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Abstract: Through the effective combination of photothermal conversion agent polydopamine (PDA)
nanoparticles and epoxy acrylate polymer (EA), a new kind of near-infrared (NIR) light-triggered
shape memory polymer (PDA/EA) is developed. Due to the outstanding photothermal effect of
PDA, even with a very low concentration of PDA (0.1 wt.%), when exposed to an 808 nm NIR light
with a power of 1 W/cm2, the temporary shapes can be fully light-responsive, recovered in 60 s.
Based on dynamic thermomechanical analysis and thermal gravimetric analysis, it can be seen that
the introduction of PDA is beneficial for improving dynamic mechanical properties and thermal
resistance compared to EA. As an environmentally friendly and highly efficient photoactive SMP,
PDA/EA has a great application prospect.

Keywords: shape memory; near-infrared; photothermal; polydopamine; epoxy acrylate

1. Introduction

Shape memory polymers (SMPs) are a class of intelligent materials that, in response
to a specific stimulus, may revert to their original shape from a temporary shape [1–3].
The existence of thermal transitions, such as glass transition (Tg), melting (Tm), and liquid-
crystalline transition (TLC) temperatures, allows the majority of SMPs to complete the shape
memory process. When heated above these transition temperatures (Ttrans), the polymer
is deformed and obtains a temporary shape; upon cooling, the shape will be fixed; when
heated above Ttrans again, the polymer chains are allowed to relax and release internal
stress; eventually, the polymer recovers back to its original shape [4].

Light is a far better stimulation source than heat. First, it could be remotely con-
trolled, properly focused, and swapped quickly. Second, light’s wavelength and intensity
may be altered to meet various needs [5,6]. In general, photo-responsive SMPs can be
obtained through bringing in photo-isomerisable chemical groups or doping photother-
mal conversion agents based on photothermal effect [7–9]. Near-infrared (NIR) light has
excellent tissue penetration ability, which is safer for human beings than UV/vis. In-
organic nanofillers possessing high NIR absorption capacity, such as gold nanorods or
nanoparticles, graphene and carbon nanotubes, are widely used as photothermal conver-
sion agents [10–12]. However, there is always a difficulty with the interfacial interaction
between the polymer and the inorganic fillers, which may impair the original mechanical or
thermal properties of the polymer. Thus, developing a new NIR-triggered SMP based on an
efficient photothermal conversion agent/polymer system without sacrificing its integrated
properties is very significant.

Mussel-inspired polydopamine (PDA) was firstly reported as a smart coating mate-
rial by Messersmith et al. [13]. Research has revealed that dopamine-melanin colloidal
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nanospheres exhibit an efficiency 100 times greater than carbon nanotubes in converting
NIR into heat [14]. Li et al. reported on the development of a PDA-coated SMP. This
innovative coating enabled shape recovery that can be triggered by light, as well as the
light-controlled shape reprogramming and surface functionalization of polymers [5]. The
chemical structure of PDA, which contains several functional groups, is another charac-
teristic. According to Yang et al., PDA was disseminated in commercial shape memory
polyurethane (SMPU) and created a solid interface connection with the SMPU segments,
which improved the mechanical characteristics [15]. Therefore, it is meaningful to choose
PDA as a photothermal conversion agent to fabricate light-responsive SMPs.

In this study, we aim to propose a universally applicable approach for the fabrication of
NIR-stimulated SMPs through dispersing PDA nanoparticles into ultraviolet (UV)-curable
epoxy acrylate resin (EA). EA has high transparency and low viscosity, so it is easy to mix
with nanomaterials, and can be quickly cured under ultraviolet (UV) light. A rapid rise in
the temperature of PDA/EA can be induced upon NIR irradiation to realize shape recovery
at a low concentration of PDA (0.1 wt.%) due to its outstanding photothermal effect. On
the basis of dynamic thermomechanical and thermal gravimetric measurements, it can be
seen that PDA/EA not only exhibits an excellent NIR-responsive shape memory effect, but
also offers good thermal stability and mechanical properties.

