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Abstract: The structural and optical characterizations of nanocomposite films of polymethyl methacry-
late (PMMA) and SiO2/TiO2 composites prepared via the spin-coating technique were investigated
using different SiO2:TiO2 ratios. The SiO2/TiO2 nanocomposites were synthesized using the sono-
chemical process with Si:Ti precursor ratios of 1:0.1, 1:0.5, 1:1, 1:2, 1:4, and 0:1. All characterizations of
ultrafine SiO2/TiO2 particles were loaded at 1 wt.% in a PMMA matrix for the fabrication of transpar-
ent SiO2/TiO2/PMMA composite films. The phase structure and morphology of SiO2/TiO2/PMMA
composite films were monitored using X-ray diffraction, optical microscopy, and field-emission
scanning electron microscopy. A surface roughness analysis of SiO2/TiO2/PMMA nanocompos-
ite films was conducted using atomic force microscopy. For optical characterization, transmission
properties with different incident angles of SiO2/TiO2/PMMA composite films were analyzed with
UV-vis spectrophotometry. The water contact angles of SiO2/TiO2/PMMA composite films were
analyzed to identify hydrophilic properties on film surfaces. Photocatalytic reactions in SiO2TiO2

composite films under UV irradiation were evaluated using rhodamine B dye degradation. The
optimal condition of SiO2/TiO2/PMMA nanocomposite films was obtained at a 1:1 SiO2:TiO2 ratio
in self-cleaning applications, resulting from good particle dispersion and the presence of the TiO2

phase in the composite.

Keywords: nanocomposite; polymethyl methacrylate; SiO2/TiO2 composite; sonochemical

1. Introduction

Environmental challenges such as global warming, air pollution, and climate change
are principal problems of global concern. Self-cleaning surfaces have shown great promise
in recent years for being able to clean dust, organic contamination, and industrial pollutants
on building surfaces, solar modules, and windshields [1]. The self-cleaning capacity of
material surfaces contributes to environmental friendliness and cost reductions. Therefore,
the improvement of new functional materials is of interest for research on self-cleaning
applications using hydrophobic and hydrophilic mechanisms for contamination removal
assisted by the action of water on the surfaces. For a hydrophilic surface, water droplets
can spread over the entire surface to remove the contaminants, while a rough hierarchical
structure with low surface energy has the capacity to induce the rolling down of water
droplets and clean contaminants on its surface. Thus, the advantages of self-cleaning
spreading water droplets on hydrophilic surfaces are useful, and these are appropriate for
film coating on flat surfaces in the form of glazing decorations and sensors, including solar
panels [2].

Polymers 2023, 15, 3162. https://doi.org/10.3390/polym15153162 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym15153162
https://doi.org/10.3390/polym15153162
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0001-8345-374X
https://doi.org/10.3390/polym15153162
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym15153162?type=check_update&version=2


