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Abstract: Properties of reinforcement fabrics, such as permeability, are typically characterized in a
volume-averaging sense, whereas the fabric microstructure may vary spatially. This makes designing
an effective resin infusion strategy for defect-free composite fabrication challenging. Our work
presents a concurrent method for simultaneously measuring the local and global in-plane permeability
and offers a handy technique for evaluating spatial variability. This experimental setup was similar
to that of unidirectional in-plane permeability tests. The fabric, however, should be cut and tested
along the angle bisector of warp and weft directions. The evolution of resin flow fronts was analyzed
in real-time using in-house code through live video monitoring. The local and global in-plane
permeability components were then obtained by applying Darcy’s law regionally and globally. The
results are in good agreement with those obtained by radial permeability experiments. Statistical
analysis of local permeability reveals that the microstructure variability follows a normal distribution.
A complete description of fabric microstructure provided by X-ray microcomputed tomography
suggests that local permeability and microstructure variation are closely related, confirming the
efficacy of the newly proposed method. This work enables the estimation of fabric structure variability
and local and global in-plane permeability in a single test without resorting to expensive volume
imaging techniques.

Keywords: reinforcement fabric; local in-plane permeability; spatial variability; real-time monitoring;
concurrent measurement

1. Introduction

Engineering textiles are widely used in various industrial sectors due to their unique
properties, such as high strength, durability, and resistance to chemical substances. Among
its many applications is that of a reinforcement fabric in composite materials [1]. The
fabrication of composite parts can be achieved through various methods, including liquid
composite molding (LCM) [2,3] and pre-impregnated prepregs [4]. The former is a family
of advanced composite manufacturing processes that involve the infusion of liquid resin
into a preformed fibrous material such as carbon, glass, or natural fabrics, resulting in the
formation of a composite structure. On the other hand, in the pre-impregnation method, the
fibrous material is pre-impregnated with resin, which is then cured to form the composite
structure. Regardless of the method used, resin flow in the reinforcement fabrics is an
essential part of the composite manufacturing process to achieve full impregnation. As
a result, the permeability of reinforcement fabrics, which is defined by Darcy’s law [5] to
reflect the capability of porous material to allow fluid pass through, has a direct impact on
the design of the manufacturing process. This is critical for advancing the understanding
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of manufacturing defect formation mechanism and improving the design and fabrication
of high-performance composites.

The measurement of permeability, especially the in-plane components, has received
substantial attention in the past 30 years [6–9]. Despite the straightforward definition,
characterization of in-plane permeability has been challenging because the microstructures
of textiles can be altered during the woven [10], preforming [11], or infusion processes [12].
This results in poor reproducibility of permeability. This was evidenced by the first interna-
tional benchmark exercise [6], which showed significant inconsistency among participants
regarding the measured in-plane permeability. The error was up to an order of magnitude.
Such inconsistency highlights the need for standardized measurement techniques to ensure
that in-plane permeability can be measured accurately.

In response to this need, guidelines were specified in the second benchmark exercise [7]
for the unidirectional test method tests (also known as the channel flow experiment [13]).
The results showed that with the guidelines in place, good consistency (standard deviation
of 20%) was achieved among the participants. The standard deviation was further reduced
when the Least Square Fit (LSF) method proposed by Ferland et al. [14] was applied for
data analysis. Additionally, as presented by May et al. [15], the radial injection method
was also shown to have good reproducibility when operation guideline was specified. It
allows for two principal components of in-plane permeability and the orientation of the
flow ellipse to be characterized simultaneously [16]. It is evident from these findings that
standardizing the measurement techniques for permeability characterization can lead to
better reproducibility and accuracy.

Spatial variability of permeability caused by the variation in material microstructure is,
however, rarely addressed [17]. Instead, conventional test methods utilize only a constant,
namely the global permeability, to represent the averaging ability of a fabric to allow
liquid to pass through. Spatial variation can, however, lead to a non-uniform flow of
resin, which is a major contributing factor to the formation of voids due to gas (either the
residual air or resin vapor) entrapment [18]. Various auxiliary equipment, such as linear
direct current sensing system [19,20], setups that control the infusion [18,21–23], or post-
filling [24] processes, have been developed to improve flow uniformity by controlling resin
flow actively. Yet, there is still room for improvement in the effectiveness and practicality
of these devices in actual production, particularly for large and complex structures.

