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Abstract: Given the increasing concerns regarding greenhouse gas emissions associated with livestock
production, the need to discover effective strategies to mitigate methane production in ruminants is
clear. Marine algal polysaccharides have emerged as a promising research avenue because of their
abundance and sustainability. Polysaccharides, such as alginate, laminaran, and fucoidan, which are
extracted from marine seaweeds, have demonstrated the potential to reduce methane emissions by
influencing the microbial populations in the rumen. This comprehensive review extensively examines
the available literature and considers the effectiveness, challenges, and prospects of using marine
seaweed polysaccharides as feed additives. The findings emphasise that marine algal polysaccharides
can modulate rumen fermentation, promote the growth of beneficial microorganisms, and inhibit
methanogenic archaea, ultimately leading to decreases in methane emissions. However, we must
understand the long-term effects and address the obstacles to practical implementation. Further
research is warranted to optimise dosage levels, evaluate potential effects on animal health, and assess
economic feasibility. This critical review provides insights for researchers, policymakers, and industry
stakeholders dedicated to advancing sustainable livestock production and methane mitigation.

Keywords: marine seaweed; polysaccharides; feed additives; ruminants; methane mitigation

1. Introduction

Global warming is a major environmental challenge that poses serious threats to
the well-being of our planet and its inhabitants. This warming is mainly driven by an
increase in atmospheric greenhouse gas concentrations, which trap heat in the Earth’s
atmosphere and lead to rising temperatures. Methane, a potent contributor to global
warming, has warming potential approximately 28 times greater than that of CO2 over a
100-year timescale [1]. Methane emissions result from both natural and human activities,
including organic matter decomposition in wetlands, rice cultivation, landfilling, and the
digestive processes of ruminants such as cows, sheep, and goats [2]. According to the
Intergovernmental Panel on Climate Change, approximately 14.5% of global greenhouse gas
emissions can be attributed to the agricultural sector, and enteric fermentation (i.e., methane
emissions from livestock) is responsible for approximately 40% of these emissions [3]. As
the global demand for meat and dairy products is expected to increase in the coming years,
the problem of methane emissions from ruminants will intensify, making it imperative to
reduce these emissions for environmental and economic reasons [4]. A range of strategies
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have been proposed, including dietary modifications, genetic selection, and improved herd
management practices.

Methane emissions from ruminants result from enteric fermentation [5], which oc-
curs in the digestive systems of animals, specifically in the rumen, a vast fermentation
chamber that harbours a large number of microorganisms [6]. These microorganisms play
a pivotal role in enabling ruminants to digest complex plant materials such as cellulose
and hemicellulose, which cannot be broken down by monogastric animals such as pigs [7].
During enteric fermentation, the microorganisms in the rumen decompose feed materials
and generate methane as a byproduct. Methane is released into the atmosphere via belch-
ing, contributing to increases in the concentrations of greenhouse gases and exacerbating
warming global temperatures (Figure 1) [8]. Apart from the environmental impact, reduc-
ing methane emissions is crucial for the economic sustainability of animal agriculture, as
numerous countries have established targets for the reduction of greenhouse gas emissions
to meet international agreements and address climate change [9]. Additionally, reducing
methane emissions from ruminants may lead to substantial improvements in animal health
and productivity. Methane production results in energy depletion in animals, as it rep-
resents lost potential energy that could be used for growth or milk production [10]. By
reducing methane emissions, more energy can be made available for production purposes,
which may result in increased efficiency and profitability in animal agriculture.
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Figure 1. Pathway of methane emission in livestock. Methanogens use various organic compounds,
including carbon dioxide and hydrogen, to produce methane gas as a byproduct, illustrating potential
role of feed additives such as MAPs in mitigating methane emissions.

Macroalgae, popularly known as seaweed, are large multicellular algae primarily
found in marine habitats. By contrast, microalgae are single-celled algae that inhabit
both marine and freshwater environments [11]. Both macroalgae and microalgae contain
various intricate polysaccharides, such as laminaran [12], fucoidan [13], alginate [14], car-
rageenan [15], and porphyran [16], which exhibit several biological properties, including
immune modulation and antioxidant, antiviral, prebiotic, and antimicrobial effects [17].
Marine algal polysaccharides (MAPs) mitigate the risk of inflammatory disorders in rumi-
nants, improve food digestion, and augment nutrient absorption, thereby decreasing the
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probability of pathogen proliferation in the digestive system and enhancing overall animal
health [18,19].