Polymers 2023, 15, 3162 2 of 13

Among the potential materials with self-cleaning properties, silicon dioxide (SiO2)
and titanium dioxide (TiO2) are remarkable metal oxide materials being considered in this
specific field. SiO2, or silica material, is normally utilized in hydrophobic self-cleaning
applications due to its exceptionally advantageous properties, including coverage of large
surface areas, low-cost chemical inertness, high thermal resistance, and robust mechan-
ical strength [3]. Moreover, SiO2 material can be modified via incorporation with other
nanomaterials and into polymer matrices to produce nanocomposite films. Improvements
in self-cleaning properties utilizing hierarchical micro/nanostructures’ wettability could
be achieved with the incorporation of a silicon dioxide and polymer matrix, such as poly-
dimethylsiloxane (PDMS), via the lower surface energy and good hydrophobicity on the
composite film being modified by a high bond energy and wide bond angles in SiO2 chemi-
cal species and CH3 groups in PDMS chains [4]. TiO2, or titania material, is a promising
metal oxide material with excellent hydrophilicity, photocatalytic activity, chemical stability,
and environmental friendliness [5]. The prominent features of TiO2 material in terms of
self-cleaning include the split of organic pollutants by photocatalytic mechanisms under
ultraviolet activation and water spreading over the entire surface owing to the material’s
hydrophilicity [6]. Therefore, combining nanocomposites with SiO2 and TiO2 materials
can enhance self-cleaning reactions with the assistance of photocatalyst mechanisms. De-
creased water-droplet contact angles and the need for hydrophilicity maintenance of TiO2
in a dark place or without UV irradiation could be obtained by increasing the hydroxyl
content generated by incorporating SiO2 into a SiO2/TiO2 composite [7]. However, there
are many methods for the synthesis of SiO2/TiO2 nanocomposites, such as sol–gel [8], hy-
drothermal [9], and sonochemical techniques [10], which result in different morphologies
of synthesized SiO2/TiO2 nanocomposites. SiO2/TiO2 nanocomposites with different SiO2
contents, prepared via a sol–gel method accompanying an annealing process at 600 ◦C
for 5 h, were reported by Manh et al. [11]. The results revealed that the inhibition in the
anatase-to-rutile phase transition in the TiO2 matrix occurred due to the influence of the
amorphous SiO2 surface layer suppressing the diffusion of anatase-phase particles in direct
contact and limiting the ability of surface nucleation sites to progress to the rutile phase.
Masanori and coworkers reported the synthesis of SiO2/TiO2 composite nanoparticles via
a hydrothermal process operated at 200 ◦C [12]. Although the sol–gel-based method is
simpler for synthesizing a SiO2/TiO2 composite structure, it requires post-thermal treat-
ment, resulting in particle aggregation. On the other hand, the sonochemical process is
one of cavitation, with the rapid growth and collapse of implosion bubbles in a liquid
under high temperature and high pressure in the reaction environment, resulting in the
formation of nanomaterials. The advantages of the sonochemical process include a short
reaction time and facile control of size, with ultrafine particles at the nanoscale, as well
as crystallinity and morphology [13]. Reactive species such as •OH and H2O2 can be
created using the sol–gel method, accompanying sonochemistry based on the yield of
homogeneous synthesis. The formation of nanocomposite film in the form of a polymeric
matrix material with polymethyl methacrylate is well-known in acrylic resins and has such
properties as a high strength and good dimensional stability, thermal stability, and outdoor
wear [14]. A fabricated transparent nanocomposite film of PMMA as a matrix incorporated
with nanoparticles acting as a self-cleaning layer has been successfully prepared using a
dip-coating technique. However, using nanopowder products on self-cleaning surfaces
is still a challenging task in the structural design, depending on the substrate surface,
cost, and film thicknesses, when using different coating processes. Several methods for
nanomaterials’ deposition on the substrate include dip coating, spray pyrolysis, sputtering,
and spin coating [15]. Among them, spin coating is a facile and cost-effective method
for depositing nanomaterial film on the substrate since the film thickness can be readily
controlled by the spin speed [16,17].

In this study, we were interested in the synthesis of SiO2/TiO2 nanocomposite material
via the sonochemical process. Meanwhile, the cooperation of SiO2/TiO2/PMMA nanocom-
posite films was fabricated using the spin-coating process. The effect of the SiO2/TiO2
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nanocomposite distribution on morphologies, optical properties, hydrophilicity, and photo-
catalysis was studied. The investigation of the self-cleaning and photocatalytic properties
of the prepared films under UV activation shows the difference in surface morphology and
particle distribution depending on the TiO2 ratio in SiO2/TiO2/PMMA nanocomposite film.