In fact, depending on the spatial variability of the fabrics, a process design can be
optimized by simply adding injection ports or vents within the mold (“passive” control [25])
to prevent incomplete saturation or resin excess. Intuitively, two methods can be adopted
to characterize the spatial variability of textiles. One is through experiments such as
multiple sampling and permeability testing with the abovementioned methods. This,
however, can be labor-intensive. Furthermore, the large sample area may result in an
averaging effect that obscures the true variability of a fabric. The other approach uses
volume imaging techniques, such as X-ray micro-computed tomography (Micro CT), to
observe the microstructure [26]. Nevertheless, the field of imaging is limited (typically on
the order of several millimeters [27]) and may not be representative either. On the other
hand, multiple scans increase not only the time required but also the cost.

Hence, this study aims to develop a quantitative method to characterize the spatial
variability of permeability, which reflects the spatial variations in fabric structure. The
method can characterize the local and global in-plane permeability in a single test. Thus,
spatial variability can be obtained indirectly without resorting to expensive volume imaging
techniques. It is verified by microscale observations of the fabric structure using the non-
destructive X-ray computed tomography technique, which allows the fabric structure to
be analyzed directly. Moreover, by using a special method of sample preparation, the
two-principle in-plane permeability components are obtained simultaneously.

The remainder of this paper is organized as follows: The theory of the proposed
method is presented in Section 2, where the underlying principles and assumptions are
explained in detail. Section 3 describes the materials and methods used in this experimental
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investigation. Finally, in Section 4, the obtained results are presented and discussed. We
validate the results by comparing them with experimental data obtained from Micro CT.
This method provides an easily implemented method to characterize the spatial variability
of in-plane permeability. This knowledge can be used to guide the design of the resin
infusion strategy to ensure proper flow and wetting of the reinforcement fabrics, ultimately
leading to improved quality and performance.

2. Theory

In-plane permeability K (m2) characterizes the resistance of a fibrous preform to
a liquid flow in the in-plane direction. It can be experimentally obtained according to
one-dimensional Darcy’s law [5], which reads

v = − K
µφ
· ∇p (1)

where v is the velocity (m/s) of the flow front; p is the pressure drop (Pa) from the injection
port to the flow front, and ∇p represents the pressure gradient (Pa/m). µ is the fluid
viscosity (Pa·s), and φ is the porosity of the preform.

Assuming the test liquid for in-plane permeability is incompressible and the porosity
behind the flow front is constant and fully saturated, the continuity equation can be
expressed as follows:

∇ · v = 0 (2)

For 2D flow, it is equivalent to

∂vx

∂x
+

∂vy

∂y
= 0 (3)

where vx and vy are the velocity components in principle directions of x − y plane. In
the case of one-dimensional scenarios, the second term on the left-hand side of the
equation vanishes.

2.1. Global and Local Permeability

The unidirectional permeability test typically measures only the global permeability
along the test direction, which represents the overall ability of a porous material to permit
liquid to flow through it. It describes the bulk permeability of the material and is averaged
over the sample area. In this work, we propose the concept of local in-plane permeability,
which refers to the permeability of a small, localized region within a larger porous material.
In the case of textile fabrics, local permeability would refer to the permeability of a small
section of the fabric rather than the overall (global) permeability of the entire textile sample.
Thus, local permeability can vary due to spatial variations in the pore structure and
geometry at a small scale.

