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Abstract: The temporal and spatial evolution of shear banding during startup and steady-state
shear flow was studied for solutions of entangled, linear, monodisperse polyethylene C3000H6002

dissolved in hexadecane and benzene solvents. A high-fidelity coarse-grained dissipative particle
dynamics method was developed and evaluated based on previous NEMD simulations of similar
solutions. The polymeric contribution to shear stress exhibited a monotonically increasing flow
curve with a broad stress plateau at intermediate shear rates. For startup shear flow, transient shear
banding was observed at applied shear rates within the steady-state shear stress plateau. Shear bands
were generated at strain values where the first normal stress difference exhibited a maximum, with
lifetimes persisting for up to several hundred strain units. During the lifetime of the shear bands,
an inhomogeneous concentration distribution was evident within the system, with higher polymer
concentration in the slow bands at low effective shear rate; i.e., γ̇ < τ−1

R , and vice versa at high shear
rate. At low values of applied shear rate, a reverse flow phenomenon was observed in the hexadecane
solution, which resulted from elastic recoil of the molecules within the slow band. In all cases, the
shear bands dissipated at high strains and the system attained steady-state behavior, with a uniform,
linear velocity profile across the simulation cell and a homogeneous concentration.

Keywords: rheology; complex fluids; shear banding; nonlinear dynamics; flow instability; dissipative
particle dynamics; nonequilibrium molecular dynamics

1. Introduction

Shear banding is defined as the formation of localized zones with different shear rates
(and hence different velocity profiles) in a classical steady or transient shear flow. It has
become established as a common phenomenon observed in the flow of soft matter, such
as entangled polymeric melts and solutions. However, the impact of shear banding on
many polymer processing instabilities, such as distortions in extruded plastics like the
sharkskin and surface fracture [1,2], remain incompletely understood. To that end, this
phenomenon has been studied extensively using theory, computation, and experiments.
These investigations have led to significant advances in the understanding of the underlying
physics that leads to shear banding in polymer solutions and melts, and recent insights will
inevitably lead to the development of first principle models and design tools in polymer
processing applications.

Reptation-based studies of this phenomenon [3,4] attribute shear banding in simple
shear flow to a mechanical instability that arises solely due to a nonmonotonic steady-state
shear stress versus strain rate flow profile. However, numerous studies have demonstrated
that steady and transient shear banding occurs in the shear flow of entangled polymeric
fluids with a monotonic flow curve, i.e., ∂σxy/∂γ̇ ≥ 0, where σxy is steady-state shear stress
and γ̇ is the shear rate [5–10]. Hence, a nonmontonic flow curve is not a prerequisite for
formation of banded structures. In fact, coarse-grained atomistic simulations of entangled
polymeric melts have shown that this phenomenon occurs as a result of heterogeneous
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disentanglement in the gradient direction that results from spatial variation in segmental
orientation and stretching. This reduction in the entanglement network culminates in a
commensurate rotation of the macromolecules in the flow-gradient plane after the overshoot
in the normal stress commonly observed in step-strain startup of shear flow at Wi ≥ 1. The
local variation in the macromolecular configurations in turn gives rise to localized velocity
perturbations, which can ultimately result in alternating layers of high and low local shear
rates [11–16]. Specifically, Mohaghegi and Khomami [13] and Boudaghi et al. [11,12] have
determined that in startup step-strain flows, onset of shear banding corresponds to shear
rates of order γ̇ ≈ O(τ−1

R ), where τR is the characteristic Rouse time that governs the
polymer segmental stretching. Specifically, steady shear banding has been shown to occur
at γ̇ ≤ O(τ−1

R ), while transient shear banding has been observed at γ̇ > O(τ−1
R ). Although

much progress has been made toward mechanistic understanding of shear banding in
entangled polymeric melts, a detailed understanding of this phenomenon, particularly in
entangled polymeric solutions, remains an area of active research.

It is well known that the coupling of concentration fluctuations and flow dynamics in
polymeric solutions can lead to shear-induced migration of macromolecules. In the slow
shear flow limit, the phenomenological theory of Helfand and Fredrickson (HF) attributes
shear-induced migration to the coupling between flow-enhanced concentration fluctua-
tions and the concentration dependence of the viscosity and normal stress coefficients [17].
The seminal HF theory has served as a starting point for more detailed models of shear-
induced migration of macromolecules [18–21]. Overall, these models correctly capture the
anisotropic enhancement of concentration fluctuations and shear-induced phase transitions
in flowing polymer solutions as functions of strain rate and temperature [22]. Further-
more, the butterfly-shaped scattering patterns measured via small-angle light scattering
and small-angle neutron scattering of flowing concentrated solutions clearly demonstrate
that shear-induced fluctuations [23–25] give rise to concentration inhomogeneity and a
commensurate concentration dependence of the viscosity and normal stress coefficients.
Furthermore, coupling between flow-induced concentration fluctuations and the concen-
tration dependence of the viscometric functions of polymeric solutions can manifest as
shear-induced migration of the macromolecules [17,23,26–29].

In recent years, the interplay between concentration fluctuations, shear and normal
stresses, and the ensuing flow-induced migration of the polymer chains has been identified
as a prerequisite to formation of shear-banded flows of entangled polymeric solutions. To
that end, theoretical analysis based on the two-fluid approach (i.e., solvent and polymer
as interpenetrating liquids) has been used to examine the role of shear-induced macro-
molecular migration on the formation of banded velocity profiles. Specifically, Fielding
and Olmsted [30] used a two-fluid approach with a modified nonlocal Johnson–Segalman
model [31,32] and a nonmonotonic flow curve to develop a phase diagram that delineated
the role of shear-induced migration on shear banding. This analysis demonstrated that
for steady shear-banded flow, the high shear-rate region of shear-banded solutions might
have a lower concentration. Later, the Rolie–Poly constitutive model [33] with a coupled
stress-concentration two-fluid approach was used by Cromer et al. [34] to investigate shear
banding of polymeric solutions with a monotonic flow curve. Their results indicated a
flow-induced concentration redistribution and a shear-banded flow structure with a lower
concentration within the high shear band (adjacent to the moving wall). Moreover, a jump
in the polymer contribution to the total stresses of the high and low shear-rate bands was
reported. Evidently, this jump is a consequence of using a continuum-level constitutive
equation for the description of polymer dynamics.

Most recently, Burroughs et al. have provided experimental evidence of the cou-
pling between flow-induced concentration nonuniformity in a shear-banded flow [35,36].
Specifically, experiments in a Taylor–Couette flow geometry were performed using in situ
rheo-particle tracking velocimetry to obtain the velocity and concentration profiles for a
polybutadiene/dioctyl phthalate solution with an average entanglement number of 38. Ad-
ditionally, analysis was performed with a two-fluid model with the Rolie–Poly constitutive
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equation. Both experiments and theoretical analysis predicted a lower polymer concen-
tration in the fast band and a higher concentration in the slow band under steady-state
conditions. Based on these observations, it was postulated that a nonuniform polymer
concentration in the gradient direction was a prerequisite for incipient shear banding.
Furthermore, the authors suggested that their observed wall slip and/or wall depletion
layer did not greatly influence the underlying mechanism that gave rise to shear banding
in these entangled polymer solutions.

Although these studies provide evidence that shear-induced migration can cause shear
banding, a number of issues must be resolved before one can unequivocally claim that shear
banding in entangled polymeric solutions is a consequence of shear-induced migration of
macromolecules. For instance, the time scale for development of concentration fluctuations
is extremely long (≈106τd), where τd is the disengagement time. Furthermore, the influence
of curvature and associated hoop stresses on formation of a banded flow structure requires
clarification. Last but not least, the results of these studies are at odds with high-resolution pla-
nar large-amplitude oscillatory flow confocal microscopy/rheometry of a polymeric solution
composed of λ-DNA with an average entanglement number of 300 [37]. These experiments
demonstrated that shear-banded velocity profiles occur at high flow rates (Wi � 1) at sig-
nificantly shorter time scales without any evidence of a concentration difference between
the high and low shear bands. Moreover, these experimental observations support earlier
coarse-grained molecular dynamics simulation results [11,13–15] that attributed incipient
shear banding to an inhomogeneous entanglement density in the flow-gradient plane.

To further elucidate the mechanistic aspects of shear banding, high-fidelity coarse-
grained dissipative particle dynamics (DPD) simulations of entangled polyethylene so-
lutions were performed over a wide range of shear rates using both n-hexadecane and
benzene as solvents. The adopted simulation strategy allows one to consider the effects
of temperature, molecular weight, and solvent quality on flow-induced concentration
fluctuations and shear-induced concentration gradients that have been neglected in much
of the prior theoretical and experimental studies of shear banding in entangled polymeric
solutions. The DPD model and simulation methodology are described and validated in
Section 2. Results of the simulations are presented in Section 3, and the conclusions from
the simulation study are summarized in Section 4.