2. Materials and Methods

Polymethyl methacrylate (PMMA), tetraethyl orthosilicate (TEOS), and titanium iso-
propoxide (TTIP) were used as precursors in the sonochemical process for the synthesis of
SiO2/TiO2 nanocomposite powder. The ratios of SiO2:TiO2 in SiO2/TiO2 nanocomposites
were varied at 1:0.1, 1:0.5, 1:1, 1:2, 1:4, and 0:1 (pure TiO2). For SiO2/TiO2 nanocomposite
synthesis, tetraethyl orthosilicate was slowly dropped in absolute ethyl alcohol, distilled
water, and oxalic acid under sonochemical reaction for 15 min at 750 W, 20 kHz, and
50% amplitude to produce SiO2 sol. After that, TiO2 sol prepared by the solution of TTIP
in isopropyl alcohol was mixed in SiO2 sol under an ultrasonic sonicator for 15 min at
750 W, 20 kHz, and 60% amplitude. Then, SiO2/TiO2 nanocomposite in the white pre-
cipitate was washed with DI water until pH 7 and dried overnight at 100 ◦C. For film
fabrication, a certain amount of SiO2/TiO2 nanocomposite at 1 wt.% for all conditions was
loaded in PMMA solution to produce the transparent nanocomposite suspension under
continuous magnetic stirring. SiO2/TiO2/PMMA nanocomposite films were prepared
using the spin-coating method on glass slides and silicon substrate and baked at 100 ◦C for
10 min to obtain transparent film. The schematic preparation of nanocomposite powder via
sonochemical process and film fabrication using the spin-coating technique is exhibited in
Figure 1. For the characterization part, the phase identification and surface morphologies of
SiO2/TiO2/PMMA nanocomposite films were investigated with the X-ray-diffraction tech-
nique (XRD; Rigaku SmartLab (Tokyo, Japan)), field emission scanning electron microscope
(FE-SEM; Hitachi S-8030, Tokyo, Japan), atomic force microscopy (AFM; Hitachi 5300E),
and upright microscope (Leica DM6 M, Wetzlar, Germany). The optical transmittance was
examined with a universal measurement spectrophotometer (Agilent; Cary 7000, Santa
Clara, CA, USA) in the 200–2000 nm wavelength range. The self-cleaning assessment was
carried out via contact angle measurement (ramé-hart instrument co.). The photocatalytic
activity of all nanocomposite film samples was evaluated by testing their photocatalytic
degradation with a droplet of rhodamine B (RhB) solution at 10 µM on the nanocomposite
film surface. Then, the film surface was baked for 10 min to obtain the pink stain on
transparent films and tested under UV irradiation for 120 min. After that, the color change
of the RhB stain on the photocatalyst films at 0 and 2 h under UV activation was measured
using a UV-vis spectrometer in transmittance mode to compare the dye degradation activity.
A high %T value denotes that the transparent film has a good performance in the dye
degradation process. Based on this measurement, the percentage of dye degradation was
calculated following Equation (1)

%dye degradation =
T2 − T0

T0
× 100 (1)

where T0 and T2 are %transmission at 0 and 2 h of UV light exposure.
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Figure 1. Schematic of SiO2/TiO2 nanocomposite synthesized via sonochemical process and
SiO2/TiO2/PMMA nanocomposite films fabricated using spin-coating technique.

3. Results and Discussion
3.1. Morphological and Structural Characteristics

All SiO2/TiO2/PMMA nanocomposite films showed SiO2/TiO2 nanocomposite pow-
der on the PMMA matrix, as illustrated in Figure 2. As shown in Figure 2a, the particulate
SiO2/TiO2 composites with PMMA matrixes were covered on the glass substrate with
a highly transparent appearance. However, the aggregation of SiO2/TiO2 nanocompos-
ites was observed in specific areas on the film surface due to the different TiO2 ratios
in the composites. The optical micrographs were taken to monitor the morphology of
SiO2/TiO2/PMMA nanocomposite films, as shown in Figure 2b. High-resolution images
exhibited various particle sizes and various shapes of nanocomposite clusters on PMMA
matrix film caused by the increase in TiO2 loading in the SiO2/TiO2 nanocomposite. For
a low TiO2 content in SiO2/TiO2 nanocomposites with SiO2:TiO2 ratios of 1:0.1 and 1:0.5,
more dense areas of particle aggregation with a square shape on the film surface were
observed due to TiO2 gathering in SiO2 as a main material. In addition, SiO2/TiO2 nanopar-
ticle distribution was improved by the increase in TiO2 loading in the SiO2:TiO2 ratio until
1:1. The appearance of this condition reveals the uniformity, small particle size, and good
powder dispersion of SiO2/TiO2 nanocomposites covering the whole glass-slide substrate.
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Figure 2. (a) Photographs and (b) optical images of transparent SiO2/TiO2/PMMA nanocomposite
films with different SiO2:TiO2 ratios of 1:0.1, 1:0.5, 1:1, 1:2, 1:4, and 0:1.

