Ca) bentonite types. Sanavada et al. [22]
reported that in natural bentonite clay, if the content of ionic sodium (Na+) is more than
20%, that type of bentonite is called sodium bentonite. Moreover, if the concentration of
ionic calcium (Ca2+) is more than 20%, that type is named calcium bentonite. Therefore,
although both bentonite clays are swelling materials, the high tendency of water absorption
from Na+ ions in sodium bentonite makes it prone to absorbing relatively large amounts
of water, resulting in high swelling bentonite. In contrast, calcium bentonite, which con-
tains Ca2+ ions, is less susceptible to water absorption, and is known as a low-swelling
bentonite [32,33]. This is also supported by a study conducted by Muhammad and Siddi-
qua [32] that reported the cation exchange capacity (CEC) of the calcium bentonite with
the value of 50 meq/100 g, which is lower than the high swelling-type bentonite (Na),
with a range of 80–85 meq/100 g. Other differences include the surface area of the Ca
bentonite clay, which is between 60 and 120 m2/g, while Na bentonite clay is about 20 to
30 m2/g [22]. The literature also reported the difference in concentrations of chemical
compounds present in the calcium and sodium bentonites. The chemical compositions
of bentonites were carried out using XRF measurements. The XRF data showed that the
Ca bentonite clay is composed of CaO (4.88%), MgO (2.65%), Fe2O3 (6.35%), K2O (0.69%),
Na2O (0.74%), TiO2 (0.64%), Al2O3 (16.44%), SiO2 (60.82%), and LOI (6.79%) [34], while the
Na bentonite clay is composed of CaO (1.44%), MgO (2.75%), Fe2O3 (11.92%), K2O (0.29%),
Na2O (3.22%), Al2O3 (15.34%), SiO2 (52.55%), TiO2 (1.62%), and LOI (9.80%) [35].

The structural properties of Ca bentonite and Na bentonite were investigated using
XRD. Through XRD studies, Choo et al. [36] showed that the principal clay mineral in
Ca bentonite was montmorillonite (MMT). Other minerals such as quartz, albite, and
clinoptilolite were identified (Figure 3a). In addition, using the XRD pattern of natural
Na bentonite (Figure 3b), Zhirong et al. [37] demonstrated that the Na bentonite clay is
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also composed primarily of montmorillonite (MMT), with the characteristic features at
d001 = 14.29 A◦ and d020 = 4.49 A◦. The predominance of sodium is located on the basal
spacing (d001 = 14.29 A◦), which allows for the description of the samples principally as
sodium bentonite (Na bentonite). Other peaks showing the occurrence of impurities such
as quartz and feldspar were also observed in the XRD pattern.
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3. Thermal Stability of Bentonite Clay

As previously reported, bentonite clay is obtained in various countries where it occurs
superimposed on other mineral deposits. Therefore, the modification of bentonite has been
performed using different organic compounds. This process is an important first step for
preparing clay mineral based-polymer blends. It modifies the clay surface chemistry, alter-
ing its nature from hydrophilic to organophilic. It makes bentonite clay more compatible
with organic polymers and allows for the exfoliation of the clay layers into the polymer
matrix [38,39]. According to Massinga Jr et al. [39], quaternary alkylammonium salts that
include bromides or chlorides are most intercalated in MMTs. Quaternary ammonium
ions with long chains are ideal, as they lead to a larger interlayer spacing, allowing for
facile penetration of polymer chains into the clay interlayer space. The co-intercalation
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of polymer chains assists the dispersion of distinct particles of bentonite clay through the
polymer. Researchers have evaluated the thermal stability of modified bentonite clay to
determine the exchanged content of organo-surfactant using thermogravimetric analysis
(TGA) [38,40].

Ramos Filho et al. [41] compared the stability of unmodified Brazilian bentonite with its
modified form (Figure 4). The authors reported that the first TGA mass loss of unmodified
bentonite started at 30 ◦C and was completed at 200 ◦C. Therefore, the mass loss was
attributed to water content via volatilization. In comparison, the second TGA mass loss
of unmodified bentonite was observed between 430 and 634 ◦C due to the decomposition
and dehydroxylation of the aluminosilicate. In addition, two mass losses were found for
modified bentonite, which was attributed to organic salt decomposition. First, there was a
TGA mass loss from 170 ◦C to 400 ◦C, and second, a TGA mass loss started at 575 ◦C and
was completed at 800 ◦C. The authors also reported that the decomposition of organic salts
occurs when the molecules of salt are located outside or within the interlamellar spaces
and below the decomposition temperature of the neat quaternary salt. Furthermore, the
unmodified bentonite (PB) water content was much higher than that for the modified
bentonite (MB). This behavior was associated with the reduced hydrophilic nature of the
clay after modification. For the modified clay, the organic salt amount was approximately
21%. Therefore, the value confirmed the efficacy of the modification procedure.
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Another study by Massinga Jr et al. [39] evaluated and compared the thermal stability
of crude Mozambican bentonite with its modified form. The authors demonstrated that
the TGA mass loss ensued a stepwise process in all samples and tended to increase with
increasing organic salt content. Only two principal mass loss events were observed in
the TGA of crude bentonite. In contrast, the TGA of the organo-bentonites demonstrated
further thermal events (Figure 5a). The inorganic content of dry samples was estimated
from the residual mass observed at 1000 ◦C relative to that measured at 150 ◦C. The organic
content of the intercalated bentonites was determined by comparing their mass loss values
with that obtained for the neat bentonite. These values were compared with the theoretical
organic content calculated on the basis of complete ion exchange equivalent to the CEC
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(Table 1) [39]. In all cases, the surfactants intercalated to a level that exceeded the CEC
theoretical expectation by 10%, 11%, and 21% for the SC14, DC16, and the surfactant mixture
intercalated bentonites, respectively [39]. In addition, the DTA results demonstrated that
the endothermic peak was below 150 ◦C for the crude bentonite due to the loss of interlayer
water (Figure 5b). The weight loss attributed to the dehydration event below 150 ◦C
corresponded to 17% for the raw bentonite and less than 3% for the modified bentonite.
The high amount of water exhibited by the raw bentonite was expected as the Ca2+ and
Na+ ions probably have a higher tendency for hydration than the oleophilic surfactant. The
same behavior was observed by Ramos Filho et al. [41].
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Table 1. Estimated organic content from the TG results.