2. DPD Model Development and Validation

The dissipative particle dynamics force-field model [38–41] was used to perform high-
fidelity large-scale simulations of entangled polymer solutions of linear monodisperse
polyethylene (PE) C3000H6002, corresponding to a PE of molar mass 42,002 g/mol, dissolved
in oligomeric n-hexadecane and aromatic benzene solvents. An accurate prediction of
polymer dynamics in solutions requires the correct parameterization of the course-grained
DPD force field in order to capture the intramolecular and intermolecular interactions
between both polymer and solvent particles. To this end, a recently developed method [42]
was used to parameterize and fine-tune the DPD model through the direct mapping of data
from united-atom NEMD simulations to the DPD representation. Hence, the two solvents
studied herein were chosen to match those used in the NEMD simulations so that a direct
mapping of the DPD system to its atomistic analog could be achieved.

Three types of nonbonded pairwise forces were incorporated in the model: a repulsive
conservative force, FC , a dissipative force, FD, and a random (Brownian) force, FR, acting
on each particle. The forces within the DPD cutoff distance, rca , vary with the distance
between paired particle centers, rij, and act in a direction of unit vector êij(= rij/rij), i.e.,
the shortest distance between the particles. The DPD forces on each particle i are described
by the equations

FDPD
i = ∑

j 6=i
(FC

ij + FD
ij + FR

ij ) , (1)
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FC
ij = a(1−

rij

rca

)êij , (2)

FD
ij = −γDωDrij[(vi − vj).êij]êij , (3)

FR
ij = σωRrijζêij , (4)

where
ωD = (ωR)2 = (1− rij/rca)

2 . (5)

The conservative force FC is repulsive and decreases linearly from its maximum value at
rij = 0 of aij, where aij is the conservative force parameter between particle i and particle j.
FD and FR ensure the correct hydrodynamic interaction between the particles by linking the
velocity differences between all pairs of particles, vi− vj, and the temperature of the system,
respectively. Specifically, the fluctuation–dissipation theorem establishes a connection
between the viscous dissipation and system temperature as σ2 = 2γDkBT, where γD,
σ, and kBT are the viscous friction coefficient, the magnitude of thermal noise, and the
effective system temperature, respectively. Furthermore, the forces are coupled through
two weighting functions for the dissipative, ωD, and random forces, ωR, by Equation (5).
To avoid temporal divergence caused by large temperature fluctuations, the coefficient of
viscous friction was set at γD = 4.5 [41]. The unitless simulation temperature was set to
unity (kBT = 1) for all simulations in this study. Consequently, the DPD time scale unit was
defined as τDPD = (mr2

ca /kBT)0.5. In prior work [43], based on atomistic simulations of PE
solutions of C1000H2002 in hexadecane and benzene, simulation temperatures corresponded
to real units of 391 K and 353 K, respectively; the simulated temperatures of the C3000H6002
solutions are deemed to be similar.

In addition to nonbonded interactions, polyethylene (and n-hexadecane) chains were
formed by connecting each adjacent DPD particle along the chain backbone with a harmonic
bond force, Fspr

ik = −kspr(beq − bik), for k = i± 1, where kspr, beq = 0.95rca , and bik are the
spring force constant, equilibrium average bond length, and instantaneous bond length
between adjacent particles. Additionally, to obtain an optimal mapping between atomistic
polyethylene chains and DPD model PE chains, a bending potential force was introduced,
Fbend

il = −kbend(1− sin(θ)), for l = i± 2, where kbend and θ are the force constant and the
angle between three successive particles along the chain backbone [42]. The sum of all
bonded and nonbonded interactions results in the total force acting on each particle as

Ftot
i = FDPD

i + Fspr
i + Fbend

i . (6)

Molecular simulations of entangled polymers require preventative measures to avoid
bond crossing. A simple topological constraint developed by Nikunen et al. [44]; i.e.,√

2rmin > lmax where rmin(= 0.77) is the effective radius of the particles and lmax(= 1.05) is
the maximum distance between adjacent beads in the backbone, was employed to avoid
aphysical bond crossing. Note that these parameters were calculated based on the pair
correlation function, g(r), and probability density function of bond length, P(req). The DPD
tuning parameters have been discussed in previous work [12,42,44,45]. A more detailed de-
scription of the DPD model and force field can be found in prior publications [11,42,45,46].

The recent comparisons of NEMD and DPD simulations of linear polyethylene melts [42]
have demonstrated the efficacy of lumping three CH2 monomers into one DPD particle,
with adjacent particles being connected through the harmonic spring force field. Hence,
the DPD chains corresponding to C3000H6002 macromolecules are composed of 1000 DPD
particles, which is referred to as PE N-1000 herein. The mass of each alkane DPD particle
was set to unity, ma = 1, as was the force cut-off distance, rca = 1, and a reduced particle
density of ρa = 1 was assumed. The n-hexadecane (C16H34) solvent molecules were
formed using 6 DPD particles. To this end, the kbend parameter was reduced from 2.38 to
2.0 to optimize the mapping parameter simultaneously while decreasing the methylene
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group to DPD ratio from 3:1 to approximately 2.8:1 (please see Ref. [42]). Other simulation
coefficients were adopted similarly to the N-1000 system. Note that the effect of the bending
potential on the level of coarse graining was discussed in detail in previous work [42]. The
benzene (C6H6) solvent molecules were modeled as a single DPD particle. The unitless
molar mass and interaction cut-off distance for benzene particles were assigned based on
the molecular weight and molar volume using the Durchschlag and Zipper rule [47], taking
the alkane DPD particle as the reference. As a result, the mass of each benzene DPD particle
was set to mB = 1.7, as was the force cut-off distance, rcBB = 1.17. This defined each benzene
particle as possessing number-average density of ρB = 0.65. For benzene–benzene molecule
interactions, a similar DPD force-field parameter of aBB = 200 was assumed. To validate
the parameter selection, independent DPD simulations were performed and the normalized
pair correlation function, g(r), was compared with experimental measurements. The pure
liquid solvent simulation was performed in a cubic simulation box with the dimension of
l ≈ 8 in dimensionless DPD coordinates. Figure 1a depicts the correct behavior of g(r) for
the simulated benzene liquid in comparison with experimental data [48,49].

Figure 1. (a) The pair correlation functions, g(r), for a benzene liquid obtained via experiment [48,49]
(solid blue curve) and DPD simulation (dotted red curve). Note that the experimental data have
been rescaled to DPD units. (b) The mean-squared displacement of the center of mass of the N-334
DPD and C1000H2002 PE chains dissolved in n-hexadecane and benzene. The data from molecular
dynamics simulations are presented with solid lines, and the data from the DPD simulations are
displayed using dotted lines.

The interactions between dissimilar particles in solutions require additional DPD
force field parameters, namely, force cut-off distances, rcaB , and maximum repulsive force
parameters, aaB. The force cut-off between alkane and benzene particles were determined by
an arithmetic mixing rule, rcaB = (rca + rcB)/2. The DPD repulsive force parameter between
dissimilar particles plays a crucial role in determining the thermodynamics and phase
state of a multicomponent mixture. Groot and Warren [41] derived a connection between
the repulsive force field parameter and the Flory–Huggins mixing parameter, χ, where
χ ∝ (aii − aij). This equation was later developed into more sophisticated relations [50];
however, these models include simplifying assumptions that are not applicable to the
present case. Note that the parameter χ was reported as −0.25 and 0.25 for polyethylene in
hexadecane and polyethylene in benzene, respectively [51]. Assuming these values for χ, a
direct comparison of DPD with molecular dynamics (MD) simulation results demonstrated
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that both solvents may be considered close to theta solvent conditions [43]. As a result, the
trivial deviation in the repulsive force field parameter, aaB, due to negligible differences
in χ, is ignored. Therefore, a constant DPD repulsive force parameter was assumed
as a = aaa = aBB = aaB.

To verify the validity of the DPD predictions, the properties of paired DPD/MD
polymer chains, N-334/C1000H2002, dissolved in hexadecane NH-6 (C16H34) and benzene
NB-1(C6H6) were compared. The equilibrium simulations were performed in a small
simulation box containing 8 and 10 N-334 chains dissolved in hexadecane and benzene
solvents, respectively. Physical properties of the solutions in the quiescent state were
calculated from statistically significant data, which were extracted from sufficiently long
simulation times. These properties were compared with the results of equilibrium MD
simulations from a recent publication by Nafar Sefiddashti et al., wherein the same polymer
solutions were modeled using the Siepmann–Karaborni–Smit (SKS) united-atom model
and integrated using the p-SLLOD equations of motion [43,52]. The SKS model, although
originally developed to describe vapor–liquid equilibrium of linear alkanes, has proven to
be widely applicable to PE melts and solutions in prior simulation studies.The details of
the model validation will be discussed later in this section; however, the mapping strategy
for obtaining DPD parameters directly from NEMD systems under both equilibrium and
nonequilibrium conditions as developed by Nafar Sefiddashti et al. [42] was employed
to produce the optimal DPD model solution.The DPD parameters used in this study are
summarized in Table 1.