The surface morphologies and cross-section images of SiO2/TiO2/PMMA nanocom-
posite films were monitored using a field emission scanning electron microscope, as shown
in Figure 3. This technique was chosen as the comparison, with optical micrographs to
confirm the feature of the particle on the PMMA film surface. The SiO2/TiO2 composite
powder was formed on the PMMA film surface with differences in size and shape due
to the different forms of TiO2 loading in the composite, as shown in Figure 3a. For low
TiO2 loading in the composite, particulate aggregation of SiO2 powder was obviously
noticed. Meanwhile, the increase in particle distribution on PMMA film was obtained at
the optimized SiO2:TiO2 ratio of 1:1. Therefore, the good particle distribution and decrease
in the aggregation in the SiO2/TiO2 nanocomposite could be enhanced by the appropriate
composite ratio of SiO2:TiO2, owing to the prevention of TiO2 crystallite growth with the
influence of the SiO2 phase in nanocomposite synthesis under sonochemical processes [18].
However, the high content of TiO2 ratio in the nanocomposite could result in an increase
in particle agglomeration, as seen in the SiO2:TiO2 composite ratios of 1:2 and 1:4. This
result can be described by the facile TiO2 self-aggregation for high content in SiO2/TiO2
nanocomposites. Meanwhile, the average thickness of the SiO2/TiO2/PMMA nanocom-
posite film was analyzed using cross-section images, as depicted in Figure 3b. The values
of nanocomposite film thickness were obtained at 587, 541, 525, 527, 530, and 666 nm
for the films fabricated with SiO2:TiO2 ratios of 1:0.1, 1:0.5, 1:1, 1:2, 1:4, and 0:1, respec-
tively. The difference in film thickness with various TiO2 loadings in the SiO2 composite
could originate from the viscosity in the PMMA matrix with different particle sizes and
particulate agglomerations.
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(a) surface morphologies and (b) cross-section images.

The three-dimensional AFM images of SiO2/TiO2/PMMA nanocomposites films
with different SiO2:TiO2 nanocomposite ratios are shown in Figure 4. The morphological
area of the film surface obtained with the AFM technique was studied on the smooth
and transparent region without particle aggregation, with a length area of 2 µm × 2 µm.
According to the FE-SEM results, surface morphologies on the film’s surface are shown as
large-scale areas with the nanocomposite powder on PMMA film. Therefore, the smooth
area on the film surface was further characterized to confirm the incorporation of particles
and the polymer matrix. The surface roughness of the SiO2/TiO2/PMMA composite films
revealed by AFM images possessed a similar surface structure regarding morphological
homogeneity, as observed in Figure 4a–d. Moreover, the root mean square (RMS) surface
roughness of all SiO2/TiO2/PMMA composite films is presented in Figure 4e. The greatest
roughness with an RMS value of 3.31 nm was obtained as the film was filled with the
composite with a SiO2:TiO2 ratio of 1:0.1 due to the large particle of the SiO2 matrix. The
lowest RMS roughness value of 2.56 nm was monitored in the sample with a SiO2:TiO2
ratio of 1:1, in good accordance with the optical image and FE-SEM results.
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The diffraction patterns of SiO2/TiO2/PMMA nanocomposites films on silicon sub-
strates with different TiO2 ratios are shown in Figure 5. The diffraction patterns of pure TiO2
powder in the PMMA matrix (the sample with 0:1) positioned at 25.4◦and 36◦ are attributed
to the crystalline planes of the (101) and (103) anatase TiO2 phase (CSD No. 9008216). Mean-
while, the broad characteristic peak in the range from 15◦ to 25◦, as noted in SiO2/TiO2
composite films with SiO2:TiO2 ratios of 1:0.1, 1:0.5, 1:1, 1:2, and 1:4, was associated with
the SiO2 amorphous phase [19,20]. Moreover, the excessively strong intensity at 2θ of 50◦

is ascribed to the (100) crystalline planes of silicon wafer substrate [21]. The increase in
TiO2 loading with the ratios of 1:2 and 1:4 led to the appearance of a noticeable peak at
2θ = 25.4◦ regarding ultrafine particles and the existence of TiO2 phase formation. There-
fore, the XRD results of SiO2/TiO2/PMMA composite films imply that the formation of
a strong TiO2 crystalline phase could possibly reduce he formation of the SiO2 phase in
SiO2/TiO2 composites.
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3.2. Optical Characteristics