In this study, the conventional unidirectional test method was used for global in-plane
permeability characterization. The pressure drop between the inlet and the flow front
remains constant throughout this experiment. The global in-plane permeability, Kg, was
calculated from the measured flow front position x f (m) at time t (second) as follows:

Kg =
µφ

2p

x2
f

t
(4)

For the unsaturated unidirectional test, 0 < x f < L. L is the length of the sample. The
position of injection inlet xinlet = 0. It is necessary to record at least three pairs of (t, x f )
during the entire infusion process to enhance permeability measurement reliability. Then
Lest Square Fitting was performed to estimate the value of x2

f /t and calculate the global
in-plane permeability.
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The calculation of local permeability requires the knowledge of the transient velocity
of the flow front, which can be expressed as the differential of flow front position with
respect to time:

v =
dx f

dt
(5)

Substituting Equation (3) into Equation (1) and then integrating over a time interval
[t1, t2], the local in-plane permeability at the region can be obtained as follows:

Kl =
µφ

2p

x2
f 2 − x2

f 1

t2 − t1
(6)

where x1 and x2 are the positions (m) of flow front at time t1 and t2. The spatial distribution
of the permeability caused by the fabric geometry complexity can then be quantified by the
variability of local in-plane permeability values.

2.2. Unidirectional Flow of the Principal Directions

As illustrated in Figure 1, a unidirectional in-plane permeability test can be conducted
along one of the principal directions of the textile (indicated by I and II) or any direction
at an angle θ to the x-axis (indicated by III). The in-plane permeability measured from
the unidirectional test with a sample taken at θ is denoted by Kθ (also known as effective
permeability [28]). Specifically, we denote K0 and K90 with Kx and Ky to indicate that
they are the principal permeability components. Bear [29] shows that the directional
permeability Kθ varies with respect to the angle θ for anisotropic porous media, and its
square root conforms to the shape of an ellipse. This is known as the permeability ellipse
and is illustrated in blue in Figure 1. Moreover, Kx and Ky represent the square of the
semi-major and semi-minor axes of the permeability ellipse.
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Figure 1. Possible sampling methods for measuring in-plane permeability by the unidirectional
method and the permeability ellipse. The x and y directions coincide with the principal directions of
the textile.

For the test with the sample along the principal direction (x or y), the pressure gradient
follows the direction of flow, and the flow front is perpendicular to the test direction (see
Figure 2a, flow front angle α = 90 ◦). However, there may appear to be an inconsistency
between the direction of transient pressure and velocity gradients for anisotropic materials
when θ 6= 0◦ or 90◦. In this case, the resin flow front forms a constant flow front angle
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α < 90◦ with the x′ axis as the flow stabilizes. This is depicted in Figure 2b. Both flow
behaviors can be expressed in a general form using the following equations:

[
vx′

vy′

]
= − 1

µ

[
Kx′x′ Kx′y′

Kx′y′ Ky′y′

][ ∂p
∂x′
∂p
∂y′

]
(7)
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For sampling along θ = 0 or 90◦, there is no flow in the y′ direction, namely,

∂p
∂y′

= 0

and
vy′ = 0

Thus, Equation (5) is reduced to the one-dimensional Darcy’s law. In this case, the
principal permeability (Kx or Ky) can be obtained according to Equation (2). In case of
θ 6= 0 or 90◦, all four components of the two-dimensional permeability tensor must be
known to provide a thorough description of the flow front. The global directional in-plane
permeability Kθ , on the other hand, provides only an approximation of the flow behavior
and fails to consider the potential inclination of the flow front.

The principal permeability components can be derived as follows for a test with
α 6= 90◦, as per Di Fratta et al. [28]:

αθ = tan−1
(

sin2θ + βcos2θ
(1 − β)sinθcosθ

)
Kx =

Kθ(sin2θ + βcos2θ)
β

Ky = Kθ (sin2θ + βcos2θ )

(8)

where the in-plane permeability anisotropy β is defined as

β =
Ky

Kx
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Therefore, if the global directional permeability Kθ and two of (αθ , θ, β) are known, the
principal permeability components Kx and Ky can be obtained. In Section 3, we describe an
improved experimental method in which Kθ , α, and θ can be obtained concurrently and the
two principal in-plane permeability components can be derived according to Equation (6).