Table 1. DPD simulation parameters used in this work. These parameters were chosen systemati-
cally by comparisons with equilibrium and nonequilibrium molecular dynamics simulation data of
atomistic polyethylene liquids [42].

Parameter Value Units

a 200 kBT/rca

γD 4.5 (mkBT/r2
ca
)1/2

σ 3.0 (m(kBT)3/r2
ca
)1/4

∆t 0.012τDPD (mr2
ca

/kBT)1/2

kbend 2.38 (N-1000) and 2.0 (NH-6) kBT
kspr 400 kBT/r2

ca

All DPD simulations were performed in the canonical (NVT) ensemble using the
LAMMPS computing platform [53]. Newton’s equations of motions subjected to the DPD
force field were integrated using the velocity-Verlet algorithm [41] with a suitably small
time-step of ∆t = 0.012τDPD to prevent temperature deviations. The physical properties of
the polymer solutions were directly extracted from simulation data. Characteristic proper-
ties such as the ensemble-averaged root-mean-squared end-to-end distance, 〈R2〉1/2, and
the ensemble-averaged radius of gyration, 〈R2

g〉1/2, were obtained from the conformational
analysis. Moreover, standard random walk relations were used to estimate the Kuhn
segment length, b = 〈R2〉/Lmax, as roughly 16 Å or 4 DPD beads in length, and the number
of Kuhn segments, NK = 〈R2〉/b2, as approximately 235, where Lmax is the fully-extended
contour length of the PE chains (about 3800 Å).

The dynamics of polymers in solutions change from Rouse dynamics to reptation as
they overlap and entangle as the concentration ratio c/c∗ increases above unity, where c
is polymer concentration and c∗ is the coil overlap concentration. Polymer concentration
is calculated according to c = (NNc)/V, where N, Nc, and V are the number of beads
per chain, number of chains, and volume of the simulation cell. Since the number density
and mass of each polymer DPD particle were set to unity, the molar mass in DPD units is
equivalent to the chain length. Moreover, the overlap concentration may be estimated by
c∗ = N/( 4

3 πR3
g). The ratio c/c∗ was set at 20 for N-1000 in hexadecane and 15 for N-1000

in benzene, which implied that two significantly different entanglement numbers could
be investigated.The volume fraction of polymer in each solution, φ, can also be calculated
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from φ = Np/ρaV, where Np (see Table 2) and ρa (= 1 in DPD units) are the total number
of polymer particles and number density, respectively, as 0.46 for n-hexadecane and 0.30
for benzene. The hexadecane solution is simulated at T ≈ 391 K and the benzene solution
at T ≈ 353 K.

Table 2. Dimensions of the simulation cells for each melt. Lx, Ly, and Lx are displayed as multiples
of the equilibrium value of Rg (≡ 〈R2

g〉0.5) and also in dimensionless rca units (displayed within
parentheses). The total number of DPD particles used in the respective simulations is also tabulated.

Chain Length Lx Ly Lz Np Ntotal

N-1000 in hexadecane 16Rg (310) 4Rg (84) 1.5Rg (31) 370,000 791,380
N-1000 in benzene 16Rg (310) 4Rg (84) 1.5Rg (31) 240,000 590,000

The longest time scale, associated with the disengagement time, τd , of the entan-
gled polymer solutions, was estimated by fitting sums of two and three-term exponen-
tial functions to the ensemble-averaged autocorrelation function as
〈u(τ) · u(t + τ)〉 = ∑ ci exp(−2πt/τi) [54], where u = R/|R| is the unit end-to-end vector
and the ci’s are fitting parameters. The results from NEMD simulations of polyethylene liq-
uids [55–57], along with theoretical relationships for reptation-based calculation of the
disengagement time, 〈u(0) · u(t)〉 = ∑p:odd

8
p2π2 exp (−p2t/τd) [4,58], served to validate

the method. Moreover, the longest characteristic time of the chains under flow, τd f
, and

tumbling/rotation time, τr f , were calculated via the equation
〈u(τ) · u(t + τ)〉 = A exp(−2πt/τd f

) cos (−2πt/τr f ), where A is a fitting parameter [59].
(Note that these two time scales are Wi-dependent, decreasing in magnitude with increas-
ing shear rate.) Two additional characteristics time scales are associated with tube segment
stretching and entanglement dynamics, namely, the Rouse time, τR ≡ τd/3Z, and the
entanglement time, τe ∝ τR/Z2, where Z is defined as the ensemble average number of
entanglements per chain at equilibrium. Note that Z = 〈L〉2/at = (NKb)2/a2

t = 〈L〉2/〈R2〉,
where at and 〈L〉 are the equilibrium tube diameter and the average primitive chain con-
tour length, respectively. The Z1-code of Kröger [60–63] was used to perform the network
topological analysis and calculate relevant length scales, such as L and at, at equilibrium.
The number of kinks per chain, Zk, which is reported by Z1-code and has been shown to
be proportional to Z by the ratio Zk/Z ≈ 2 at equilibrium [55–57,61,64,65] is an alterna-
tive measure for network entanglement. However, the validity of this ratio along with
physical definitions of Z and at under nonequilibrium flow conditions remains uncertain.
Thus, we henceforth report the number of kinks per chain, Zk, since this quantity has an
unambiguous geometric definition in the Z1 code.

The stress tensor, T, was calculated over all polymer particles within the simulation
cell, and on some occasions, over polymer particles in selected layers of the simulation
cell to generate a stress profile within the flowing liquid. The total stress was calculated
according to the Irving–Kirkwood equation [66],

T =
NpkBT

V
δ +
〈∑Np

i=1 riFtot
i 〉

3V
, (7)

where the first term quantifies the kinetic effects on the hydrodynamic pressure and the
second term represents the virial coefficient associated with the DPD force-field model.

As mentioned above, the properties of simulated paired DPD/MD (N-334/C1000H2002)
polymer solutions at equilibrium were compared to examine the validity of the DPD
model. The first solution was PE N-334 in hexadecane at 14.5 c/c∗, and the second one
was the same polymer at 13.5 c/c∗ in benzene. A direct comparison of the pair correlation
function, g(r), for both polymers at equilibrium illustrates a good overall agreement
between paired DPD/NEMD systems, as displayed in Figure 2. The peak maxima are
accurately described, although the DPD peaks are somewhat narrower due to the coarse-
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grained lumping of multiple methylene groups into DPD particles. Although the agreement
between the models demonstrates the microscale compatibility of the two solution systems,
this measure alone may not guarantee the satisfactory accuracy of polymer dynamics under
nonequilibrium conditions. Therefore, to ensure the correct dynamic behavior of polymers,
steady-state and large time-scale properties of the system, such as the disengagement
time and the center-of-mass diffusivity between paired DPD/MD solutions may also be
examined—see Figure 1b. To this end, the center-of-mass mean-squared displacement
versus time (which are scaled by squared ensemble-averaged radius of gyration and
disentanglement time, respectively) were simulated for the N-334 PE DPD system in
both solvents and compared to similar quantities calculated from equilibrium molecular
dynamics simulations of PE solutions of C1000H2002. Figure 1b shows the satisfactory
agreement for both of the solutions. Note that we used scaled mean-squared displacement
as a measure to fine-tune the interaction cut-off distance between dissimilar particles.
Moreover, the topological analysis demonstrates an agreement between the number of
kink entanglements per chain for the pair DPD/MD test chains. Specifically, the pair
N-334/C1000H2002 in hexadecane solution has Zk = 15 and the pair N-334/C1000H2002 in
benzene solution has Zk = 10. Overall, the results confirm that the proposed DPD model is
capable of capturing the solution dynamics reliably. For further details regarding the MD
results, see Ref. [43].

Figure 2. The polymer-solvent pair correlation functions, g(r), for (a) N334-benzene solution and
(b) N334-hexadecane solution compared to results of a C1000H2002 MD simulation. Note that the MD
data were normalized to DPD units for comparison.

3. Results and Discussion
3.1. Quiescent Properties

Equilibrium and nonequilibrium DPD simulations were performed of two entangled
polymer solutions containing linear macromolecular chains of 1000 (C3000H6002) DPD particles
dissolved in hexadecane and benzene at concentrations of 20c∗ and 15c∗, respectively. Table 2
displays the sizes of the simulation cells at equilibrium for the two PE solutions. The cell
sizes were chosen to remain large enough to avoid any self-interaction of individual chains
with their periodic images under nonequilibrium conditions. The solutions contained 240 and
370 PE chains dissolved in 350,000 benzene and 70,230 hexadecane molecules, respectively.
The physical properties of the N-1000 polymer chains in the quiescent equilibrium state
were obtained from the DPD simulations, as summarized in Table 3. Most of the topological
properties of the N-1000 chains are similar in both solutions, except the average number
of entanglements per chain is approximately 50% higher in the oligomeric solvent. Hence,
solvent quality is similar in both solutions, and from the relevance of random-walk statistics,
both solutions are deemed to be at near-theta condition.
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Table 3. Equilibrium properties of the simulated PE solutions. Entries are displayed in DPD units.