Sample Residual Mass
(%), 150 ◦C

Residual Mass
(%), 1000 ◦C

Theory Organic
Content (%)

Experimental Organic
Content (%)

Crude bentonite 83.4 79.3 - -
SC14 97.1 71.9 19.0 20.9
SC14 + DC16 97.9 60.5 28.1 34.0
DC16 98.1 55.8 35.3 39.3

4. Preparation of Biodegradable Polymer/Bentonite Nanocomposites

Generally, three main methods, melt processing, solution casting, and in situ poly-
merization, are mostly used to prepare polymer-based clay nanocomposites (Figure 6) [42].
Although among these methods solution- and melt-mixing are considered more accessi-
ble methods, these may result in less effective polymer intercalation and/or exfoliation
of organoclay layers into the polymer matrix due to solvent co-intercalation or for melt
processing, slow polymer transport into the interlayer space. Furthermore, they require an
additional processing step after polymer synthesis, increasing the cost of the final prod-
uct [3]. The definition and procedures of the methods of polymer nanocomposites are
described below.

(a) In situ polymerization. In situ polymerization refers to a process in which the
formation of polymers occurs directly at the place in which they will be used, without the
need for prior production and further processing of the polymers [43]. In this process, the
monomers are introduced at the application site and then the chemical polymerization
reactions are initiated, which leads to the formation of the solid polymer. Generally, this
polymerization is catalyzed by initiating agents or other reactive agents such as heat, light,
or chemical reagents [44]. When this method is used in the preparation of nanocomposites
of clays and polymers, nanoclays (typically organically modified ones) and an initiator or
catalyst are first dispersed in monomers or a monomer solution, and then polycondensation
is performed using standard methods. This method has been frequently used to obtain
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nanocomposites with a homogeneous distribution of well-exfoliated clay layers in the
polymer matrix [45].

The in-situ polymerization method can be used to fabricate product based on polymer
nanocomposites to be applied in several applications such as coatings [46], adhesives [47],
sealants [48], etc. The method’s main advantage is greater control over reaction conditions,
such as temperature, concentration, and reaction time, which can lead to more consistent
and controlled properties in the polymers produced [49].

Studies on the development of novel biodegradable polymer-based bentonite nanocom-
posites prepared via in situ polymerization have been reported [3,50,51]. Salt-resistant
poly(acrylic acid-N, N-diethyl acrylamide) [P(AA-DEA)] was designed recently to inter-
calate and graft calcium bentonites (CaB) via in situ polymerization without prior Na
activation [52]. Hydrophilicity and barrier property tests showed that the swell index of
CaB/P(AA-DEA)-8% in aggressive CCP leachate (I = 176 mM) was 3.4 times that of pristine
CaB, giving CaB/P(AA-DEA)-8% a very low kCCP (1.7 × 10−12 m/s), which is only 3.3% of
the U.S. standard requirement for geosynthetic clay liners and ~four orders of magnitude
lower than the k of pristine CaB.

In situ polymerization allows for the formation of polymers directly at the applica-
tion site, providing advantages such as personalization, efficient adhesion, reduction in
intermediate processes, and process control. This technique is widely applied, enabling
the development of polymeric and bentonite materials with specific properties to meet the
demands of different applications [53]. However, the disadvantages of in situ intercalative
polymerization are the slow rate of reaction, and dependence of clay exfoliation through
the following processes: swelling of the clay, diffusion rate of monomers in the clay layer
gallery, and the fact that oligomer may be formed upon incomplete polymerization [54].
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(b) Melt processing. Melt processing has been widely used to produce nanocomposites
due to numerous advantages, for example, design versatility. The process involves mixing
particles with the polymer, in which the mixture is heated to a temperature above the
softening point of the polymer. The polymer melt processing is a viable and widely
used method in the large-scale production of geometrically complex objects [55]. Melt
processing is considered an economical product manufacturing technique. Also, it does
not require organic solvents, thus it can be considered an environmentally friendly process.
Meting processing allows for compatibility with several industrial methods (e.g., extrusion),
facilitating possible scale-up. Moreover, melting processing enables the production of solid
and durable joints between materials, ensuring the structural integrity of products when
appropriately produced [56].