3. Materials and Methods
3.1. Materials

Four glass-fiber fabrics in different woven patterns were investigated for the develop-
ment and validation of the newly proposed concurrent unsaturated in-plane permeability
characterization method. The woven structure of each fabric is shown in Figure 3. The
fabrics were referred to as satin, twill, biaxial EKB424, and biaxial EKB450 in the rest of this
paper. The areal weights of these fabrics are 220 g/m2, 327 g/m2, 424 g/m2, and 450 g/m2,
respectively. Vinyl ester resin, Atlac® 430 LV GT 250, provided by Jinling AOC Resins Co.,
Ltd. (Nanjing, China), was used as the test liquid. The viscosity of the resin was charac-
terized with DV2T touch screen viscometer from AMETEK Brookfield (Middleboro, MA,
USA) before each infusion experiment. Note that the viscosity of the resin is considered
constant during the test since it was uncatalyzed. The resin was degassed in a vacuum
chamber for 10 min to get rid of air bubbles.
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3.2. Real-Time Flow Front Tracking and Image Processing

The newly proposed concurrent unsaturated in-plane permeability test method, based
on unidirectional injection, shares a similar experimental setup with the conventional
unidirectional in-plane permeability test, as shown in Figure 4. The flow experiment
set-up consists of a flexible vacuum bag as the top mold and a rigid lower mold. Lines
are drawn every 2 cm on the lower mold for calibration of flow front positions. A fabric
was cut into 10 cm × 40 cm rectangular plies and then assembled in the same direction
as a 2-ply preform for testing. The preform was sealed between the lower mold and the
vacuum bag perpendicularly to the vertical lines. The edges parallel to the flow direction
were tightly sealed using sealant tape to eliminate edge effects. Attention should be
paid to avoiding wrinkles or bridging on the vacuum bag side so that undesirable flow
channels can be prevented. A spiral tube was used as a line injection port (inlet) and a
stack of distribution medium was placed before the preform to create a fully developed
one-dimensional flow. The outlet and the other end of the preform was connected by a
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breather to ensure the stability of the infusion pressure. The resin, driven by a constant
vacuum pressure (9.2 × 104 Pa maintained by 2XZ-2 vacuum pump, Zhejiang Taizhou
Qiujing vacuum pump Co., Ltd., Taizhou, China), was infused into the mold cavity from
left to right side after leakage checking.
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A noteworthy aspect of this experimental setup is the integration of a novel flow front
tracking velocimetry system, comprising an image acquisition device and an in-house
real-time image processing code. The main limitation of optical imaging is the appropriate
time resolution of the imaging device. This is not an issue in our case due to the slow
flow front velocity typically observed in liquid composite molding, which is in the order
of millimeters per minute. Hence, a 60 FPS (frames per second) webcam was utilized.
This relieves, on the other hand, the bottleneck issues commonly encountered with optical
imaging devices, that is, the high data rates that need to be streamed and stored in real-time.

The code was implemented in MATLAB with the MATLAB Image Processing Toolbox
as a basis. It allows for tracking and analysis of the flow in time and space. Figure 4
illustrates how a local coordinate x′ − y′ was defined to allow the description of the local
in-plane permeability to be more straightforward in the code implementation. The test
device was placed at the center of the camera’s field of view (Figure 5a). RGB images
were captured over time intervals of ∆t and converted to grayscale for further processing.
Only the region of preform was retained (see Figure 5c). It is important to ensure that the
rectangular preform appears in its correct proportion and shape, free from any distortion
caused by the camera angle. Therefore, perspective correction was performed prior to
cropping. By thresholding, the saturated and unwetted zones were identified to locate
the flow front. Figure 5d illustrates that denoise operations are essential to prevent pixel
misclassification. The median filter provides satisfactory denoising results, as can be seen in
Figure 5e. Afterward, each column of pixels along the test direction (referred to as Region
of Interest or ROI hereafter) is isolated. The actual pixel size was calibrated according to
the black parallel lines on the lower mold. In this way, the flow front z f f (t) position for
each ROI can be accurately determined.