2. Experimental Section
2.1. Materials

3-Hydroxytyramine hydrochloride (DOPA, 99%) was purchased from Alfa Aesar
Chemical Co., Ltd., Shanghai, China. Iron (III) chloride hexahydrate (99%) was obtained
from Shanghai Aladdin Biochemical Technology Co., Ltd., Shanghai, China.
Tris(hydroxymethyl)aminomethane (Tris, 99.5%) was bought from Beijing Bellingway
Technology Co., Ltd., Beijing, China. Epoxy resin was provided by Nantong Xingchen Syn-
thetic Material Co., Ltd., Nantong, China. 4-Methoxyphenol (MEHQ, 98%) was purchased
from Shanghai Yuanye Biological Technology Co., Ltd., Shanghai, China. Tetramethylam-
monium chloride (TMAC) was obtained from Sinopharm Group Chemical Reagent Co.,
Ltd., Shanghai, China. Acrylic acid was purchased from Shanghai Lingfeng Chemical
Reagent Co., Ltd., Shanghai, China. Ethylene glycol diglycidyl ether was bought from
Ailan (Shanghai) Chemical Technology Co., Ltd., Shanghai, China. 2,4,6-Trimethyl ben-
zoyldiphenyl phosphine oxide (TPO, 98%) was provided by TCI (Shanghai) Chemical
Industry Development Co., Ltd., Shanghai, China.

2.2. Preparation of PDA Nanoparticles

45 mg of DOPA and 1.3 mg of iron (III) chloride hexahydrate were completely dis-
solved in 130 mL of deionized water under stirring at room temperature for 1 h. A quantity
of 20 mL of Tris aqueous solution (180 mg of Tris and 20 mL of deionized water) was
quickly injected into the established solution. It could be observed that the solution color
immediately turned red. Gradually, the solution color turned black after 0.5 h; this was
followed by further stirring for 1.5 h. The targeted PDA nanoparticles were washed with
deionized water three times and obtained from freeze drying after centrifugation.

2.3. Preparation of EA Oligomer

Epoxy resin (1 mol) and MEHQ (0.1 wt.% of epoxy resin) were charged into a flask
under a nitrogen atmosphere. The mixture was heated to 70 ◦C under stirring. TMAC
(1 wt.% of epoxy resin) and acrylic acid (1.8 mol) were added drop wise in 0.5 h to obtain
a colorless and clear liquid mixture. The mixture was heated to 95 ◦C and kept under
stirring until the acid value of the mixture was less than 5 mg KOH/g. Then, the obtained
yellow viscous product was EA oligomer. The synthetic route is shown in Figure 1. FTIR
(KBr, cm−1): 3453 (–OH), 1725 (C=O), 1634 and 1408 (CH2=CH– of acrylate), 1510 (phenyl).
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2.4. Synthesis of UV-Cured EA and EA/PDA Polymers

The formulations of EA/PDA polymers are listed in Table 1. An appropriate amount
of EA oligomer, PDA, TPO (1 wt.% of EA oligomer), and ethylene glycol diglycidyl ether
were evenly blended with mechanical stirring at 25 ◦C for 0.5 h to form a uniform polymer,
which was then degassed under vacuum. The polymer was poured into the glass mold and
cured in UV-curing equipment (QUV/spray, Q-LAB, Westlake, OH, USA) with a power
intensity of 0.89 W/cm2. The UV irradiation process of polymer was carried out under an
air atmosphere for 5 min.

Table 1. The formulations of EA and EA/PDA polymers.

Sample
Weight Ratio (w/w)

EA PDA

EA 100 0
EA/0.1PDA 100 0.1
EA/0.2PDA 100 0.2
EA/0.5PDA 100 0.5

2.5. Characterizations

Fourier-transform infrared (FTIR) spectra were recorded in a wavelength range of 400
to 4000 cm−1 with a resolution of 2 cm−1 on a Nicolet 6700 spectrometer (Thermo Fisher,
Waltham, MA, USA).