Poly-lactic acid (PLA)-based bentonite (BNT) composites has been reported [57]. The
findings demonstrated the enhancement of mechanical properties (tensile strength, Young’s
modulus, and elongation at break). The lowest bentonite content studied for BNT compos-
ites (0.5 wt.-%) resulted in superior tensile strength compared to neat PLA. The XRD results
from the study showed that the bentonite was well dispersed and exfoliated in PLA. This
suggests that the compounding process using extrusion was effective in the preparation of
PLA-based bentonite clay nanocomposites.

Melting processing of materials has several advantages in creating finished products
or complex components of composites of polymers with bentonite, which can consequently
present improved characteristics, such as increased thermal and mechanical resistance [56].
However, there may be restrictions on the size and scale of composites that can be produced.
This can be a hindrance to making more extensive or large-scale materials. Therefore,
systematically assessing whether fusion processing is suitable for creating the required
composite should be crucial. If so, the efficiency and practicality of making the object can
be made the most of.

(c) Solution casting. Solution casting is widely used in the fabrication of multifunctional
composites, such as biomedical materials and adsorbents. Solution casting can be carried
out by dissolving a polymer in a suitable solvent. At the same time, other materials are
dispersed in the same or different solvent before the dispersions are mixed to generate
a homogeneous mixture [58]. The efficient exfoliation of the stacked clay layers using
an appropriate solvent has been considered an attractive advantage for the area. The
successive addition of a polymer solution to the dispersion of completely delaminated
nanoparticles leads to a strong interaction between the polymer macromolecules and
individual clay layers. The driving force for the intercalation of the biopolymer into the
clay galleries in the solution is the entropy obtained with the desorption of the solvent
molecules, which compensates for the entropy decrease in the confined intercalated chains.
When the solvent is evaporated, the intercalated structure remains, which results in the
final nanocomposites. The disadvantages of this process are mostly due to the solvents
used, as most are considered unsafe. In addition, the production of materials using the
solution casting method requires attention during the solvent removal step. If the solvent
remains in the product, it may reduce the interfacial performance between the polymer
and filler [58,59].

A series of novel chitosan–bentonite nanocomposite films were prepared by using
solvent casting for diverse applications [60–63]. Incorporation of an appropriate amount
of bentonite into the solution mix relative to chitosan to make the films enabled the im-
provement of almost all the properties needed (e.g., resistance to folding and the ability
to absorb water). Therefore, the solution casting method can be easily applied to produce
bentonite and polymer-based composites [60–63]. An exciting advantage of the process is
the possibility of using biopolymers to manufacture composites. Continuous research for
the feasibility of solvents that do not harm the environment must be carried out to make
the method even more interesting in terms of sustainability [60–63].

Finally, the adequate choice of the best process to produce composites based on
polymer and bentonite must be made based on several aspects, including the characteristics
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of the polymer, form of bentonite, desired properties of the composite, and processing
conditions when choosing the manufacturing method. Furthermore, coupling agents
may be necessary to improve the dispersion and interaction between the polymer and
bentonite, ensuring a better-quality composite. Therefore, experimentally evaluating
different methods and optimizing processing conditions is essential to obtain polymer and
bentonite composites with desired properties and adequate performance for the intended
application.

4.1. Properties of Biodegradable Polymer-Based Bentonite Clay Composites

The better properties of polymer/bentonite nanocomposites compared to the pure
polymer used for multifunctional applications such as water treatment and food pack-
aging enhanced properties of polymer/bentonite nanocomposites are achieved when
adequate dispersion of nanofillers into the polymer matrix is established. Organoclays
such as bentonite can substantially improve various properties of polymers to which
they are added. Bentonite can impart high tensile strength and modulus, heat resistance,
decreased gas permeability, and flammability and enhanced biodegradability to biodegrad-
able polymers [8,64]. The better properties are obtained due to the strong interfacial inter-
action between the nanofillers and polymer. Figure 7 demonstrates several applications of
biodegradable polymers [65].
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4.2. Microstructural Properties of Biodegradable Polymer-Based Bentonite Clay Materials