The principal axes of a permeability tensor usually coincide with the warp and weft
directions of common textile reinforcements, thanks to their orthogonal weave structure.
Thus, the angle θ defined in Figure 1 can be predetermined for those textiles by cutting the
specimen at a given angle with respect to the warp direction. In this work, fabrics were
cut and tested along the angle bisector of warp and weft directions (θ = 45◦, see Figure 4).
Equation (6) reduces to the following equations:

tan α45◦ =
1 + β
1 − β

Kx =
(1 + β)K45

◦

2β

Ky =
(1 + β)K45

◦

2

(9)
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As the flow front orientation angle α45◦ and the evolution of flow front can be deter-
mined via the flow front tracking velocimetry system, the two in-plane principal permeabil-
ity components (Kx and Ky) and the local permeability Kl can be determined simultaneously
by a single test. The results were compared with those obtained by the radial injection
method for validation.
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4. Results and Discussions
4.1. Flow Front Angle

Figure 6 depicts the evolution of the flow front for different textiles using the novel
concurrent method. As illustrated in Figure 2b, let α denote the angle (≤90◦) between
the flow front profile and the flow direction, that is, the flow front angle. The flow front
profiles differ significantly in terms of α for the four textiles, indicating the dependence on
the textile structure. For instance, the flow front of satin fabric is almost perpendicular to
the flow direction ( α→ 90◦ ), whereas biaxial textile EKB424 exhibits a noticeable angle
change in the flow front with respect to the injection direction ( α� 90◦). The flow front
angles of the remaining two textiles lie between those of satin and biaxial EKB424 fabrics;
however, they are also different from each other. This demonstrates experimentally that a
unidirectional injection performed on a sample that deviates from its principal direction of
the permeability tensor results in an inclined flow front.

The inset in Figure 7 shows the resin flow of satin fabric at 572 s. The pixels on the flow
front are identified via the newly developed flow front tracking velocimetry system. The
coordinates of these pixels are located accurately, with the black lines serving as calibration
positions and plotted in Figure 7 as scatters. By using linear regression to approximate the
flow front profile, the flow front angle α obtained at this moment is 85.13◦. Tests on fabrics
of the four different structures showed that the newly designed system can reliably obtain
the position of each pixel on the flow front, thereby obtaining the corresponding flow front
angle α in real-time.



Polymers 2023, 15, 3233 9 of 18Polymers 2023, 15, x 9 of 19 
 

 

  
(a) Satin fabric (b) Twill fabric 

 
(c) EKB424 (d) EKB450 

Figure 6. Experimental flow front profiles during unidirectional injection for different textiles. 

The inset in Figure 7 shows the resin flow of satin fabric at 572 s. The pixels on the 
flow front are identified via the newly developed flow front tracking velocimetry system. 
The coordinates of these pixels are located accurately, with the black lines serving as cali-
bration positions and plotted in Figure 7 as scatters. By using linear regression to approx-
imate the flow front profile, the flow front angle 𝛼 obtained at this moment is 85.13°. Tests 
on fabrics of the four different structures showed that the newly designed system can re-
liably obtain the position of each pixel on the flow front, thereby obtaining the correspond-
ing flow front angle 𝛼 in real-time. 

 
Figure 7. Flow front position and angle determination of satin fabric at 572 s. 

Figure 6. Experimental flow front profiles during unidirectional injection for different textiles.

Polymers 2023, 15, x 9 of 19 
 

 

  
(a) Satin fabric (b) Twill fabric 

 
(c) EKB424 (d) EKB450 

Figure 6. Experimental flow front profiles during unidirectional injection for different textiles. 

The inset in Figure 7 shows the resin flow of satin fabric at 572 s. The pixels on the 
flow front are identified via the newly developed flow front tracking velocimetry system. 
The coordinates of these pixels are located accurately, with the black lines serving as cali-
bration positions and plotted in Figure 7 as scatters. By using linear regression to approx-
imate the flow front profile, the flow front angle 𝛼 obtained at this moment is 85.13°. Tests 
on fabrics of the four different structures showed that the newly designed system can re-
liably obtain the position of each pixel on the flow front, thereby obtaining the correspond-
ing flow front angle 𝛼 in real-time. 

 
Figure 7. Flow front position and angle determination of satin fabric at 572 s. Figure 7. Flow front position and angle determination of satin fabric at 572 s.