A scanning electronic microscope (FE-SEM S-4700, Hitachi, Tokyo, Japan) was em-
ployed to study the morphology of PDA nanoparticles.

Thermogravimetric analysis (TGA) was carried out on a SDT2960 (TA instrument,
New Castle, DE, USA) in a range of 50 to 600 ◦C with a heating rate of 10 ◦C/min under a
nitrogen atmosphere.

Dynamic mechanical analysis (DMA) was performed on a DMA Q800 (TA instrument,
New Castle, DE, USA) in tension mode. DMA tests were carried out from −40 to 120 ◦C
using a frequency of 1 Hz, at a heating rate of 3 ◦C/min.

The shape memory (SM) thermomechanical cycle tests were studied via DMA Q800
(TA instrument, New Castle, DE, USA). The shape fixation (Rf) and recovery efficiency (Rr)
were determined from SM cycles carried out in controlled tension mode. The dimensions
of rectangular thin films were (15.0 ± 1.0) mm × (5.0 ± 0.5) mm × (0.5 ± 0.1) mm. The
procedure for the dual SM tension test (Figure 2) included the following steps: (1) heating
the sample to 70 ◦C from room temperature and isothermal holding for 5 min; (2) elongating
the heated sample to a predetermined strain as its initial shape (εm) at a constant elongation
rate of 1%/min; (3) keeping the stress and cooling the sample to 0 ◦C at a rate of 5 ◦C/min
to fix the polymer chains; (4) holding for 10 min at 0 ◦C to get a fixed shape (εu) before the
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unloading of the stress; (5) reheating the sample to 70 ◦C at a rate of 5 ◦C/min, allowing
the sample to relax to a recovery shape (εp).
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Figure 2. Schematic illustration of a shape deformation, fixation, and recovery cycle of the dual SM
process in tension mode.

The real-time recording photothermal effect and NIR-triggered SM of EA/PDA resins
were conducted using an infrared thermal imager (Fotric 225, Shanghai, China). The study
also examined the photothermal effect and NIR-triggered SM via NIR light at a wavelength
of 808 nm. The NIR-triggered SM process of EA/PDA polymers was illustrated in Figure 3.
For instance, EA/0.1PDA was initially deformed and subsequently fixed through a heating
and cooling process while being held under strain. Upon NIR irradiation at an intensity of
1 W/cm2, the deformed shape can recover to the original one.
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3. Results and Discussion
3.1. Preparation of EA/PDA

PDA nanoparticles were synthesized through the oxidation polymerization of dopamine
in a weak alkaline aqueous solution at room temperature, as illustrated in Figure 4a [16].
During the polymerization process, the dopamine was spontaneously oxidized and poly-
merized, resulting in the formation of spherical PDAs through intra/intermolecular cross-
linking. The ferric ions within the nanospheres primarily formed coordination bonds
with the catechol groups present in PDA. Notably, as the feed ratio of ferric ion to DOPA
decreased, the final morphology of the Fe(III)-PDA complex transitioned from sheet-like to
spherical [17]. SEM shows that the resultant PDA nanoparticles are spherical with uniform
size distribution (Figure 4b). Nano Measurer 1.2 was employed to statistically analyze the
particle size distributions based on the SEM images, revealing an average particle size of
approximately 120 nm (Figure 4c). The SEM image of the fracture surfaces of UV-cured
EA/PDA polymer indicated that the good dispersion of PDA nanoparticles in the EA
matrix, as shown in Figure S1.
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3.2. Thermal Properties of Cured EA/PDA

The glass transition temperature (Tg) and thermalgravimetric (TG) behavior are two
important parameters to evaluate the thermal properties of polymers, while Tg represents
the uppermost temperature at which a material can maintain its structural integrity, and
TG behavior indicates the ability of polymers to withstand thermal stress over time. The
Tg value is defined by the peak temperature in the curve of tan δ as a function of the
temperature obtained from DMA measurement (Figure 5a and Table 2). Cured EA shows a
peak at 40 ◦C, whereas with the introduction of PDA nanoparticles into the EA matrix, the
peak slightly shifts to a higher temperature (Tg = 42–45 ◦C) for cured EA/PDA polymers.
The result implied that the functional groups present in PDA (such as catechol, amine,
and imine) undergo a reaction with the EA matrix, leading to the formation of additional
cross-linking structures and resulting in a limitation of molecular chain segment activity.
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Table 2. TG and DTG analyses of cured EA and EA/PDA polymers.