Experimental measurements and analysis of the microstructure of nanocomposites
have been investigated using diffraction techniques, optical and electron microscopy.
These methods include scanning electron microscopy (SEM) [66], transmission electron
microscopy (TEM) [44], and atomic force microscopy (AFM) [66]. These methods are
used to investigate several key factors: filler size and size distribution, the dispersion
state of the filler in polymer matrix, and the interfacial adhesion state. In this regard,
microstructural studies of polymer–clay bentonite have been investigated. For example,
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Alves et al. [64] investigated the effect of Brazilian bentonite on the morphological prop-
erty of PLA nanocomposites using (TEM). The TEM images in Figure 8 demonstrated
the dispersion of bentonite clay in the PLA matrix. Small agglomeration of clays in these
nanocomposites with numerous individual silicate layers, as well as thin primary clay
tactoids are shown by arrows and an oval in Figure 8, and the characteristics of a partially
exfoliated nanocomposite structure were obtained. It was demonstrated that uniform
distribution of the clay layer into the polymer matrix was achieved. The authors explained
that the well-dispersed bentonite clay with thein PLA matrix was a direct consequence
of the high intercalation of PLA molecules into the interlayer space of the clay due to the
excellent compatibility between the two phases associated with the presence of hydroxyl
groups in ethoxylated tallow amine surfactant [64].
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Furthermore, a study by Solarski et al. [67] about the effect of processing temperature
on the morphology of PLA-based bentonite nanocomposites was examined via TEM. TEM
images demonstrated an excellent dispersion of organo-modified bentonite in the PLA
matrix with a high extent of exfoliated silicate layers and intercalated structures at a
lower mixing temperature of 180 ◦C (Figure 9a). This was attributed to a higher level
of shear stress transfer between the polymer matrix and clay. Furthermore, the TEM
micrograph in Figure 9b suggests a reduction in the quality of the orientation of the sheet
nanostructures with the direction of extrusion at a high temperature of melt-compounding
(220 ◦C). Therefore, the stack sizes also look larger than the samples prepared at 180 ◦C.
On the other hand, the white arrows in Figure 9a show that the bentonite clay particles are
evenly dispersed through the PLA matrix and the orientation of sheet nanostructures in the
direction of extrusion are more pronounced. The white arrows in Figure 9b demonstrate
that the bentonite clay agglomerates tended to envelope PLA matrix.
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Figure 9. TEM micrographs of PLA-based bentonite nanocomposites compounded at different
temperatures: (a) 180 ◦C and (b) 220 ◦C. All samples had 3 wt.-% bentonites added. Reprinted with
permission from Ref. [67]. Copyright 2008, Wiley.

Shanmathy et al. [68] demonstrated that bentonite and starch were fully homogenized
as they revealed no phase separation, holes, or cracks. The reduced roughness of the films
produced in this study was due to the interaction between the negatively charged bentonite
and positively charged starch [68]. Figure 10 shows SEM micrographs of the bentonite
dispersed in the starch. Different concentrations of bentonite were used. According to
the authors, a high concentration of bentonite in the starch reduced the roughness of the
biodegradable film. Furthermore, the attraction between the molecules might have helped
in reducing the roughness by keeping the contents well intact [68]. In conclusion, the
effective dispersibility of bentonite clay into the PLA matrix with incomplete or complete
exfoliation structure can be achieved.
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Reprinted with permission from Ref. [68]. Copyright 2021, Elsevier.

4.3. Mechanical Properties of Biodegradable Polymer-Based Bentonite Clay Materials

In general, the most often tested mechanical properties in polymer nanocomposites
include Young’s modulus, tensile strength, and elongation at break. These mechanical
properties are influenced by several factors such as polymer structure, filler content and
type, processing methods, and the presence of additives (such as plasticizers) [69]. Further-
more, the interfacial interactions between the biodegradable polymer and the nanofiller
(bentonite clay) have a noteworthy effect on the mechanical properties of biodegradable
polymer composites [70,71]. For example, Paspali et al. [72] investigated the effect of three
bentonites (Clo5, Clo20, and Clo116) on the mechanical properties of PLA composites. Neat
PLA and PLA–bentonite nanocomposite samples demonstrated an initial linear elastic
deformation, followed by non-linear deformation (Figure 11). Figure 11 shows that the
clay content and type substantially influenced the mechanical behavior of the PLA-based
bentonite nanocomposites compared to the neat PLA matrix. Another study by Ollier
et al. [8] about the effect of organo-modified bentonite on the mechanical properties of the
polycaprolactone (PCL) matrix showed that PCL-based bentonite clay nanocomposites
had improved tensile mechanical properties such as Young’s modulus and tensile strength
compared to the neat PCL matrix (Table 2). This behavior was attributed to the excellent
dispersion of the bentonite nanofiller into the polymer. In addition, other studies also
reported that the degree of dispersion of organoclay plays an important role in enhancing
the viscoelastic behavior of the polymeric matrix [73,74]. Petersson and Oksman [75] also
evaluated the mechanical properties of PLA/bentonite nanocomposites. In their results,
the authors demonstrated a 53% improvement in tensile modulus and a 47% increase in
yield strength compared to pure PLA (Table 2).
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Table 2. Mechanical properties of biodegradable polymer-based bentonite nanocomposites.

Sample Young’s Modulus
(MPa)

Tensile Strength
(MPa) Reference

Neat PCL 114.8 ± 2.0 12.4 ± 0.2 [8]
PCL–1.5 wt.-% Bent 194.7 ± 12 13.9 ± 0.2 [8]
PCL–3.0 wt.-% Bent 180.8 ± 22.1 13.6 ± 0.5 [8]
PCL–1.5 wt.-% bCBK 203.2 ± 20.9 19.3 ± 0.8 [8]
PCL–3.0 wt.-% bCBK 257.3 ± 37.0 19.8 ± 3.1 [8]
Neat PLA 28.5 ± 3.8 1.7 ± 0.2 [75]
PLA/Bentonite 42.0 ± 4.3 2.6 ± 0.3 [75]
Starch films 40.9 ± 6.04 2.56 ± 0.13 [76]
Starch/Bentonite (0.5 wt.-%) 45.35 ± 3.03 2.66 ± 0.72 [76]
Starch/Bentonite (1 wt.-%) 54.38 ± 7.89 3.053 ± 0.361 [76]
Starch/Bentonite (1.5 wt.-%) 72.65 ± 11.42 4.063 ± 0.12 [76]
Neat PLA 452 ± 66 37.0 ± 6.0 [77]
PCL/Bentonite (5 wt.-%) 767 ± 61 42.3 ± 2.5 [77]