DPD Chain φ c/c∗ 〈R2〉0.5 〈R2
g〉0.5 τd τR Zk Z NK

N-1000 in hexadecane 0.46 20 62 24.5 6.4× 107 8.53× 105 46 25 234
N-1000 in benzene 0.3 15 61.33 25.2 5.0× 107 9.8× 105 30 17 236

3.2. Steady-State Shear Flow: Rheology and Network Topology

Step-strain startup of shear flow simulations were conducted by imposing a specific
value of shear rate to an equilibrated solution system under quiescent conditions and
then tracking the evolution of the system phase-space trajectory until a steady-state flow
condition had been attained. Statistically meaningful values were obtained for each of the
rheological and topological parameters under steady-state conditions. In the simulations,
x is the flow direction, y is the gradient direction, and z is the neutral direction with
respect to the coordinate system of the simulation box. The two solution systems were
exposed to a wide range of shear rates, represented in terms of the Weissenberg number,
Wi = τdγ̇, where γ̇ is the shear rate (also in DPD units), spanning 0.5 ≤ Wi ≤ 12,000
for the benzene solution and 3 ≤ Wi ≤ 10,000 for the hexadecane solution. The initial
(t = 0) configurations used for startup constituted quiescent equilibrated systems for each
solution with a long-time homogeneous polymer concentration distribution throughout the
simulation cell. However, it should be noted that thermal fluctuations cause a continuous
slight change in the polymer concentration distribution inside the simulation box; it will
be demonstrated later that these mild fluctuations do not induce inhomogeneities in the
entanglement network or bulk rheological and topological properties.

The steady-state properties of the system under shear flow were determined over
the ranges of Wi stated above. The steady shear properties of the concentrated entangled
solutions exhibited four distinct characteristic dynamic regions based on their characteristic
time scales and flow microstructure, as observed in prior NEMD simulations of linear,
monodisperse polyethylene melts [11,55–57,67], i.e., ranges of shear rate roughly delineated
by γ̇ < τ−1

d , τ−1
d < γ̇ < τ−1

R , τ−1
R < γ̇ < τ−1

e , and γ̇ > τ−1
e . (Note, however, that no

steady-state or transient shear banding occurred at γ̇ > τ−1
e , and hence the fourth region

will not be discussed in this article.) A number of physical properties were calculated
from the simulation output to characterize the rheological and topological behavior of
the polymer solutions, including the polymer contribution to the shear stress, σ

p
xy, the

viscosity, ηp = σ
p
xy/γ̇, the average number of entanglement kinks per chain, Zk, and the

tube segmental orientation tensor, S = 〈uu〉. Note that tube segments were defined by
dividing the N-1000 chain into 20 segments (50 beads per segment) for both solutions. Also
note that only the polymer contribution to the shear stress (and normal stresses) is reported
below; total stress, including all polymer and solvent interactions, displayed qualitatively
similar behavior to that of the polymer stress contribution and was quantitatively shifted
upward by an amount dictated by an approximately Newtonian viscosity. (Note that the
effective Wi applied in the simulations are large with respect to the reciprocal time scales
of the polymer molecules but not with respect to those of the solvents.) Hence, only the
polymer contribution to shear stress is reported below since it is most directly related to the
macromolecular configurational dynamics that induce shear banding.

The first region is the linear viscoelastic flow regime encompassing γ̇ < τ−1
d or Wi < 1.

Over the slow deformation of the fluid, the polymer molecules can essentially retain
their equilibrium configurations since the time scale of the deformation is longer than
that of the tube disengagement time. In other words, the chains have adequate time to
diffuse through the tube network to maintain their most favorable entropic configurations,
although overall the tube network reorients (but does not stretch) along a preferred direction
with respect to the flow direction. This reorientation manifests as a steep increase in the
Sxy component of the tube orientation tensor, as shown in Figure 3a, and a decrease in
the average tube orientation angle, θxy, as displayed in Figure 3c. (Note that obtaining
steady-state data within this low Wi region is very computationally expensive, and thus
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only a single data point for each solution at Wi < 1 is presented in the following figures.
Since nothing unusual or interesting was observed in this Wi region beyond the expected
linear viscoelastic behavior described in previous simulations of similar PEs [55–57], the
authors focused on obtaining a sufficient number of data points in the nonlinear viscoelastic
regime where the simulations attain steady state much faster. Therefore, some of the trends
discussed in this paragraph are merely inferred from the previous studies and typical
behavior of linear viscoelastic fluids.) Since there is no tube deformation in this regime,
however, the diagonal components of S are not affected by the flow hydrodynamics,
as depicted in Figure 3b. Furthermore, the average number of entanglement kinks, Zk,
also remains near its equilibrium value—see Figure 4. The shear stress σ

p
xy increases

linearly in this Wi range, providing a constant value of viscosity ηp of about 104 (in DPD
units) for both solutions—see Figure 5a,b. The small increase in Sxx − Syy depicted in
Figure 3b with Wi is proportional to a similar slight increase in the first normal stress
difference, Np

1 = σ
p
xx − σ

p
yy, as shown in Figure 5c, whereas the first normal stress coefficient

(Ψp
1 ≡ (σ

p
xx − σ

p
yy)/γ̇ 2) is approximately constant at very low shear rates—see Figure 5d. In

this flow regime, the probability distribution functions (PDFs) of fractional chain extension,
defined for each macromolecule as χ = |R|/|Rmax|, deviate little from their equilibrium
distributions, which are displayed in Figure 6. Reptation theory adequately describes the
dynamics of the polymer chain properties and rheological behavior in this linear viscoelastic
regime, as noted previously for entangled polyethylene melts subjected to steady-state
shear flow [55–57,68].

The second flow regime occurs within the shear rate range of τ−1
d < γ̇ < τ−1

R , corre-
sponding to 1 < Wi < 75 and 1 < Wi < 51 for the N-1000 in hexadecane and benzene
solutions, respectively. The Sxy component of the tube orientation tensor displays a non-
monotonic behavior, increasing substantially up to a maximum around Wi ≈ 3–5 and
subsequently decreasing with γ̇. This nonmonotonic behavior is caused by the competing
effects of increased degree of alignment with increasing Wi, which increases the aver-
age 〈uxuy〉 as more segments become aligned at the primary eigenvalue, whereas the
decrease in the angle of alignment θxy with γ̇ reduces uy to zero at high Wi; i.e., individual
dyadic elements uxuy vary with θxy as cosθxy sinθxy, implying a decrease from 0.5 to 0
as θxy transitions from 45◦ to 0◦ with increasing Wi—see p. 8133 of Ref. [69] for a more
detailed explanation. Complementing the increase in tube segment orientation (which
remains the dominant dynamical mechanism within this range of γ̇), the tube segments
also begin to stretch as indicated by the increase of Sxx − Syy in Figure 3b. (See also plots
of the tube stretch variable, λ, for similar polyethylene melts in Figure 61d of Ref. [67].)
The kink entanglement number begins to decline in this Wi range, indicating an initial
degradation of the entanglement network, as also observed for the entangled polyethylene
melt simulations [55–57,70,71]. The destruction of the entanglement network results in
an increase in chain mobility as the average tube diameter increases, leading to the onset
of individual chain tumbling dynamics at Wi in the range of 5–10. Within this region,
Zk scales according to a power-law behavior with Wi of exponents −0.078 and −0.061
for the N-1000 hexadecane and benzene solutions, respectively. Throughout the range
Wi > 5 after the maximum in the Sxy profile, the shear stress establishes a constant plateau
value for both solutions, which is a result of the steady decrease in entanglement network
constraints and the onset of chain tumbling. As a result, the viscosity exhibits an initial
shear-thinning behavior that scales as ηp ∝ Wiα with α = −0.9 for both solutions. The first
normal stress difference increases monotonically in this Wi region, whereas Ψp

1 decreases
with Wi according to a power-law expression with exponent of −1.54 for both solutions.
The corresponding PDFs of fractional chain extension of Figure 6 broaden substantially
toward more extended chains within this Wi regime, which is indicative of the stretching
of the tube segments and also the onset of chain tumbling that results in quasiperiodic
extension/retraction cycles of the individual macromolecules [54,59,67,72].
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Figure 3. Components of the tube orientation tensor, S = 〈uu〉, where u is the unit vector based on
the segmental end-to-end vector, plotted versus Wi: (a) Sxy and (b) Sxx − Syy. Panel (c) displays the
behavior of θxy, the average angle of tube segment orientation, defined as the angle (measured in
degrees) between the eigenvector associated with the largest eigenvalue of S and the flow direction
in the flow-gradient (x-y) plane.