Sample Tg (◦C) Tdi (◦C) Tdmax (◦C) Yc at 580 ◦C (%)

EA 40 174 413 5.4
EA/0.1PDA 44 200 411 18.7
EA/0.2PDA 46 188 414 13.4
EA/0.5PDA 44 197 413 23.2

The TG and DTG curves of cured EA/PDA and EA polymers are depicted in Figure 5b.
Table 2 provides a summary of the initial degradation temperature (Tdi), which is defined
as the temperature when the sample experiences a weight loss of 5 wt.%, as well as the
temperature corresponding maximum degradation rate (Tdmax) and char yield (Yc) at 600 ◦C.
With the addition of PDA into EA matrix, the cured EA and EA/PDA polymers have similar
shape of DTG curves and Tdmax value (413 ± 2 ◦C), implying that the incorporation of PDA
does not significantly affect the thermal degradation mechanism. It is noteworthy that the
Tdi and Yc values of EA/PDA polymers are dramatically increased. TG and DTG results
suggest the formation of strong interfacial interaction between PDA nanoparticles and the
EA matrix instead of simply dispersion; thus, the thermal stability of resultant EA/PDA
polymers can be effectively improved with a very low concentration of PDA (0.1–0.5 wt.%).

3.3. Thermomechanical Properties of Cured EA/PDA

The storage modulus is an important parameter for reflecting the stiffness of polymers.
The cured EA/PDA polymers show a larger storage modulus than EA (Figure 6), indicating
that the introduction of PDA nanoparticles is beneficial for improving the stiffness of EA,
which results from the strong interfacial interaction between PDA nanoparticles and the EA
matrix. More importantly, the plot of storage modulus as a function of temperature for each
polymer shows a distinct step change from the glassy state to the rubbery state (Figure 6),
which is beneficial for fixing the temporary shape with chemical crosslinked network and
recovering to the original shape with high elasticity. Thus, the thermal-responsive shape
memory (SM) behavior of resultant EA/PDA within a certain temperature range (~40 ◦C)
above Tg can be expected.
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The overall performance of a thermosetting polymer is greatly influenced by its struc-
tural composition, including the polymer backbone and crosslinking network. Precisely, the
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extent of crosslinking can be quantified using the crosslinking density (ρ). Through utilizing
the classical equation derived from the statistical theory of rubber elasticity (Equation (1)),
it is feasible to determine the ρ values for cured EA and EA/PDA polymers.

ρ =
E′

3RT
(1)

where E′ is the storage modulus of the cured polymers at rubbery plateau at a temperature
(T) that is 40 ◦C higher than Tg; R is the gas constant. The corresponding ρ values of cured
EA and EA/PDA polymers are presented in Figure 6. Cured EA/0.5PDA polymers exhibit
a larger ρ value (2494 mol/m3) than that (2368 mol/m3) of cured EA, further confirming
that the incorporation of PDA slightly enhanced the crosslink reaction of EA due to the
presence of functional groups (–OH and –NH2) of PDA nanoparticles. Overall, these
EA/PDA composites are not highly crosslinked systems.

3.4. Thermal Responsive SM Behavior

Because of the distinct step change of storage modulus with temperature for each
polymer, the glass transition process can serve as the thermal responsive switch for dual-
shape memory behavior. Shape fixation rate (Rf) and shape recovery rate (Rr) are crucial
parameters for evaluating the performance of shape memory. Rf indicates the accuracy
with which the temporary shape can be fixed, and Rr quantifies the ability of the polymer
to memorize its permanent shape. When performing the measurements in a cyclic SM
tension test, Rf and Rr can be calculated using the following equations:

R f =
εu

εm
× 100% (2)

Rr =
εm − εp

εm
× 100% (3)

where εm, εu, and εp represent the strain after deformation, at the fixed temporary shape at
Ttrans, and after recovery, respectively.