A time interval of ∆t = 1 s is selected to capture the flow front, allowing for tracking
the evolution of the flow front angle over infusion time. It strikes a balance between
accurately capturing the dynamics of the flow front in the measurements and reducing
the size of the data stream for real-time processing. The result is depicted in Figure 8. For
all the textiles, the flow front angle undergoes an initial decrease, followed by a gradual
stabilization with time. This decrease can be attributed to the dynamic nature of the fluid
flow during the initial stage. The large pressure gradient at the initial stage results in high
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liquid flow velocity, induces unsteady flow behavior, and contributes to the significant
changes observed in the flow front angle. However, as the infusion progresses, the flow
gradually slows down, resulting in a more stable flow regime. This decrease in flow velocity
contributes to the stabilization of the flow front angle. As the fluid reaches a quasi-steady
state, the flow front angle tends to exhibit less variation and becomes more consistent
over time.
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Figure 8. Flow front angle α as a function of infusion time for different textiles. The preforms were
cut along the bisector of warp and weft direction.

It should be noted that despite the overall stability observed in the flow front angle
during the late stages of infusion, small fluctuations may still be present. It can be at-
tributed to various factors, among which is the spatial variability of textile microstructure
resulting from the weaving and preforming processes. This intricate nature introduces
local permeability variations. It may lead to numerous manufacturing defects if an in-
fusion scheme is designed with global permeability [30]. In addition, the gap between
tows in the EKB424 fabric creates fluid preferential flow channels, causing a substantial
unsaturated zone behind the flow front compared to other fabrics. In this regard, digital
image processing techniques have become more challenging, primarily due to the failure of
thresholding segmentation techniques to correctly identify the flow fronts. A combination
of image morphology operations, such as denoising, erosion, and dilation, is essential to
address these challenges effectively. The flow front angles of satin, twill, EKB424, and
EKB450 fabrics are approximately 86◦, 78◦, 58◦, and 74◦, respectively, after stabilization.
As discussed in the next section, the difference in flow front angle mainly results from the
permeability anisotropy of the fabrics.

4.2. Local in-Plane Permeability

The local in-plane permeability was determined using Equation (4) in accordance
with the methodology described. In the case of satin fabric, a total of 69,168 values was
yielded via a test conducted with an imaging time interval of ∆t = 8 s. Among these
values, 375 were discarded due to the interference of the inclined flow front with the outlet
(x′ = 400 mm, see Figure 4 for the definition of local coordinate x′ − y′), which results
in a change in the boundary conditions. Figure 9 depicts the measured local in-plane
permeability of satin fabric along x′ axis at y′ = 10, 30, 50, 70, and 90 mm, respectively.
Noticeable variations were observed, indicating the inherent structural inhomogeneity
and spatial variability of the fabric. This underscores the importance of considering the
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localized characteristics of permeability for robust infusion strategy design. On the other
hand, the result demonstrates distinct stages. During the initial stage (x′ < 100 mm), the
test liquid was driven by a large pressure gradient. The liquid flow rate is notably high.
Hence, the acquired data with an imaging time interval of 8 s are limited in capturing
the full extent of flow fluctuations. As the test progresses and enters a more stable phase
(100 < x′ < 175 mm), the results demonstrate a gradual convergence toward a stable stage
(x′ > 175 mm). During this stage, the fluctuations in the local in-plane permeability tend to
cluster around a consistent mean value.
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Figure 10a depicts the frequency distribution of the local directional in-plane perme-
ability values shown in Figure 9a on a histogram. The abscissa represents permeability
values, while the ordinate represents the percentage of samples. The local in-plane perme-
ability ranges between 1.0× 10−11 and 4.0× 10−11 m2. The mean value is 2.49× 10−11 m2,
which aligns with the 50th quantile. Toward the edges of the histogram, the frequency of
samples decreases. The standard deviation (σ) of the dataset is 4.52× 10−12 m2. Despite the
right-skewness of the data (slightly higher concentrations in the right half of the histogram),
they resemble closely a normal distribution pattern, as shown by the probability curve in
Figure 10. The vertical blue lines represent the 5th, 25th, 50th, 75th, and 95th percentile
values. As they provide additional insights into the data, a comprehensive understanding
of the distribution of permeability and, consequently, the spatial variability of fabric mi-
crostructure are made possible. A similar pattern is also observed for the twill fabric and the
EKB450 biaxial fabric, as depicted in Figure 10b,d, respectively. However, for the EKB424
biaxial fabric, a distinct half-normal distribution is evident, as illustrated in Figure 10c. The
data, in this case, are concentrated toward smaller values, with a tail extending toward
larger values. This observation could be attributed to the ambiguous boundary between
the saturated and dry fabrics for EKB424 (see Figure 11), resulting from partial saturation
behind the flow front. This partial saturation zone is also visually evident in Figure 6c.
In contrast, for the other fabrics, a clear flow front can be easily segmented using image
processing techniques, thereby avoiding such disturbances.
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Note that despite obtaining all the data presented in Figures 9 and 10 using an imaging
time interval of ∆t = 8 s, a sensitivity analysis indicates that varying the time interval