Figure 4. Average number of kink entanglements per chain, Zk, vs. Wi for both solutions undergoing
steady-state shear flow. Shear rates corresponding to 1/τd are represented at Wi = 100 and those
corresponding to 1/τR are indicated by the dotted vertical lines. The lowest Wi data point of each
solution indicates that Zk retains its equilibrium value at Wi < 1.
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Figure 5. Steady-state bulk rheological behavior of the two PE solutions, N-1000 in hexadecane and
N-1000 in benzene: (a) steady-state shear stress, σ

p
xy, plotted versus Wi; (b) steady-state viscosity,

ηp, versus Wi; (c) steady-state first normal stress difference, Np
1 ; (d) steady-state first normal stress

coefficient, Ψp
1 ≡ (σ

p
xx − σ

p
yy)/γ̇ 2. All quantities are displayed in DPD units. Error bars on stress

values were smaller than the size of the symbols in all cases and were therefore omitted.
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Figure 6. Probability distribution function of chain fractional extension, χ, for (a) the N-1000 in
hexadecane solution, and (b) N-1000 in benzene solution, subjected to steady-state shear flow at
selected Wi within different flow regimes. Eq denotes the quiescent equilibrium state.

At higher flow rates, i.e., τ−1
R < γ̇ corresponding to Wi > 75 (hexadecane) and 51 (ben-

zene), the flow enters the third shear-rate regime in which tube stretching dictates the flow
dynamics, replacing segmental orientation as the dominant relaxation mechanism. As the
individual molecules begin to extend significantly with the relaxation of the entanglement
network constraints, they experience quasiperiodic extension/retraction cycles at frequen-
cies that scale with shear rate and which can require 100’s of strain units to complete a
full cycle—see Figure 7. Sxy continues its decline with Wi, finally plateauing out at a low
value that is consistent with the approach of θxy to value slightly larger than 0◦, indicating
average segmental alignment mostly along the flow direction at high Wi. Figure 3b displays
the steep increase in Sxx − Syy as a quantitative measure of segmental stretching, which
induces a commensurate relaxation of the entanglement network as evident in Figure 4.
The decrease in the number of entanglement kinks scales with a power-law exponent
within the range of −0.21 to −0.27 at high Wi. As the shear rate increases beyond τ−1

R in
Figure 5a, the shear stress begins to increase above the plateau level, with the viscosity data
exhibiting a smaller slope of power-law exponent −0.47 at very high Wi. Np

1 experiences a
steady increase with Wi, indicative of the increased extension of the macromolecules, and
Ψp

1 continues to decrease steadily with increasing shear rate with a similar scaling exponent
(−1.54) as in the second shear-rate region. It is evident that the reduction in the number
of molecular entanglements results in more extended molecules and more frequent chain
tumbling dynamics, which are manifested in the broad PDFs of relative extension χ of
Figure 6, ranging evenly from very small values associated with retracted chains to high
values of relatively extended molecules.

As described above, the steady-state behavior of the simulated linear monodisperse
PE solutions exhibits a monotonic flow curve, σ

p
xy vs. Wi, as depicted in Figure 5a. This

behavior is in qualitative agreement with prior experimental and simulation data of entan-
gled polymer solutions, exhibiting essentially a monotonic stress curve with a very small
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positive slope in the shear-rate region where the stress plateau is established, wherein the
dominant flow mechanism shifts from segmental orientation to deformation and disin-
tegration of the tube network. A detailed discussion of transient shear-band formation
and reverse flow in startup of shear flow of polymer solutions is presented in the next
section, in which it is demonstrated that shear banding occurs shortly after startup of shear
flow due to microstructural inhomogeneity in the Wi region of the stress plateau. This
inhomogeneity of the inherent polymer microstructure results in a commensurate inhomo-
geneity in the polymer concentration profile, which persists throughout the duration of the
shear-band lifetime.

Figure 7. The temporal evolution of fractional extension vs. strain for several individual molecules
of the PE solution N-1000 in hexadecane undergoing startup of shear flow at Wi = 1500. The
quasiperiodic cycles of chain extension and retraction reveal the dominant tumbling dynamics. Note
that each color line represents a randomly selected chain.

3.3. Startup of Shear Flow: Transient Shear Banding, Reverse Flow, and
Concentration Fluctuations

Upon application of a constant shear rate to the quiescent solution at time t = 0 via
an appropriate steady motion at the simulation cell boundaries (y = 0, H), a transverse
shear wave propagates in the gradient direction through the simulation cell on a time scale
of tp = H2ρ/η, where H is the dimension of the simulation box in the y-direction [67].
Consequently, in the present simulations the shear profile is experienced throughout the
cell within the span of a few time increments at all Wi. This implies that the shear stress is
homogeneous within the simulation box at all greater times, which can be readily verified
by subdividing the cell into a given number of layers arranged perpendicularly to the
gradient direction. (This will be demonstrated below—see Figure 8a. The interested reader
can also refer to Figure 5 of Ref. [46].)

The steady-state shear stress is a monotonically increasing function of Wi, as observed
in Figure 5a above, although the slope in the plateau region at intermediate Wi is only
slightly positive. This implies that at each simulated value of shear rate, there is a unique
value of shear stress associated with the applied Wi. Accordingly, the system will settle
into a unique, homogeneous microstructural state as the liquid approaches its steady-state
condition for each respective value of applied shear rate. At low and high shear rates,
where σ

p
xy varies significantly with Wi, the startup behavior is rather uninteresting as the es-

tablished shear stress effectively imposes a unique and homogeneous shear rate throughout
the simulation cell. However, for startup of shear flow for Wi in the plateau region, ranging
roughly from Wi ∈ [1, 1000], the variation in shear stress with Wi is only nominal; hence,
widely differing applied shear rates induce only mild changes in shear stress. Therefore,
under startup conditions of shear flow at shear rates within the plateau region of the σ

p
xy

vs. Wi profile, the stochastic nature of the simulation (see Equations (1) and (4)) can produce
multiple microstructural states that possess approximately the same value of shear stress
but widely differing Wi values, inhomogeneously arranged along the gradient direction.
These microstructural states are generated by the individual molecular dynamics of the
chains in localized neighborhoods of the sample, each possibly corresponding to a vastly
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different Wi than those at other locations within the cell. During this phase of startup, the
liquid can experience transient shear banding as the system zeroes in (or converges to) a
steady-state homogeneous liquid experiencing a uniform velocity profile as defined by the
imposed motion of the boundaries. As it turns out, these temporary and vastly different
microstructural states often result in other curious dynamical artefacts, such as reverse
flow and flow-induced concentration fluctuations, which disappear once the system finally
attains steady state. This entire process from flow onset to steady state can span several
hundreds of strain units.

Shear banding observed in viscoelastic fluids can be induced by elastic and viscous
instabilities associated with the microstructural configuration and entanglement network
caused by inhomogeneities associated with the stochastic nature of individual molecular
dynamics under flow [11,12,73–75]. The nature of the inhomogeneity is further complicated
by particle–particle interactions and concentration dependencies in two-fluid systems,
particularly solutions. Furthermore, the monotonicity of the shear stress profile in solutions
raises a fundamental question about the origin of this phenomenon, which cannot be
explained by classical constitutive instability. As a result of prior analyses [11,12], shear
banding is thought to be primarily a stochastic process resulting from the unpredictable
dynamics of individual chains in localized flow regions [11]. It is important to note
that, despite this picture being rather general, numerous environmental factors (such as
temperature and instrument compliance) may contribute to this phenomenon.

In recent experimental and theoretical studies, it has been suggested that shear banding
in solutions is induced by fluctuations in polymer concentration [35,36,76]. It is therefore
critical to investigate the complex interaction between flow-driven entanglement network
inhomogeneity and concentration fluctuations in order to understand the dynamic origins
of shear-banded structures in greater detail. Thus, the temporal evolution of the velocity
and concentration profiles throughout the startup flow process (in the gradient direction)
have been extracted from the simulation output and examined through microstructural
analysis. The velocity and concentration profiles were extracted by averaging the instan-
taneous velocities in the flow direction over time intervals of 0.1τd f

for particles within
each of 20 layers along the gradient (y-direction). These data demonstrate that both N-1000
hexadecane and benzene solutions developed transient shear-banded structures at applied
shear rates within the range of τ−1

d < γ̇ < τ−1
e .