As shown in Table 1, some feed additives have been used to reduce methane produc-
tion. As feed supplements, MAPs are generally deemed ecologically sound and sustainable
as they are sourced from renewable sources and do not pose the same hazards or create
the same concerns as other feed additives, such as antibiotics. These compounds hold
promise in modifying the microbial populations in the rumen and/or inhibiting specific
enzymatic pathways involved in methane production, so they are plausible candidates for
the reduction of methane emissions from ruminants. Within this context, in this compre-
hensive review, our aim is to conduct an extensive examination of the role of MAPs as feed
additives in minimising methane emissions in ruminants. This review is structured into
three key components, each of which is crucial in understanding the potential of MAPs.
First, we examine the effects of MAPs on ruminal microbial populations. By analysing
existing research, we describe how MAPs may influence the composition and activity of
rumen microorganisms, which are pivotal in methane production. The second focus is
the effects of MAPs and volatile fatty acids (VFAs) on rumen fermentation and methane
production. Understanding the interactions between MAPs and VFAs provides valuable
insights into their ability to promote efficient fermentation pathways, leading to reduced
methane emissions. Finally, we examine the antimicrobial activity of polysaccharides
and their related mechanisms. Investigating these mechanisms is essential not only to
optimise the effectiveness of MAPs but also to ensure the overall health of ruminants.
This review highlights the importance of collaborative efforts between researchers and
industries to facilitate the successful integration of MAPs into ruminant diets as a viable
methane mitigation strategy.

Table 1. Estimates of methane reduction through the use of feed additives.

Feed Additive Animal/In Vitro Treatment Methane Reduction (%) Reference

3-Nitrooxypropanol Cattle 10 mg/kg dry matter 39 [20]
Corn oil, wheat starch, marine

algae Dairy cows and goats 1.5% inclusion 28 [21]

Asparagopsis armata Cows 1% inclusion level 47.2 [22]
origanum oil, hydrolysable

tannins, and tea saponin Sheep 40 mL/kg origanum oil 30 [23]

Grape marc Dairy cows
5.0 kg dry matter of

grape marc and 10.0 kg
dry matter of ryegrass

15 [24]

Nannochloropsis oceanica
(polysaccharide) In vitro 2.5% incubation 10 [25]

Macrocystis pyrifera
(polysaccharide) In vitro 0.25 g of each diet 47.3 [26]

Fucus vesiculosus (polyphenol
and polysaccharides) In vitro inclusion rate of 20% in

dry matter 62.6 [27]

Laminaria japonica In vitro inclusion rate of 20% in
dry matter 18.3 [28]

Sunflower and marine oils In vitro 2.0% inclusion 16 [29]
Ulva sp. (ulvan) In vitro 25% incubation 55 [30]

Zonaria farlowii (high starch and
protein) In vitro 5% inclusion 11 [31]

2. Marine Seaweed Polysaccharides

The various types of macroalgae include red (Rhodophyta), brown (Phaeophyceae),
and green (Chlorophyta) algae [32]. MAPs are complex carbohydrates with high molecular
weights that are derived from different seaweed species. Polysaccharides are naturally
occurring compounds that are abundant in marine environments; they possess chemical
structures and compositions that widely differ from those of terrestrial plants [33–35]. From
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a chemical perspective, MAPs typically consist of repeating monosaccharide residues such
as glucose, mannose, galactose, fucose, rhamnose, mannuronic acid, guluronic acid, glu-
curonic acid, and iduronic acid. The arrangement and bonding patterns of these sugar units
yield various polysaccharides, each contributing to their properties and diverse applications.
MAPs exhibit remarkable characteristics, including biocompatibility, biodegradability, and
low toxicity, so they are highly attractive for use in livestock, biomedical research, cosmetics,
food production, and agriculture.