Polymers 2023, 15, 3233 13 of 18

over a relatively wide range (from 1 s to 31 s) leads to fluctuations in the average local
directional in-plane permeability (K45) of less than 1%. This suggests that this method is
not significantly influenced by the time scale.

4.3. Global in-Plane Permeability

The global in-plane permeability of the four fabrics measured by the newly proposed
concurrent method was compared with those measured by a commonly used radial injec-
tion method [15]. A sample of each fabric was cut into squares of 30 cm × 30 cm for the
radial tests. As an injection port, a circular hole with a diameter of 23.9 mm was cut out in
the center. The test liquid, vinyl ester resin, is driven by vacuum pressure (9.2× 104 Pa).
Figure A1 shows typical flow front shapes for the textiles (see Appendix A). The princi-
pal in-plane permeability Kx, Ky, and permeability anisotropy β of each textile obtained
via both methods were compared, as shown in Figure 12. For satin and twill fabric, the
global in-plane permeability and permeability anisotropy measured by the two methods
are very close. As compared to radial injection, the newly developed method based on
unidirectional injection requires fewer materials and simpler equipment. With the novel
flow front tracking velocimetry system, it allows for high-throughput testing of in-plane
permeability, which reflects the meso- and microstructure fluctuations of reinforcement
fabrics. The test results of the latter two fabrics, however, deviated significantly from the
baseline. It is primarily due to the partial impregnation behind the flow front, which makes
it difficult to determine the location of the flow front. Therefore, improving the accuracy
and reliability of the flow front-tracking velocimetry system is critical for the successful
implementation of the proposed concurrent method.
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4.4. Variability by Mesostructural Analysis

The mesostructure of satin fabric was also analyzed with a volume imaging technique
for validation purposes. Each subplot of Figure 13 represents a step of the analysis proce-
dure. Figure 13a shows the volume image of the satin fabric acquired via micro-computed
tomography (pixel size = 15.3 µm), providing a visualization of its mesostructure. The vol-
ume image shows a complex weave structure, with different yarns and interlacing patterns
contributing to its spatial variability. In Figure 13b, the mesopore space (the gap between
fiber tows) was segmented using thresholding. Note that the micropores inside fiber tows
were neglected since they did not have a significant effect on the seepage property of the
fabric. To analyze the geometric characteristics of the porous structure, a Pore Network
Model (PNM) was reconstructed. The mesopore space was first split into individual sub-
domains with the SubNetwork of the Oversegmented Watershed (SNOW) algorithm [31].
These subdomains are shown in Figure 13c with different colors. The subdomains were
modeled as spheres or cylinders in the PNM model so that the material can be represented
as a network of interconnected pores, as shown in Figure 13d. It provides a simplified
representation of the actual mesostructure.
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network model.