Figure 8a,b depict the temporal evolution of shear stress, σ
p
xy, and first normal stress

difference, Np
1 , in strain units for the fast and slow bands of the PE N-1000 in benzene

solution undergoing startup shear flow at Wi = 1350. These quantities were evaluated
within layers of thickness 0.2 y/H perpendicular to the gradient direction centered at
y/H = 0.5 and y/H = 0.9 within the fast and slow bands, respectively. These particular
layers were chosen because they are fully contained within distinct shear bands that develop
within the system at around 12 strain units and ultimately dissipate after 90 strain units.
These shear bands are recognized from the velocity profiles within this range of strain, as
shown in the insets of Figure 8a,b—in particular, see the inset in Panel (b) at γ = 27. The
startup shear stress profile increases at small strain, and the velocity profile in the gradient
direction is uniform, with a slope corresponding to the imposed value of shear rate. σ

p
xy

exhibits an overshoot with a maximum at γ ≈ 8, at which time the velocity profile in the
gradient direction remains uniform and then subsequently decreases with strain, gradually
settling down to its steady-state value. Note that the shear stress is uniform throughout the
simulation cell, as demonstrated in Figure 8a for the fast and slow bands where the shear
stress is essentially the same at all times within both layers.
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Figure 8. The temporal evolution (in strain units) of (a) shear stress, σ
p
xy, and (b) first normal

stress difference, Np
1 , vs. strain units within the fast (layer centered at y/H = 0.5) and slow (layer

centered at y/H = 0.9) shear bands for PE solution N-1000 in benzene undergoing startup shear
flow at Wi = 1350—see also Figure 13c. The insets in panels (a,b) display the scaled instantaneous
velocity profile, V/Vmax, and scaled instantaneous polymer concentration, cp/c, spanning the scaled
simulation cell dimension (y/H) in the y-direction at specific values of applied strain. Note that
layer velocities are reported relative to the center of the simulation cell, such that the velocity is
evaluated as negative in the bottom half of the cell. Panels (c,d) present the temporal evolution of
fractional extension (χ) of individual molecules (each assigned a random color) in the fast band (c) and
slow band (d).
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The first normal stress difference also increases with strain during the initial stage of
startup, where the velocity profile is uniform. In this range of strain units, Np

1 is constant
across the cell in the gradient direction. Np

1 then experiences an overshoot with a maximum
at γ ≈ 12, which is the point of incipient shear-band generation. Note that the maximum of
Np

1 typically occurs about 3–5 strain units after the maximum in σ
p
xy. After passing through

the maximum, the first normal stress difference becomes inhomogeneous, with vastly
different values within the distinct shear bands, with the fast band possessing the higher
value, indicating a greater degree of molecular extension relative to molecules located
within the slow band. Np

1 decreases with γ, and eventually settles into its steady-state
value at γ ≈ 100. Note that this is significantly greater that the strain required to attain
steady state (γ ≈ 50) of the shear stress. By this time, the shear bands have completely
dissipated, and Np

1 again becomes uniform in the gradient direction. All of these obser-
vations are consistent with similar behavior of Np

1 for an N-1000 PE melt as described by
Boudaghi et al. [11].

The insets of Figure 8a,b also display the scaled concentration profile (cp/c, where
cp is the layer polymer concentration and c is the bulk polymer concentration) across the
simulation box in the gradient direction at selected values of applied strain. At very low
strains and very high strains, the concentration profile in the y-direction is essentially
constant. However, at γ = 12, the formation of the shear band is apparently accompanied
by a significant concentration fluctuation (of up to ±3% magnitude) as the microstructural
instability propagates through the liquid. These concentration fluctuations persist for the
duration of the transient shear-banding period, but they eventually dissipate as the shear
bands give way to a uniform velocity profile—see Figure 13c for additional concentration
profiles for this system at other strain values. These concentration fluctuations appear
to be the result of the individual chain dynamics within various regions of the flow cell,
which can experience varying configurational evolution upon startup of flow due to the
stochastic nature of the process. Hence, during the period of shear-band formation, the
configurational rearrangements of the localized groups of individual molecules induce
a migration of polymer particles that results in distinct layers of relative accumulation
and depletion. Although impossible to prove conclusively from the present simulations,
it appears evident that the inhomogeneous concentration profile is a byproduct of the
localized microstructural evolution under startup of shear flow within the liquid, rather
than an integral component of the system dynamics and instability that lead to transient
shear banding.

The individual molecular dynamics of all molecules with centers of mass that are
located within the fast and slow layers (as defined above) at the moment of shear-band
formation (γ = 12) are displayed as fractional extension (χ) vs. γ in Figure 8c,d. In these
panels, each individual chain was assigned a random color, and its fractional extension was
plotted from the initiation of startup (γ = 0) to steady-state behavior at γ = 100. Under
steady-state conditions, both bands are inhabited by molecules with fractional extension
varying widely from 0.05 to 0.6, as expected from the broad PDF of Figure 6b (yellow
curve). Upon startup of shear flow, the low-strain monotonically increasing behavior of
the molecules in both bands is essentially the same up to γ ≈ 12, where the maximum
in the Np

1 overshoot occurs. Subsequently, chains within the slow band assume roughly
constant values of χ, indicating a flow-aligning behavior, whereas those within the fast
band continue to extend to higher values of χ out to γ ≈ 25, at which time the chains begin
to experience extension/retraction quasiperiodic tumbling cycles. (Keep in mind that a
complete cycle can take several hundreds of strain units—see Figure 7; therefore, only the
first phase of a full tumbling cycle is evident in Figure 8c.) The individual tumbling cycles
are mostly out of phase with each other, thus evidencing a rather muddled plot of χ vs. γ
at later times. As the shear bands disintegrate and merge into a uniform velocity profile at
γ > 100, the individual chains all assume a similar behavior, which gradually resembles
that of the final strain units depicted in Panel (c); i.e., the molecules in the slow band also
exhibit quasiperiodic tumbling cycles at γ > 100 (not shown) .
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Figure 9 displays simulation data from startup of shear flow simulations of the N-1000 PE
in hexadecane solution at several values of Wi (= 15, 150, and 1500) spanning the shear-rate
range associated with the shear stress plateau evident in Figure 5a. The main graph of each
panel depicts the shear stress versus strain behavior after startup of flow, with a substantial
overshoot being observed in each case. The strain value associated with the maximum of
the shear stress overshoot, γmax, increases with Wi, assuming values of approximately 2.5 at
Wi =15, 5 at Wi = 150, and 9 at Wi = 1500. Further analysis reveals that γmax scales with
shear rate as ∼Wi 0.338. This scaling agrees with the power-law exponent of 1/3 obtained by
prior theoretical studies [77] and atomistic simulations (see Figure 10b of Ref. [69]). The strain
value associated with the maximum of the Np

1 overshoot (not shown) was determined to be
approximately 5.5 at Wi =15, 8 at Wi = 150, and 12 at Wi = 1500.

Figure 9. The temporal evolution of shear stress vs. strain units for PE solution N-1000 in hexadecane
undergoing startup shear flow at (a) Wi = 15, (b) Wi = 150, and (c) Wi = 1500. The insets display
the scaled instantaneous velocity profiles, V/Vmax, and scaled instantaneous polymer concentration
profiles, cp/c, spanning the scaled simulation cell dimension in the y-direction (y/H) at specific
values of applied strain.
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The insets in Figure 9 show the temporal evolution of the normalized velocity pro-
file (red data points) and scaled local polymer particle concentration (dotted blue lines)
spanning the y-direction at different time instants (strain values) after startup of shear
flow. The pattern for the evolution of the velocity profile is very similar to that of similar
simulations composed of entangled PE melts [11–13,15]. Specifically, starting from the
onset of flow, a linear velocity profile is initially observed, with a slope that is consistent
with the nominally applied shear rate. The linear profile persists until the maximum in the
Np

1 overshoot occurs, at which time the velocity profile localizes into separate regions of
differing slopes, each associated with a distinct value of local Wi and representing shear
bands induced by the microstructural deformation of the constituent macromolecules.
The polymer concentration is also essentially uniform and homogeneous at short times;
however, concomitantly with the localization of the velocity profile, a fluctuation in the
polymer concentration spanning the y-direction is observed, likely induced by the relative
migration of polymer chain particles as they localize into distinct shear bands through
configurational rearrangements. The shear-banded structure and manifestation of concen-
tration fluctuations persists throughout the strain period where Np

1 is proceeding toward a
steady state, exhibiting different values within the apparent shear bands. The shear bands
and concentration fluctuations eventually dissipate and steady-state uniform velocity and
concentration profiles are established at a single value of Wi, as consistent with the value of
shear rate applied through motion of the cell boundaries. This gradual relaxation process
of the velocity and concentration profiles can require up to 200 strain units to complete.

Under startup of shear flow at Wi = 15 as depicted in Figure 9a, where γ̇ < τ−1
R ,

the velocity profile is linear and the concentration profile approximately constant at low
strain values; however, at γ > 5.5, two distinct localized and essentially linear velocity
profiles emerge, which induces a rather significant concentration fluctuation of about ±8%
across the simulation cell. A microstructural analysis of the polymer molecules occupying
each band allows for calculation of Sxy for each band, which provides a rather sensitive
mechanism for estimating the shear rate within each band using the fact that Sxy changes
substantially with Wi (see Figure 3a), even within the stress plateau region where σ

p
xy

exhibits only nominal growth with increasing Wi. Within the slow band, Sxy ≈ 0.05
corresponding to Wi ≈ 8, whereas in the fast band, Sxy ≈ 0.032 implying Wi ≈ 100.
Furthermore, the computed concentration profiles indicate a flow-induced accumulation
of polymer chain particles in the slow shear band and a depletion in the fast band. This
behavior indicates a flow-induced diffusion of polymer chain particles from regions of
low viscosity to those of high viscosity. Moreover, a mild reverse flow (RF) [11], where the
velocity profile has a negative slope implying flow in the opposite direction to the imposed
kinematics, is observed upon incipient shear band formation at γ ≈ 6, which persists for a
short period of time before the slope turns positive again at γ ≈ 18 (this RF phenomenon
will be discussed in greater detail below).