The transmission measurement of SiO2/TiO2/PMMA nanocomposite films was con-
ducted on different positions on the film surface and the results are presented in Figure 6.
The results show the flat spectra in the wavelength range of 380–780 nm without interfer-
ence features and with a lower average transmittance than that of a bare glass substrate
(90%), indicating the high transparency of the deposited films [22]. The decrease in trans-
mission in the visible region of the specimen coated with SiO2/TiO2/PMMA composite
film was regarded as related to the light-scattering phenomenon of the SiO2 and TiO2 parti-
cles embedded in the film. As seen in Figure 6a–c, the difference in their transmittance was
additionally noticed at different measured positions on the sample’s surface. This result
suggests a slight difference in film thickness on the whole covering surface and particle
distribution over the whole surface due to the incorporation of a composite cluster and
polymer matrix. In addition, all determined transmissions were reached as the wavelength
was shorter than 380 nm due to typical absorption features of the bare glass substrate [22].
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From the transmission spectra, the average transmission (%Tavg) in the visible region was
calculated using the equation expressed in Equation (2)

%Tavg =

∫
φlum(λ)T(λ)d(λ)∫

φlum(λ)d(λ)
, (2)

where T(λ) is the transmittance at a specific wavelength (λ) and φlum is the standard lumi-
nous efficiency function [23]. The calculated %Tavg at all areas was statistically determined,
as shown in Figure 6d. The %Tavg tended to decrease with increasing TiO2 loading content
up to the ratio of 1:1, and increased thereafter. This behavior could be attributed to the
difference in particle distribution, as observed from the optical microscope.

Polymers 2023, 15, x FOR PEER REVIEW 8 of 13 
 

 

where T(λ) is the transmittance at a specific wavelength (λ) and ϕlum is the standard lu-

minous efficiency function [23]. The calculated %Tavg at all areas was statistically deter-

mined, as shown in Figure 6d. The %Tavg tended to decrease with increasing TiO2 loading 

content up to the ratio of 1:1, and increased thereafter. This behavior could be attributed 

to the difference in particle distribution, as observed from the optical microscope. 

 

Figure 6. Transmittance spectra of SiO2/TiO2/PMMA composite films with different positions on 

film surface at various SiO2:TiO2 ratios (a) 1:0.1, (b) 1:1, (c) 1:4, and (d) %T average of all samples. 

The omnidirectional transmittance of the prepared sample was investigated, as 

shown in Figure 7. The transmittance obviously decreased with the increase in the inci-

dent angle, following Snell’s law of refraction and Fresnel’s equations for reflection and 

transmission [24]. The transmission value of SiO2/TiO2/PMMA nanocomposite films as the 

incident angle ranged from 0° to 50° showed an insignificant change with an approxi-

mated %T = 80, indicating high transparency in the visible region. At greater incident an-

gles beyond 60° and 80°, %transmission was less than 50% and 20%, respectively. Moreo-

ver, the extended width of the transmittance profile was improved by the influence of 

SiO2/TiO2 nanocomposite with the precursor ratio of 1:1. This result could be explained 

through the observation of the large particle distribution from the figures, as depicted in 

the optical microscope part. Meanwhile, the alternation of the refractive index on the top 

surface could be associated with the presence of SiO2/TiO2 particles, resulting in a signifi-

cant reduction in transmission at a wide angle [24]. In addition, the step-like change in the 

spectra observed at 720 nm was affected by the change of filter within the spectrophotometer 

system during the measurement. 

Figure 6. Transmittance spectra of SiO2/TiO2/PMMA composite films with different positions on
film surface at various SiO2:TiO2 ratios (a) 1:0.1, (b) 1:1, (c) 1:4, and (d) %T average of all samples.

The omnidirectional transmittance of the prepared sample was investigated, as shown
in Figure 7. The transmittance obviously decreased with the increase in the incident
angle, following Snell’s law of refraction and Fresnel’s equations for reflection and trans-
mission [24]. The transmission value of SiO2/TiO2/PMMA nanocomposite films as the
incident angle ranged from 0◦ to 50◦ showed an insignificant change with an approximated
%T = 80, indicating high transparency in the visible region. At greater incident angles
beyond 60◦ and 80◦, %transmission was less than 50% and 20%, respectively. Moreover, the
extended width of the transmittance profile was improved by the influence of SiO2/TiO2
nanocomposite with the precursor ratio of 1:1. This result could be explained through the
observation of the large particle distribution from the figures, as depicted in the optical
microscope part. Meanwhile, the alternation of the refractive index on the top surface could
be associated with the presence of SiO2/TiO2 particles, resulting in a significant reduction in
transmission at a wide angle [24]. In addition, the step-like change in the spectra observed
at 720 nm was affected by the change of filter within the spectrophotometer system during
the measurement.
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3.3. Self-Cleaning Surface Applications