The instantaneous recovery velocity Vr can be calculated as the time derivative of the
strain, as shown in Equation (4).

Vr =
∂ε

∂t
(4)

The plot of Vr as a function of temperature reveals the temperature range correspond-
ing to the shape recovery process, which provides a clear thermokinematic view of the
shape recovery and helps program for the desired SM effect.

Figure 7a,b show good thermal SM performance of the EA sample; in terms of Rf and
Rr, which are ~90% and ~100%, respectively. Additionally, EA/0.1PDA EA/PDA with
higher PDA concentrations (0.2 and 0.5 wt.%) exhibit similar SM performance (Figure S2).
At 70 ◦C, the storage modulus of EA/PDA polymers is larger than EA, but the Rf and Rr
values remain at a similar level, suggesting that PDA did not affect the shape memory effect
of EA. Five consecutive deformation, fixation, and recovery cycles were conducted to test
the SM performance of EA/0.1PDA over multiple cycles. Figure 7e shows that an identical
Rf of ~93% and Rr of ~100% were obtained for each SM cycle under said conditions.
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Figure 7. SM thermomechanical cycle tests of UV-cured EA and EA/PDA polymers. (a) EA,
εm = 2.5%, and (b) EA/0.1PDA, εm = 3.0%. Shape recovery velocity as a function of tempera-
ture for (c) EA and (d) EA/0.1PDA. (e) Five consecutive shape memory cycles for EA/0.1PDA.
Cooling/heating rate 5 ◦C/min and N2 atmosphere.

3.5. Photothermal Effect and NIR-Triggered SM Behavior

Figure 8a shows that the heating rate and equilibrium (maximum) temperature of
EA/0.1PDA significantly increases as the light intensity increases upon 808 nm NIR irradi-
ation. For instance, the equilibrium temperature only can reach 50 ◦C in 180 s with a light
intensity of 0.25 W/cm2. In contrast, when subjected to a light intensity of 1 W/cm2, the
temperature increases rapidly and reaches 100 ◦C within a mere 20 s, and the equilibrium
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temperature can approach ~130 ◦C in 180 s. In addition, the equilibrium temperature
shows a strong dependence on PDA concentration. It can be seen from Figure 8b that
the neat EA polymer does not show any temperature variation upon NIR irradiation,
whereas EA/0.2PDA exhibits an equilibrium temperature of ~180 ◦C with a light intensity
of 1 W/cm2, which is the limit of the infrared thermal imager. The time-dependent tem-
perature of EA/0.1PDA upon NIR irradiation for 20 s (laser on), followed by switching off
the NIR laser and naturally cooling to 25 ◦C, was determined to assess the photothermal
stability. Figure 8c shows that the photothermal efficiency does not decline even when the
test has been repeated five times, suggesting that the EA/PDA polymer not only possesses
high photothermal conversion efficiency, but also exhibits excellent photothermal stability.
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In order to investigate the SM behavior of EA/PDA polymers triggered by NIR light, 
an EA/0.1PDA sample with a thickness of 0.78 mm (Figure 9a) was subjected to bending 
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9c,d illustrate that when exposed to an 808 nm NIR laser at a power density of 1 W/cm2 at 
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should be noted that shape recovery occurs in areas exposed to NIR radiation. Thus, the 
process results in a series of partially recovered temporary shapes, as observed in Figure 
9c. Complete shape recovery was achieved once the NIR beam had scanned the entire 
sample in 60 s, which is much faster than the thermally stimulated liquid crystal elasto-
mers (>10 min) in the literature [18,19]. As a control test, an EA sample was processed to 
the same temporary shape as EA/0.1PDA. However, when the sample was exposed to the 
NIR laser under the same condition, no temperature increase or shape recovery was ob-
served. 