In the study by Behera et al. [76], an increase in bentonite clay concentration was
observed to improve the mechanical properties of bioplastic films. This might have been
due to the homogeneous dispersion of bentonite in the bioplastic composite film. Table 2
thus shows that with the increase in the concentration of bentonite, the tensile strength and
Young’s modulus increased [8,75,76].

4.4. Thermal Stability of Biodegradable Polymer/Bentonite Clay Nanocomposites

The thermal stability of polymeric materials is typically investigated via thermogravi-
metric analysis (TGA). Generally, the addition of inorganic nanofillers has been reported to
enhance the thermal stability of biodegradable polymers [78,79]. Ray and Bousmina [80]
reported that the silicate layers act as a barrier for incoming gases and gaseous by-products
formed during degradation, improving the thermal stability of the polymeric materials.
The extent of this increase usually depends on the degree of exfoliation of the organ-
oclays [81–83].

Studies on the thermal stability of the biodegradable polymer/bentonite nanocom-
posites play an essential function in deciding their working temperature limit and the
environmental conditions for use, which are related to their thermal decomposition tem-
perature and decomposition rate [82,84]. For example, Nabgui et al. [51] used TGA to
investigate the effect of organo-modified bentonite (OBnt) on the poly(ε-caprolactone)
(PCL) matrix. Figure 12a shows the TGA thermograms of the virgin PCL and the obtained
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poly(ε-caprolactone) based organo-modified bentonite nanocomposites with different con-
centrations of nanofiller. The mass loss of the virgin PCL, representing thermal degradation,
starts at 315 ◦C. In contrast, the mass loss of the PCL–bentonite bionanocomposites, which
corresponds to thermal degradation, occurs at a slightly higher temperature (320 ◦C). At
the second degradation stage (up to 330 ◦C), the shift to a higher thermal degradation
temperature was more significant for the bio-composite material (PCL–OBnt) compared to
the virgin PCL. The results demonstrated that the presence of clay fillers such as organo-
modified bentonite results in thermal stability improvement. The similar trend of mass loss
behavior of the PCL-based bentonites (1 wt.-% and 5 wt.-%) composites could be due to the
formation of reasonably large amounts of cross-linked carbonaceous species for PCL-based
bentonite composites (5 wt.-%) which undergo slow decomposition within a certain tem-
perature range, particularly at high temperatures [85–87]. Moreover, good dispersion of
the bentonite clay nanofiller in the polymeric matrix (Figure 12b) could have enhanced the
nanocomposite stability through the formation of protecting layers [88–93]. Furthermore,
the absence of holes and phase separation confirm the significant interaction between PCL
and organo-modified bentonite [51]. Additionally, Table 3 summarizes previous works on
bentonite as a filler for biodegradable polymer nanocomposites.
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Table 3. Summary of bentonite as a filler for biodegradable polymer nanocomposites.

Biodegradable Polymer/Bentonite Clay
Nanocomposites Remarks Reference

Poly(hydroxybutyrate)/polyethylene
glycol blend (PHB/PEG) with
organobentonite (1 wt.-% and 3 wt.-%)

It was observed that the initial temperature for the degradation of
bionanocomposites showed different behavior for organobentonite (1
wt.-% and 3 wt.-%). The thermal stability of bionanocomposites
increased with the organobentonite content. Furthermore, it was also
verified that clay addition to most systems led to an increase in
crystallinity compared to the PHB matrix, which was attributed to
the clay nucleating effect.

[2]
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Table 3. Cont.

Biodegradable Polymer/Bentonite Clay
Nanocomposites Remarks Reference

Poly(butylene adipate) (PBA)/organoclay
nanocomposites

The organophilic modification was observed to promote efficient clay
delamination, resulting in nanocomposites with a predominantly
exfoliated morphology when the appropriate organoclay (i.e., with
the optimal organomodifier/clay ratio) in the appropriate
concentration range of 2–3 wt.-% was used. The increased
crystallinity of PBA suggests that the nanoclay acts as a
heterophase-nucleating agent. The enhanced thermal stability of the
PBA matrix confirmed the good quality of the delamination and
dispersion of the clay lamellae in the polymer matrix.

[3]

Polycaprolactone/organobentonite
nanocomposites

The morphology characterization of the nanocomposites showed that
the organo-modification of the clay greatly improved its dispersion in
the polymer matrix. As a consequence, it is demonstrated that the
reinforcement of PCL with 3 wt.-% loading of organoclay produces
the strongest improvement in creep resistance. The instantaneous
creep strain and experimental creep rate decrease by more than 9%
and 27%, respectively.