For self-cleaning applications, the contact angle measurement interpreted by water
droplets on SiO2/TiO2/PMMA nanocomposite films under UV irradiation for 120 min is
illustrated in Figure 8. Before UV activation, the contact angle of a water droplet on each
film was approximately 64–71◦. After UV irradiation, the water flatting on all composite
films was noticed, indicating the hydrophilic properties of the surface. The contact angle
values of SiO2/TiO2/PMMA nanocomposite film with the increase in TiO2 loading in the
SiO2 matrix were approximately 25.9◦, 23.8◦, 12.1◦, 18.5◦, and 21.0◦, respectively. The
contact angle value of TiO2/PMMA nanocomposite film was approximately 14.3◦. An
improvement in hydrophilicity was achieved when the film was incorporated with a
SiO2/TiO2 composite with the specific ratio of 1:1, showing the lowest contact angle due to
the good particle dispersion and homogeneity of the film structure. The presence of Si–O–Ti
linkages originating from the SiO2/TiO2 nanocomposite relating to the increase in hydroxyl
groups on the film surface could considerably improve hydrophilicity performance on the
composite surface [25]. Moreover, the generation of electron–hole pairs from the TiO2 phase
in the composite was a crucial mechanism, playing a key role in the hydrophilic mechanism
under UV irradiation. The related mechanism is described. Electrons on the TiO2 surface
were trapped by Ti(IV) cations Ti4+ to produce the Ti(III); Ti3+ state. Oxygen atoms were
ejected and interacted with holes to create oxygen vacancies. Water molecules of the droplet
on the film surface consequently occupied the oxygen vacancies to produce the adsorbed
hydroxyl groups via H-bridging bonds with the water molecule. The stable formation of
the Ti3+-OH functional group could possibly balance the TiO2 chemical structure, leading
to a significant enhancement of hydrophilicity [26]. Under other conditions (SiO2:TiO2 at
1:0.1, 1:0.5, 1:2, and 1:4), high particle agglomeration of the composite and a large particle
size are considered to be crucial parameters affecting the reduction in electron–hole pairs,
hydroxyl groups, and the relation of Si–O–Ti linkages in the SiO2/TiO2 nanocomposite.
Thus, the enhancement of hydrophilicity on the SiO2/TiO2/PMMA film surface is highly
correlated with the number of hydroxyl groups and oxygen vacancies provided by the
proper ratio of TiO2 being added to the SiO2 composite.
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SiO2:TiO2 nanocomposite ratios.