Figure 9b displays the startup flow profile at Wi = 150 (γ̇ > τ−1
R ). Despite the

similarity in the developed strain-localized flow structure, tracking the concentration
profile reveals an interesting phenomenon: in contrast to the previous case of Wi = 15,
polymer particles congregate at the fast band at the onset of shear banding (at γ ≈ 8), with
a peak concentration of about 20% above the bulk concentration, whereas the polymer
concentration in the slow band decreases by up to 5% (see the inset at γ = 8 in Figure 9b).
These data indicate that the initial stretching and alignment of chains in the fast band
results in an increase in the particle concentration in regions of high shear rate. Evidently,
the extension of the polymer molecules in the fast band drags particles from adjacent
slow bands, lowering the polymer concentration in the slow bands. Meanwhile, there
is again evidence of reverse flow at γ = 8–18, where the local velocity profile assumes
a negative slope. During the RF period, the recoil/retraction of chains within the slow
band (see the discussion below) induces a diffusion of polymer particles from the fast band
(lower viscosity, higher Wi) to the slow band (higher viscosity, lower Wi), normalizing the
concentration distribution within the simulation cell by the time the shear bands dissipate
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as the system approaches steady-state behavior. Microstructural analysis for each band
reveals that the ensemble-averaged Sxy of segments in the slow band is approximately 0.056,
corresponding to Wi ≈ 4, whereas Sxy = 0.02 in the fast band, corresponding to Wi ≈ 750.
The shear bands dissipate after approximately 200 strain units, leading to a uniform linear
velocity profile corresponding to the imposed strain rate of Wi = 150.

To understand the mechanism leading to reverse flow at low strain values, individual
chain conformations are tracked and plotted as fractional extension χ vs. γ in Figure 10
for startup of shear flow of the N-1000 hexadecane solution at Wi = 150. In this figure,
individual molecules are assigned random colors and segregated into slow and fast bands
according to their centers of mass at the initiation of shear banding (γ = 8). The strain
region wherein RF is observed is denoted in this figure by the blue and red vertical lines;
i.e., 8 < γ < 18. The initial behavior of the molecules upon startup of flow is very similar
to that observed in Figure 8c,d; i.e., the molecules in both bands stretch out, with those in
the fast band attaining higher values of χ than those occupying the slow band. However,
in cases where RF occurs, the molecules occupying the slow band experience a recoil after
band formation, which occurs throughout the period wherein RF is observed. At the same
time, molecules occupying the fast band continue to extend. This behavior is entirely
consistent with a similar RF phenomenon observed in DPD simulations of PE melts [11]. At
γ > 18, the molecules in the fast band begin to experience tumbling cycles, whereas those in
the slow band assume pseudosteady-state flow-aligning configurations that persist until an
eventual steady state is attained at γ > 200 where the distinct shear bands have dissipated
and a uniform, linear velocity profile is established throughout the simulation cell.

Figure 10. Temporal evolution after startup of shear flow at Wi = 150 of individual chain relative
extension χ in the fast (a) and slow (b) shear bands for the PE solution N-1000 in hexadecane (see
Figure 9b), where individual chains are denoted by random colors. The panels illustrate the dynamics
of chains with their centers of mass located within layers of thickness y/H = 0.2: (a) the fast band
centered at y/H = 0.8 and (b) the slow band centered at y/H = 0.3. Note that the strain region
where reverse flow was observed is identified by the dashed blue and dotted red vertical lines within
each panel.

Startup of shear flow at Wi = 1500 of the N-1000 hexadecane solution is displayed
similarly to the above cases in Figure 9c. The maximum in the shear stress overshoot occurs
at γ = 9, with the maximum in Np

1 (not shown) occurring at γ = 12. Trends in the velocity
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and concentration profiles are analogous to those at Wi = 150, as discussed above. In
this case, however, the significantly higher applied shear rate generates a rather chaotic
flow situation, where the shear bands are constantly evolving up to γ ≈ 50, with large
concentration fluctuations (of up to 40%) apparent during the steep decline in both shear
stress and first normal stress difference. This appears to be a consequence of the frequent
cyclical retraction/extension excursions of the polymer molecules in the plane of shear,
as primarily located within the fast band, although at this Wi, both bands are located at
γ̇ > τ−1

R , where significant rotational chain dynamics are evident. These observations are
consistent with the values of Sxy as determined from the shear bands, with a value of 0.01
in the fast band, corresponding to Wi ≈ 5000, and 0.025 in the slow band, corresponding
to Wi ≈ 300. At γ > 50, the velocity and concentration profiles gradually merge together
into a homogeneous flow, with the velocity profile assuming a linear form with a slope
proportional to the applied Wi after approximately 200 strain units. No reverse flow is
observed at this Wi, which is likely due to the fact that the slow band in this case has an
effective γ̇ > τ−1

R , and hence no recoil occurs of the polymer molecules that inhabit it.
Taken all together, the above data indicate that when the applied γ̇ < τ−1

R , the transient
shear bands generated at startup tend to consist of a fast band with γ̇ > τ−1

R and a slow
band with γ̇ < τ−1

R . In these cases, a reverse flow might be observed at the initiation of
shear banding. In cases where the applied γ̇� τ−1

R , the fast band exhibits an effective γ̇
much higher than the applied value, and the slow band experiences a lower value, even
though γ̇ > τ−1

R , with no evidence of RF. It must be recognized, however, that the cases
examined above are not deterministic. In an actual experiment, the physical boundaries
can impose a regularity on the system that is not present in a simulation employing
periodic boundary conditions. Because of the stochastic element of the simulations, and
the breadth of the shear-stress plateau, rerunning simulations, even with the same initial
system configuration, is likely to lead to different startup behavior with fast and slow shear
bands arising at different locations within the simulation cell and with different effective
Wi than those described above. Hence, a spectrum of possible shear-banded structures can
exist, and each occasion of startup could result in a different evolution of the velocity and
concentration profiles as the system homes in on its eventual steady state from a highly
localized microstructural environment that is randomly generated upon inception of flow.
An analogous type of behavior was observed recently in startup shear simulations of a
similar PE melt [11], although in that case there was only a finite number (3) of possible
flow state points due to the nonmonotonicity of the shear stress vs. shear rate flow curve.

Examination of the probability distributions of θxy and λsegment are displayed in
Figure 11 for startup of shear flow of the N-1000 hexadecane solution at Wi = 150 at
the applied strain γ = 8, which is approximately the time of initiation of the shear-banded
structure. Here, the segmental stretch is defined as λsegment = |Rseg|/Rsegmax , where |Rseg|
and Rsegmax are the magnitude of the segment end-to-end vector and the maximum length
of a segment, respectively. Panel (a) demonstrates clearly that the initial stage of shear
banding is accompanied by the generation of distinctly different orientation angle distribu-
tions within the fast and slow bands, with peak values of 10◦ in the fast band and 18◦ in the
slow band. Hence, polymer molecules within the fast band are decidedly more oriented
along the flow direction than those within the slow band. Panel (b) indicates that segmental
stretching is also vastly different between the two shear bands, with the fast band being
composed of more highly stretched chains with a distribution peak at 0.60, whereas the
slow band is composed of more coiled chains with a peak at 0.28. These observations offer
a plausible explanation for the development of the shear bands within certain layers of the
simulation cell where localized differences in molecular configuration and entanglement
density (see below) that arise from the stochastic nature of the chain dynamics lead to
temporary band formation at approximately the same value of shear stress but with distinct
Np

1 values, as observed in Figure 8b.
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Figure 11. (a) The probability distribution function of segmental orientation angle, P(θxy), and (b) the
probability distribution function of segmental stretching parameter, P(λsegment), associated with the
segments within the fast (red lines) and slow (blue lines) bands at γ = 8 for the PE solution N-1000 in
hexadecane undergoing startup shear flow at Wi = 150.