[8]

Polyester resin (Dolplast)/bentonite
nanocomposites

The results clearly showed that the chemical modifications of the
bentonite clay caused a desired effect on its final properties (thermal,
barrier (water absorption), mechanical (flexural), and dynamic
mechanical properties), improving the performance of the
nanocomposites. The enhancements were directly related to the
dispersion of the clay inside the matrix viewed via transmission
electron microscopy.

[24]

Poly(ε-caprolactone)/bentonite
nanocomposites

The prepared poly(ε-caprolactone)/bentonite presented better
thermal stability regardless of the content of bentonite as a
reinforcing filler. In fact, the melting point and
poly(ε-caprolactone)/bentonite degree of crystallinity determined via
TGA and DSC analyses, increased by increasing the amount of the
filler. Furthermore, the fractured surfaces of the neat polymer (PCL)
and poly(ε-caprolactone)/bentonite were compared using SEM,
whereby the adhesion between clay particles and the polymer was
clearly exposed, as well as the dispersion of the bentonite filler in the
polymeric matrix. Finally, the bio-composites with 5 wt.-% of
bentonite in the poly(ε-caprolactone) matrix displayed the highest
resistance under stress with 66 MPa instead to 46 MPa only for the
neat poly(ε-caprolactone).

[51]

PLA/bentonites nanocomposites

Nanocomposites were prepared at low clay compositions of 0.5, 1, 3,
and 5 wt.-% of bentonite. From the XRD spectra, the partial
exfoliation of the nanoclay layers occurred during the melting
extrusion. This resulted in improvement of mechanical properties,
such as Young’s modulus, tensile strength, and elongation at break.
The highest tensile strength was obtained with the addition of 0.5
wt.-% commercial bentonite, increasing about 23.25% compared to
the neat PLA. The increasing composition of the clays revealed a
decrease in mechanical properties due to filler–filler interactions.
Furthermore, the water absorption of nanocomposites up to 1 wt.-%
of clays was better than that of the neat PLA. Biodegradability was
enhanced in the presence of a higher clay composition due to the
high hydrophilicity of clay, high water uptake, and high interactions.

[57]
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Table 3. Cont.

Biodegradable Polymer/Bentonite Clay
Nanocomposites Remarks Reference

Chitosan/bentonite nanocomposites

The characterization of the chitosan/bentonite composite via FT-IR
and XRD indicates evidence of the interaction between the functional
groups of chitosan with bentonite, which is beneficial for the
adsorption of hexavalent chromium. SEM micrographs of the
chitosan/bentonite composite revealed its slightly smooth surface
with cotton-like accumulation of irregular shapes. After adsorption,
the surface morphology of the chitosan/bentonite composite
remained practically unchanged.

[60]

Chitosan/bentonite nanocomposites

The good mechanical structure was confirmed through the tensile
strength and elongation values. The chitosan/bentonite composite
presented a tensile strength of 40.5 ± 1.6 MPa and elongation of 60.0
± 0.5%. These mechanical properties were better in relation to the
chitosan film (pure chitosan), confirming that the insertion of
bentonite was favorable. SEM micrographs demonstrated the
presence of bentonite particles in the chitosan/bentonite composite.
Additionally, the results showed that the chitosan/bentonite
composite presented a heterogeneous structure.

[61]

Chitosan/bentonite nanocomposites

The incorporation of an appropriate amount of bentonite in the
solution mixture with respect to chitosan in order to fabricate
nanocomposite films dramatically improved almost all the properties
required for an ideal wound dressing material. FTIR spectra
confirmed the H-bonding interactions between the hydroxyl group of
bentonites with the hydroxyl and amino groups of chitosan. Further,
the SEM images showed a rough surface of the nanocomposite film
that might be due to the entrapment of undissolved bentonite
particles in the nanocomposite film.

[63]

PLA/organoclay nanocomposites

The results showed that the hybrid organo-modified
montmorillonites with di(alkyl ester) dimethyl ammonium chloride
(EA) and ethoxylated tallow amine (ETA) (both containing polar
groups) conferred compatibility between the organoclays and PLA,
while the phosphonium compound unexpectedly failed to promote
the dispersion of the clay layers in PLA nanocomposites, related to its
poor compatibility with PLA. However, these systems may be useful
when combined with other polymers. In addition, the use of hybrid
organo-modified montmorillonites (OMt) may be a good approach to
obtain polymer clay nanocomposites with final desirable properties,
depending on the type, amount, and surfactant combinations in the
hybrid system, being a field that still has to further be explored. DSC
showed dependence on the nanocomposite thermal behavior with
the dispersion level of the organoclays. In general, the presence of
organoclays reduced the glass transition temperature of PLA and its
cold crystallization temperature, and increased its crystallinity, which
was related to an effective heterogeneous crystal nucleation
promoted by the organoclay.

[64]

Polylactide/bentonite nanocomposites

Because of good compatibility with the PLA matrix, the dispersion of
bentonite (B104) occurred under different conditions without
difficulty. The results obtained showed that at low temperatures of
mixing, the shear stress exerted on the polymer had a key role in the
extent of intercalation and delamination. Bentonite could be added
up to 4 wt.-% into PLA without detrimentally sacrificing the tensile
strength of melt-spun filaments, especially at a high draw ratio.
Interestingly, the composites-based multifilament was knitted, and
the flammability studied using cone calorimeter at 35 kW/m2. A
strong decrease, up to 46%, in the heat release rate was observed.