The photocatalytic activities of SiO2/TiO2/PMMA nanocomposite films with different
SiO2:TiO2 ratios were evaluated according to rhodamine B (RhB) decomposition on the
film surface, as shown in Figure 9. The photographs of SiO2/TiO2/PMMA composite
films with RhB stain on the film surface taken before/after UV irradiation are shown in
Figure 9a. Before UV exposure, the pink dye stain of the RhB droplet appeared on the
film surface. After UV irradiation for 120 min, the dye stain was obviously removed by a
PMMA/SiO2/TiO2 nanocomposite with a high TiO2 content in the composite up to the ratio
of 1:1. To confirm dye degradation on the film surface, the evaluation of RhB transmission
at λmax 554 nm is illustrated in Figure 9b [27]. The photocatalytic reaction by means of RhB
dye degradation on SiO2/TiO2/PMMA nanocomposite films with different SiO2:TiO2 ratios
were studied in three situations: as-prepared film (
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). The transmission of
as-prepared nanocomposite films was measured and used as a reference. For RhB droplets
on the films, as shown in red dots, the decrease in %T value on the films is clearly noted
due to the light absorbance of RhB dye. After UV irradiation, the %T values of all samples
considerably increased due to the decrease in the dye absorbance or the diminished dye
concentration, reflecting the effective RhB dye degradation by photocatalytic reaction on
each film surface [28]. The highest photocatalytic degradation by the photocatalyst film
was performed using pure TiO2 film due to its dominant photocatalytic property of anatase
TiO2. Under UV irradiation, the electron–hole pairs created on the TiO2 photocatalyst
surface strongly reacted with hydroxide groups and O2 molecules in the environment to
produce the superoxide and hydroxyl radicals [29]. After that, the organic molecules in the
RhB chemical structure were decomposed by these strong radicals to form in the conjugated
chromophore, as presented by the clear RhB stain and higher %T value [30]. In the case of
SiO2/TiO2/PMMA nanocomposite films, good photocatalytic activity was found in the
sample with a SiO2:TiO2 ratio of 1:0.1. Although this specimen is mainly composed of SiO2
nanoparticles as a matrix, the photocatalytic reaction could be executed by the increase in
active sites on the surface of SiO2 nanoparticles, providing a greater active surface area
under UV irradiation. Moreover, the separation of photo-generated electron–hole pairs
would be improved by the presence of oxygen defects on the SiO2 nanoparticle surface
attributed to the decrease in the electron–hole pair recombination rate and enhancing the
photocatalytic activity of the SiO2-based photocatalyst [31]. Meanwhile, the composite film
with a 1:1 SiO2:TiO2 ratio had a higher photocatalytic reaction due to the homogenous
particle dispersion on the film compared with the film with a SiO2:TiO2 ratio of 1:4. This
reaction can be achieved due to the existence of a TiO2 photocatalyst in the SiO2/TiO2
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nanocomposite. The photocatalytic reaction by the composite film with a SiO2:TiO2 ratio
of 1:1 may be enhanced by the presence of a mixed TiOSi phase (Si–O–Ti linkages) at the
TiO2/SiO2 interface, guiding the decrease in the tight agglomeration of the anatase phase
in TiO2 material and the suppression of photoactive radicals by electron–hole pairs and
effective surface with the silica phase in the composite. However, after UV irradiation,
%T values of the composite films with SiO2:TiO2 ratios of 1:1, 1:4, and 0:1 were slightly
different to the initial value of as-prepared films, which could be due to the coverage of well-
dispersed particles on the film surface, as revealed by optical image analysis. A number
of irradiation photons can be absorbed by the particles on the film surface, reflecting the
decrease in %T value. Furthermore, the percentage of dye degradation in the film with RhB
before and after UV irradiation was calculated to confirm the photocatalytic performance
of the films, as shown in Figure 9c. The superior dye degradation efficiency of bare TiO2
film was determined to be approximately 4.11%, while the percentage of the SiO2/TiO2
composite films with SiO2:TiO2 ratios of 1:0.1, 1:1, and 1:4 was approximately 3.46, 1.99, and
1.45, respectively. According to the spherical shape of SiO2 nanoparticles in the composite
film, a large number of active sites could be generated and enhance UV light absorption
with their high surface-to-volume ratio, promoting the photocatalytic abilities under this
condition. For the composite film with SiO2:TiO2 ratios at 1:1 and 1:4, the photocatalytic
activity could be enhanced by the influence of the hydrophilicity of SiO2 and TiO2 according
to the increase in the hydroxyl group generated on their surfaces.
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composite films with different SiO2:TiO2 ratios, (a) the photographs of the composite films before
and after UV irradiation, (b) %T values of RhB stain on the films at λmax 554 nm, and (c) percentage
degradation of RhB dye with SiO2/TiO2/PMMA composite films.

4. Conclusions

SiO2/TiO2/PMMA nanocomposite films were fabricated using the spin-coating tech-
nique with the incorporation of an ultrafine SiO2/TiO2 composite with different TiO2 ratios
in the PMMA polymer matrix. The thickness of the SiO2/TiO2/PMMA nanocomposite
films was in the range of 486–666 nm, depending on the particle dispersion interpreted
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by transmission spectra. For self-cleaning, the composite film with a SiO2:TiO2 ratio of 1:1
showed a superior hydrophilic performance, showing the lowest contact angle of 12.1◦ after
UV irradiation for 120 min, while the TiO2/PMMA nanocomposite film exhibited good
photocatalytic activity by means of RhB dye degradation due to the preferential anatase
phase of as-synthesized TiO2. Significant enhancements in the catalytic activity of the
composite films with a 1:1 SiO2:TiO2 ratio are attributed to the good particle dispersion on
the film surface with a greater active surface area and increasing active site radicals created
by the TiO2 phase in the composite. It can be predicated that particle distribution, SiO2:TiO2
ratio, Si-O-Ti linkages induced at the interfaces, and the TiO2 phase in the composite are the
crucial factors that play a key role in both the self-cleaning and photocatalytic properties of
the films.
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