Figure 8. (a) Temperature elevation as a function of time for EA/0.1PDA exposed to NIR laser with
different light intensity (0.25, 0.5, 0.75, and 1 W/cm2). (b) The equilibrium temperature rises of
EA/PDA polymers as functions of NIR light intensity and PDA concentration. (c) Temperature
elevation of EA/0.1PDA exposed to 1 W/cm2 NIR laser for five cycles.

In order to investigate the SM behavior of EA/PDA polymers triggered by NIR light,
an EA/0.1PDA sample with a thickness of 0.78 mm (Figure 9a) was subjected to bending at
70 ◦C and subsequently cooled to 10 ◦C to fix the temporary shape (Figure 9b). Figure 9c,d
illustrate that when exposed to an 808 nm NIR laser at a power density of 1 W/cm2 at
25 ◦C, the sample undergoes shape recovery, returning to its original unrolled shape. It
should be noted that shape recovery occurs in areas exposed to NIR radiation. Thus,
the process results in a series of partially recovered temporary shapes, as observed in
Figure 9c. Complete shape recovery was achieved once the NIR beam had scanned the
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entire sample in 60 s, which is much faster than the thermally stimulated liquid crystal
elastomers (>10 min) in the literature [18,19]. As a control test, an EA sample was processed
to the same temporary shape as EA/0.1PDA. However, when the sample was exposed
to the NIR laser under the same condition, no temperature increase or shape recovery
was observed.
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As previously discussed, the materials cool down rapidly through heat conduction
as the stimulation is ceased, resulting in the cessation of the shape recovery process. This
characteristic allows for the control of the shape recovery process and the acquisition of
various intermediate shapes. Figure 10 illustrates the outcome of an additional experiment
that demonstrates the photo-controlled and spatially selective shape recovery of EA/PDA
polymers. A sample of EA/0.1PDA (with a thickness of 0.38 mm) was folded into a compact
“W” shape at a temperature of 70 ◦C and then cooled under strain to a temperature of 10 ◦C
to preserve the temporary shape. The NIR laser was subsequently applied to different
areas, resulting in the attainment of multiple intermediate shapes and the completion of
the shape recovery process. It is evident that spatially selective shape recovery, facilitated
by the rise in temperature of EA induced by PDA’s photothermal effects, can be achieved
using NIR. Ordinary heating procedures would not enable this level of control as they
would uniformly warm up the whole sample.
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3.6. Shape Memory Mechanism

According to the above results, it is confirmed that the SM behavior of EA/PDA
polymers can be attributed to the photothermal effect, which is caused by the release of
heat from PDA when it absorbs NIR (near-infrared) light (Figure 11). As a result of heat
release, the temperature of the sample rises above its Ttrans. This elevation in temperature
is essential for fulfilling the thermal phase transition needed for shape recovery.
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4. Conclusions

Due to the strong NIR absorption, high photothermal conversion efficiency, and
photothermal stability of PDA, a fast and efficient NIR remote-controlled SMP based on
PDA and EA has been developed. Upon NIR irradiation, the temperature of the exposed
regions can quickly increase to a high Ttrans. Shape memory capability can be attained
within a brief duration of only 60 s at a low concentration of polydopamine (1 wt.%). The
dynamic mechanical properties and thermal resistance of EA polymer were enhanced with
the addition of PDA. As an efficient and environmentally friendly photothermal conversion
agent, PDA has a great potential for application. EA is a widely used UV-curable polymer.
The preparation of EA/PDA polymers has potential application prospects in the field of
UV-curing 3D printing technology and smart actuators, such as soft robots or grippers.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/polym15163394/s1, Figure S1: SEM image of the frac-
ture surface of UV-cured EA/PDA polymer; Figure S2: SM thermomechanical cycle tests of UV-cured
EA/PDA polymers. (a) EA/0.2PDA, εm = 3.0% and (b) EA/0.5PDA, εm = 3.0%. Shape recovery
velocity as a function of temperature for (c) EA/0.2PDA and (d) EA/0.5PDA.
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