[67]
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Table 3. Cont.

Biodegradable Polymer/Bentonite Clay
Nanocomposites Remarks Reference

Taro starch/bentonite nanocomposites

SEM and FTIR results showed that the films formed were
homogeneous and confirmed the functional groups of Taro starch.
With the increase in bentonite concentration, the tensile strength of
the bioplastic film was found to increase. The bentonite films
exhibited more resistance to salt and acid, were susceptible to alkali,
and showed minor swelling.

[68]

4.5. Difficulties in Clay/Biodegradable Polymer Nanocomposite Development

The production of clay/polymer composites faces several challenges that can make
obtaining materials with desired properties difficult. The adequate clay dispersion of
clay to form intercalated or exfoliated structures within the polymer is a challenge in
producing polymer composites. Clay is composed of nanometer-sized particles that tend
to agglomerate, forming aggregates [94]. To obtain high-quality composites, obtaining a
uniform dispersion of the clay particles in the polymeric matrix is essential. There needs to
be a better understanding of the mechanisms related to getting polymer composites with
superior properties due to the lack of knowledge about the polymeric behavior in each
system.

Another challenge is the thermal stability of organic clays, which have attracted the
interest of many researchers. Organic clays modified with ammonium salts are widely used
to prepare clay and polymer composites. However, many of these ammonium salts are
thermally unstable and can degrade during processing or during the course of using the
composite. This can result in a loss of composite properties and stability over time. Also,
the long-term stability of biodegradable polymer–clay nanocomposites based on modified
organoclays is a concern [95].

Finally, the large-scale production of clay/polymer composites is another challenge.
Consistent reproduction of characteristics and properties on an industrial scale can be
difficult due to factors such as the variability of raw materials, processing control, and
optimization of manufacturing conditions. These challenges highlight the importance of
careful approaches and formulation strategies to achieve proper dispersion, polymer–clay
compatibility, and management of composite properties. Processing techniques and choos-
ing suitable additives are also vital for overcoming challenges and obtaining clay/polymer
composites with improved performance.

4.6. Designing Biodegradable Polymer/Clay Nanocomposites: Theories and Models

Theory and modeling are essential tools for designing biodegradable polymer/clay
nanocomposites with desired properties. These approaches help understand the interac-
tions between the polymer and the clay, predict the behavior of the composite, and optimize
its formulation. Modeling approaches employed for polymeric nanocomposite systems gen-
erally consist of three categories of scaling methods: (i) molecular, (ii) microscale, and (iii)
meso/macro scale, according to different size effects [96]. Molecular-scale methods focus
on molecular dynamics, the Monte Carlo molecular method, and the molecular mechanics
of atoms, molecules, or groups of units. On the other hand, microscale methods tend to
bridge the gap between molecular-scale methods and meso/macroscale methods [97].

Various methods, such as Brownian dynamics and the Boltzmann lattice method,
have been developed to study microscopic structures and the exchange of composite
constituents [96]. Therefore, some considerations must be made in this approach relating
theory and modeling, for example, the theory of mixing, interaction, and dispersion
mechanisms.

The mixture theory explains the interaction between polymeric phases and clay parti-
cles. Theoretical models, such as the Halpin–Tsai model, Mori–Tanaka model, and Hirsch
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model are applied to estimate the mechanical properties of the composite based on the
properties of individual phases and morphology of the composite [96,98].

The Hirsch model (Equation (1)) was developed to estimate the modulus of the
elasticity of composites with a combination of parallel and series models, in which the
equation is the effect of the matrix modulus, the load modulus, and the volume fractions
together with an empirical constant [99]. The Hirsch model equation is given as [99]:

Ec = χ
(
Em

(
1 − φp

)
+ Epφp

)
+ (1 − χ)

EpEm

Emφp + Ep
(
1 − φp

) (1)

where χ is an empirical constant that controls the stress transfer between the fillers and
matrices in composites, which is obtained through the curve-fitting of experimental data
(0 < χ < 1); Ec, Em, and Ep are the moduli of the composite, matrix, and filler, respectively;
and φp is the volume fraction of filler in composite.

The Halpin–Tsai model provides a prediction for the elastic moduli (Equation (2)) of
unidirectional composites with respect to volume fraction and load geometry, where the
model is generally used for continuous or discontinuous fillings [100]. The Halpin–Tsai
equations are based on the “self-consistent micromechanics method” developed by Hill.
Hermans employed this model to obtain a solution in terms of Hill’s “reduced moduli”.
Halpin and Tsai reduced Hermans’ solution to a simpler analytical form and extended its
use to a variety of filament geometries. The Halpin–Tsai model equation is given by [100]:

Ec = Em
1 + ξηLφp

1 − ηLφp
(2)

where ηL and ξ (constants that depend on the geometry and aspect ratios of fillers in the
composite) are given by Equations (3)–(5) [86]:

ηL =

(
Ep
Em

)
− 1(

Ep
Em

)
+ ξ

(3)

ξ = 2α = 2
(

l
t

)
f or longitudinal modulus (E11) (4)

ξ = 2 f or tranverse modulus (E22) (5)

where l and t are the length and thickness/depth of dispersed fillers in the composite,
respectively.