As a simplified representation of actual fabrics, the PNM provides valuable insight
into mesoscopic geometric characteristics. As illustrated in Figure 14, the spatial variability
of the mesostructure was analyzed via the distribution of pore and throat size. The distri-
bution of pore diameter, throat diameter, and throat length closely resemble the normal
distribution. This agrees with the conclusion drawn from the stochastic analysis of local
in-plane permeability. However, it should be noted that the tail of the distribution of throat
diameter is truncated toward lower values. A similar phenomenon is observed for throat
length, with the throat length exhibiting left-skewness and throat diameter right-skewness.
This indicates a right-skewed distribution of throat flow capacity, considering that the fluid
flow capacity through a porous medium is directly proportional to the square of throat
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diameter and inversely proportional to its length, as described by the Hagen–Poiseuille
equation. The tendency for a local area to have a high flow capacity aligns with the dis-
tribution of local in-plane permeability, which shows a higher concentration of values
on the side of high permeability (see Figure 10). This highlights the strong influence of
geometrical variations on the fluid transport properties of textiles. The structure variability
of fabrics indicates that the material possesses heterogeneous properties, which may cause
non-uniform flow and lead to potential defects at the fabrication stage of polymer com-
posites. Thus, characterizing fabric structure spatial variability is crucial to gain a better
understanding of its fluid transport properties. Such insights can aid in designing optimal
and efficient resin infusion strategies.
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5. Conclusions

A comprehensive understanding of the permeability variability of reinforced textiles
plays a crucial role in enhancing the efficiency and reliability of manufacturing processes for
polymer composites. The proposed concurrent in-plane permeability test method addresses
the challenges associated with textile structural distortions and dual scale flow, offering
an efficient and cost-effective approach to simultaneously estimate structural variability
and local and global in-plane permeability via a single test using unidirectional injection.
The result can be leveraged to optimize resin infusion strategies by considering the spatial
variability and uncertainty in numerical simulations rather than regarding permeability
as a constant. In this way, the fault tolerance of the designed infusion strategy can be
enhanced, contributing to defect-free manufacturing processes in real-life situations.

The following main observations are made: (1) The integration of real-time digital im-
age processing substantially augments the capacity for data acquisition and processing and
facilitates quantitative investigation of permeability variability through a high-throughput
manner. By circumventing the flow perturbation induced by embedded sensors and miti-
gating the limitations associated with single-point monitoring, this non-intrusive approach
enables a comprehensive assessment of local permeability variations. It permits the estab-
lishment of process boundaries within which the fabrication process can operate effectively
and reliably; (2) Coupled with theoretical derivations, the proposed method enables the
determination of the principal in-plane permeability components through a single experi-
ment, while traditional unidirectional methods typically necessitate three unidirectional
injection tests along different directions; (3) This method has the advantage of reducing
the cost and time associated with volume imaging, such as magnetic resonance imaging or
micro-computed tomography. Moreover, the proposed method provides valuable infor-
mation on long-range textile structure variations, while the volume imaging technique is
usually limited to the representative elementary volume level.
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The present results work as a first step toward a high-throughput, cost-effective
characterization methodology of in-plane permeability and spatial variability of textiles.
Future work involves further enhancing the stability and reliability of the image processing
system and exploring its applicability to various textile structures. Moreover, endeavors
are being made in our team to establish a direct relationship between the local structure of
fabrics and the spatial variations in permeability, which will be presented in separate works.
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Appendix A

This experimental setup for determining unsaturated in-plane permeability based on
radial flow involves compressing a stack of textile layers between two rigid molds while
maintaining a constant gap height between them. Afterward, a test fluid is injected through
a central circular injection hole punched into the textile material (23.9 mm in diameter). In
this manner, a two-dimensional flow pattern is generated. The flow front is tracked during
this experiment. The test fluid is drawn into the mold through the injection hole by vacuum.
Theoretically, the flow front should resemble an ellipse. As shown in Figure A1, there are,
however, deviations from the ideal ellipse in practice. The flow front exhibits fluctuations
induced by inherent variability present within the sample and its microstructure. These
fluctuations are influenced by factors such as manufacturing or preforming. In addition,
the weaving pattern shows a significant impact on textile transport behavior. The flow front
of the satin fabric closely resembles a circle, indicating its isotropic nature. The remaining
three textiles, however, exhibit elliptical flow fronts with varying circularity, indicating
different levels of in-plane permeability anisotropy.
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Figure A1. The filling state of textiles measured by radial injection. The distance between grid lines 
is 2 cm. Subplots (a–d) provide a qualitative comparison of flow front shapes for the textiles. The 
shape depends significantly on the woven architecture and always deviates from an idealized ellipse 
because of the inhomogeneous meso- and microstructure of actual textiles. 
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