The analysis of the polymer network of Figure 12 demonstrates the difference between
the entanglement network within the two distinct flow bands, where the average entanglement
kink number per molecule is plotted over ten equally sized layers of the simulation cell in
the gradient direction at equilibrium and various Wi for both the hexadecane and benzene
solutions. For PE N-1000 in hexadecane, the distribution of Zk at equilibrium (black square
data) is uniform throughout the various layers. At nonzero values of Wi, however, layers
associated with the fast band have significantly fewer entanglement kinks per chain than layers
comprising the slow band. As the applied Wi increases, Zk decreases in both bands, as also
evident from Figure 4 for the bulk average value. Indeed, the spatial regions of the simulation
cell within which the respective bands are generated is likely associated with inhomogeneities
in the entanglement network that begin to develop spontaneously upon inception of flow and
attain a critical decomposition point near the maximum of the Np

1 vs. γ curve.
The time evolution under startup of shear flow for the PE N-1000 in benzene solution at

Wi = 30, 160, and 1350 is displayed in Figure 13a–c, respectively. In general, the exhibition
of shear banding for the N-1000 benzene solution is very similar to that discussed earlier for
the hexadecane solution. Shear bands begin to form near the maximum in the overshoot of
Np

1 (γ ≈ 7, 9, 12) for the three values of Wi noted above, which occurs roughly 3–5 strain
units after the maximum in the overshoot of σ

p
xy (γ ≈ 3, 5, 9). Prior to shear-band formation,

the velocity and polymer concentration profiles are uniform and linear throughout the
simulation cell, and the same observations are evident once the final steady-state condition
is attained after several hundred strain units have transpired. At low Wi (30 and 160), the
slow bands again show a relative increase in polymer concentration, whereas the fast bands
indicate a depletion. This trend reverses itself at high applied Wi, where an accumulation
is observed in the fast bands relative to the slow bands, as also observed in the hexadecane
solution. In general, concentration fluctuations in the benzene solution are much less
intense than in the hexadecane solution, rarely exceeding more than ±3%; this is likely
due to the much faster dynamics of the small molecule benzene solvent, which can remain
more evenly distributed throughout the simulation cell during the course of shear startup.
No reverse flow is observed in the benzene solution startup simulations, which could be
due to the significantly lower number of entanglements in benzene at low Wi, as evident in
Figures 4 and 12. The entanglements thus appear to be the primary driver of the recoil in
the slow bands (see Figure 10b) that produces the RF phenomenon.
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Figure 12. The number of kink entanglements per chain averaged within respective layers of the
simulation cell spanning the y-direction as calculated over the lifetime of the shear bands. Low values
of Zk at each Wi indicate layers associated with the fast band, whereas high values correspond to
layers within the slow band.

Figure 13. Cont.
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Figure 13. The temporal evolution of shear stress vs. strain for PE solution N-1000 in benzene
undergoing startup shear flow at (a) Wi = 30, (b) Wi = 160, and (c) Wi = 1350. The insets display
the scaled instantaneous velocity profiles, V/Vmax, and scaled instantaneous polymer concentration
profiles, cp/c, spanning the scaled simulation cell dimension in the y-direction (y/H) at specific
values of applied strain.

At Wi = 30, Sxy in the fast band averages to 0.04 and 0.053 in the slow band. These
values correspond to effective Wi in the fast and slow bands of approximately 60 and 7,
respectively, similarly to the hexadecane solution. Both values are essentially at or below
the critical value of τ−1

R . At Wi = 160, Sxy = 0.025, 0.050 in the fast and slow bands,
indicating Wi in the fast and slow bands of 500 and 10. At Wi = 1350, Sxy has a fairly
small value (≈ 0.02), which is of the same order of magnitude as the fluctuation in Sxy at
these high values of Wi where the molecules are experiencing frequent molecular tumbling
cycles. Because of this, it is very difficult to estimate the effective Wi of the fast and slow
bands; however, both are clearly at γ̇� τ−1

R .

4. Conclusions

Transient and steady-state dynamic responses of entangled linear polyethylene solutions
subject to the startup of shear flow were investigated via a suite of high-fidelity nonequilibrium
dissipative particle dynamics simulations. The coarse-grained DPD model [42] was developed
to replicate entangled macromolecules consisting of 1000-bead chains corresponding to
monodisperse linear PE liquids of C3000H6002 dissolved in hexadecane and benzene solvents.
Below is a list of key conclusions from this study.

• Both N-1000 PE hexadecane and benzene solutions exhibited a monotonic steady-state
shear stress profile when plotted versus applied strain rate with a very broad stress
plateau at intermediate Wi.

• Under startup of shear flow, both solutions initially exhibited uniform, linear uniform
velocity profiles and homogeneous polymer concentration. However, at an applied
strain approximately that at which a maximum occurred in the overshoot of the first
normal stress difference, transient shear bands developed within the simulation cell
for a period of time ranging up to several hundred strain units. During this strain
period, the velocity profile across the cell in the gradient direction was not uniform,
with two or more local zones of relatively low and high strain rates. At high strains, the
shear bands dissipated and the system attained steady-state behavior, with a uniform,
linear velocity profile across the simulation cell and a homogeneous concentration.
This transient shear banding was observed throughout the applied Wi corresponding
to the shear stress plateau.

• Regardless of whether or not shear bands occurred, the shear stress was homogeneous
throughout the simulation cell, as verified using various sublayers of the simulation
cell in the gradient direction. However, during the lifetime of the shear bands, the
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first normal stress difference was significantly different between the slow and fast
bands, with a higher value in the fast bands where the individual molecules were
more highly extended.

• When the effective γ̇ of the slow band is less than τ−1
R , the polymer concentration

is inhomogeneous with an accumulation of chain particles in the slow band and a
depletion in the fast band. However, when the effective γ̇ of the slow band is larger
than τ−1

R , the opposite trend is observed, with chain particles preferentially migrating
into the fast band and depleting the slow band. These results concerning nonuniform
concentration profiles in shear flow of polymer solutions are consistent with those
of prior experimental work [35,36], although evidence presented herein implies that
shear bands develop solely due to the polymer chain dynamics, rather than necessarily
being prerequisite to a nonuniform concentration profile, as suggested by Burroughs
et al. The nonuniform concentration profiles generated in the present simulation work
appear to be merely the result of different chain dynamics arising in the fast and
slow bands.

• Variations in local orientation and stretching of the tube network segments and the
commensurate destruction of the entanglement network appear to be the primary
driving mechanisms of the transient shear banding. Molecules within the fast and slow
bands experience different topological environments, as induced by the stochastic
nature of the flow. Molecules within the fast bands have higher fractional extension
and experience quasiperiodic extension/retraction cycles, whereas those in the slow
band have lower fractional extension and tend to exhibit a flow-aligning behavior
during the lifetime of the shear bands.

• In some instances, a mild reverse flow (i.e., a negative local velocity) was observed
after the onset of shear banding. This phenomenon resulted from elastic recoil as-
sociated with the molecules within the slow band upon inception of shear banding
as the entanglement network fractured along the interface between the bands. The
entanglement kink number within the slow band remained significantly higher than
the concomitant number in the fast band. Reverse flow was only observed in the
hexadecane solution and not the benzene solution. This might be indicative of the
much lower number of entanglement kinks in the benzene solution at low applied Wi.

• It is highly likely that a multitude of possible shear bands could be observed if further
simulations had been possible, due to the stochastic nature of the DPD algorithm (and
experiments). At the stress plateau, the stress values, although strictly monotonic, are
increasing at such a low slope that the system dynamics could temporarily become
trapped in any number of comparable stress states at any particular time, resulting in
a chaotic instability that gradually evolves into a steady-state uniform velocity profile
at high strain values. This type of instability could conceivably generate a spectrum of
shear bands of differing strain rate within which γ̇ is evolving in time.

• The underlying mechanism of shear band formation in polymer melts and solutions is
essentially the same, being driven by flow-induced disentanglement and localized,
individual chain dynamics that are stochastic by nature. In dense melts, however, the
concentration inhomogeneity associated with shear banding observed in solutions
is effectively negligible. Shear bands develop at shear stress values that possess
a multiplicity of compatible shear rates. Different shear-rate zones correspond to
varying configurational dynamics of the constituent polymer molecules. Because of
the broad spectrum of available molecular configurations of the chains under flow, it is
possible that multiple configurationally dynamic states can be associated with a single
value of imposed shear stress. Hence, the primary physical mechanism underlying
shear banding in both polymer solutions and melts is evidently the same.

Overall, step-strain shear flow simulations revealed the development of spatial in-
homogeneities and dynamic instabilities in entangled polymeric solutions. Specifically,
it was shown that flow perturbations arose soon after the occurrence of a large normal
stress overshoot and that banded flow structures stemmed from inhomogeneous chain
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segmental orientation and entanglement density in the flow gradient direction. Hence,
the mechanism for incipient shear banding in entangled polymeric solutions is identical
to that of entangled polymeric melts. This universal mechanism negates the necessity
of nonuniform polymer concentration in the flow gradient direction for the formation of
incipient banded flow structure in entangled polymeric solutions.

The impact of understanding the mechanism of shear banding in polymer solutions
(discussed herein) and melts (investigated in a prior simulation study [11]) could be
profound and help to explain any number of previously poorly understood phenomena
observed in viscoelastic fluid mechanics, such as extrudate distortion in polymer melt
extrusion [1,2], which have been traditionally focused on the failure of the no-slip boundary
condition assumed in continuum mechanics theory. Indeed, as Denn has suggested [2],
“Shear bands (discontinuities in the velocity gradient) will exist in the flow field above the
transition, and these could be indistinguishable from slip in a macroscopic experiment;
indeed, shear banding is a possible mechanism for the formation of a lubricated low-
viscosity region adjacent to the wall”. Given that extrudate distortion is observed in the
same shear stress region as shear banding, it is a remarkably insightful and probable
suggestion to consider such flow instabilities derived from shear banding as a contributor
to extrudate distortion. In light of results from recent experiments and simulation studies,
it might be worthwhile to revisit some of these prior investigations into flow instabilities
from a more fully developed perspective.
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