Regarding dispersion, excellent clay dispersion in the polymer is crucial for obtaining
improved properties, whereas modeling can help predict the agglomeration of the clay
particles and optimize the processing parameters to achieve uniform distribution. Com-
puter simulations, such as molecular dynamics and computational fluid mechanics, can be
used to investigate the dispersion and interaction of clay particles within the polymeric
matrix [97]. Finally, modeling can help understand the interaction mechanisms between
the polymer and clay. This involves the analysis of intermolecular forces, chemical bonds,
and surface interactions between the clay particles and polymer chains [98]. Danusso and
Tieghi presented a relationship (rigid matrix-based composites) of mechanical strength and
volume fraction Equation (6) [101]:

σc = σm(1 − ψ) (6)

where σc and σm are the tensile strengths of the composite and matrix, respectively, and ψ
is the area fraction in the cross section.
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Another model was proposed by Nicolais and Narkis [102]. The model is based on
the Danusso and Tieghi model and was obtained by replacing the volume fraction with a
power law function in terms of volume fraction Equation (7) [102]:

σc = σm

(
1 − aφb

p

)
(7)

where a and b are constants influenced by particle shape and arrangement in composites.
Theoretical models can be developed to describe these interactions and predict the

resulting properties [103]. A theoretical modeling framework was reported for predicting
the tensile modulus and tensile strength of biodegradable bioepoxy/clay nanocomposites
in terms of clay and epoxidized soybean oil (ESO) content [96]. Random orientation of
dispersed clay fillers was found to be a significant factor in predicting the elastic modulus
of nanocomposites at clay contents of 1–8% by weight (ESO content: 20% by weight)
according to the Hui–Shia laminated model (HS) and Halpin–Tsai laminated model (HT).
Furthermore, when the clay content was set at 5% by weight, the HS laminate model
corresponded well with the experimental data of bioepoxy/clay nanocomposites at ESO
contents of 0–40% by weight. In contrast, the Hirsch model predicted values closer to the
experimental data at the ESO content of 60% by weight.

Therefore, modeling and simulation are powerful tools for producing composites
based on polymers and clays, which must be experimentally validated to ensure their
accuracy and reliability. Combining theoretical and experimental approaches allows for a
more comprehensive understanding of polymer/clay nanocomposites. It helps direct the
design and development of materials with required properties and reduce the environmen-
tal impact.

5. Conclusions

This review explores the thermal, morphological, and mechanical properties of ben-
tonite clay composites based on biodegradable polymers for multifunctional applications.
In addition, we present and the discuss processing methods, theory, and modeling relating
the subject. Polymeric/clay composites have aroused great interest due to the combina-
tion of the clay’s unique properties with the polymer’s properties, resulting in materials
with improved performance and greater versatility. The incorporation of bentonite clay in
biodegradable polymers can lead to an increase in the thermal stability of the composites.
This is due to clay’s ability to act as a thermal barrier, thereby slowing polymer degradation
during heating. In addition, bentonite clay can promote higher crystallinity in polymer
composites, resulting in better thermal resistance.

Regarding morphological properties, microscopic analysis in several studies revealed
that a uniform dispersion of clay in the polymeric matrix could provide composites suitable
for several applications. Furthermore, incorporating bentonite can significantly increase
the tensile strength of polymer-based composites. Rigidity and impact strength have been
attributed to the incorporation of clay in the polymer matrix, a mechanical reinforcement
in the polymeric matrix.

There are several clay/polymer processing methods: melt processing, solution casting,
in situ polymerization, etc. An appropriate choice of the processing method is required
according to the desired properties of the composite. Finally, modeling and simulation
have been powerful tools in producing composites based on polymers and clays, in which
the union between experimental and numerical studies has ensured reliability in research
in the field. In summary, these materials represent a sustainable and viable alternative to
replace conventional non-biodegradable plastic products, contributing to the preservation
of the environment. In addition, continuous research and advances in the area have enabled
the exploration of the full potential of these composites, thereby driving the development
of innovative solutions for various applications.
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Abbreviations

ABS Acrylonitrile–butadiene–styrene
BNT Bentonite
[P(AA-DEA)] Poly(acrylic acid-N, N-diethyl acrylamide)
CaB Calcium bentonites
CCP Coal combustion product
kCCP Hydraulic conductivity
ESO Epoxidized soybean oil
MMT Montmorillonite
MB Modified bentonite
OMMT Organo-montmorillonite
OBnt Organo-modified bentonite
HS Hui–Shia laminated model
HT Halpin–Tsai laminated model
χ Empirical constant to control the stress transfer between the fillers and matrices
Ec Modulus of the composites
Em Modulus of the matrices
Ep Modulus of the fillers
φp Volume fraction of the fillers in the composites
ηL Stress-partitioning factor
ξ Constant depending on the geometry and aspect ratios of the fillers in the composites
l Length of dispersed fillers in the composites
t Thickness/depth of dispersed fillers in the composites
σc Tensile strength of the composites
σm Tensile strength of the matrices
ψ Area fraction in the cross section
a Constant influenced by the particle shape and arrangement in the composites
b Constant influenced by the particle shape and arrangement in the composites
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