Red seaweeds, belonging to the phylum Rhodophyta, are an abundant source of
a variety of polysaccharides, including carrageenans, agar, agarose, agaropectin, and
porphyran [36]. Carrageenans are sulphated polysaccharides, and their classification into
κ-, ι-, and λ-carrageenan is based on their sulphate content. κ-carrageenan is composed
of alternating units of β-D-galactose and 3,6-anhydro-D-galactose, whereas ι-carrageenan
consists of repeating units of α-D-galactose-4-sulphate and 3,6-anhydro-D-galactose [37]. λ-
carrageenan primarily consists of disaccharide units of β-D-galactose-6-sulphate [38] and is
a complex mixture of agarose and agaropectin. Agarose is a linear polysaccharide composed
of repeating units of β-D-galactose and 3,6-anhydro-L-galactose, whereas agaropectin is
a branched polysaccharide containing additional monosaccharides such as xylose and
sulphate groups [39,40]. Porphyran typically comprises alternating units of β-D-galactose-
4-sulphate and 3,6-anhydro-L-galactose [41].

Brown seaweeds encompass a diverse range of marine algae and are abundant in
various polysaccharides, with varying compositions among species. Fucoidan, laminaran,
and alginate are the most prevalent polysaccharides found in brown seaweed. Fucoidan, a
sulphated polysaccharide, is primarily composed of fucose as the main monosaccharide,
along with other monosaccharides, such as galactose, xylose, and mannose [13]. The most
prominent linkage type in fucoidan is the α-(1→ 3) linkage, connecting fucose units through
an α glycosidic bond at positions C1 and C3. Additionally, fucoidans can contain other
linkages, including -(1→ 4), -(1→ 2), and -(1→ 6) linkages. Alginate mainly consists of
β-D-mannuronic acid and α-L-guluronic acid residues, with the primary linkage being the
1,4-glycosidic bond [17]. Laminaran, a β-glucan polysaccharide, predominantly comprises
glucose units linked by β-(1,3)-glycosidic bonds, accompanied by β-(1,6) branching [12].

Green seaweeds are a valuable source of polysaccharides, with ulvan being the most
commonly reported sulphated polysaccharide found in these seaweeds. Ulvan has a com-
plex structure and is composed of various monosaccharides, including xylose, rhamnose,
glucuronic acid, and iduronic acid [42]. The backbone of ulvan primarily consists of inter-
connected glucuronic acid and iduronic acid units, which are linked together by β-(1→ 4)
glycosidic bonds. The sulphate groups attached at different positions along the backbone
contribute to the overall negative charge of ulvans [43].

The inclusion of MAPs in ruminant diets generally has a positive or neutral effect on
meat quality attributes. In some cases, MAPs have been associated with increased meat
quality and meat tenderness [44,45], which can enhance consumer satisfaction. Similar
to meat quality, the inclusion of MAPs does not change milk quality or composition [46].
Improvements in milk quality parameters, such as increased concentrations of beneficial
fatty acids and antioxidants, have also been reported with the inclusion of MAPs [47,48].

3. Effects of MAPs on Rumen Microbial Populations

The rumen microbiota is a complex and diverse community of microorganisms, in-
cluding bacteria, protozoa, and fungi. Among these microorganisms, bacteria dominate
the digestive tracts of ruminants, with cell counts ranging from approximately 1010 to
1011 cells/mL and encompassing more than 200 species [49]. Bacteria play pivotal roles in
the degradation and fermentation of polymeric carbohydrates in animal diets. Fibrolytic
bacteria, such as Fibrobacter succinogenes and Ruminococcus flavefaciens, specialise in break-
ing down cellulose and hemicellulose polysaccharides [50]. Additionally, amylolytic and
lactate-using bacteria contribute to the breakdown of starches and sugars, ensuring the
efficient use of energy sources within the rumen [51,52]. Dietary complexity is positively
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associated with microbial diversity. The intricate interactions among these bacterial pop-
ulations produce a wide range of metabolic activities that ultimately promote nutrient
acquisition and support overall animal health.

MAPs have the capacity to affect both the structure and composition of rumen micro-
bial communities. Moreover, MAPs can enhance the efficiency of microbial fermentation in
the rumen. Prevotella, Butyrivibrio, and Ruminococcus are the main bacterial species in the ru-
men, and alterations in the host diet can influence the overall community structure [53,54].
A previous study involving North Ronaldsay sheep isolated Prevotella spp. and Clostridium
butyricum from the rumen microbiota. This discovery highlighted the remarkable ability of
these microorganisms to break down various brown seaweed polysaccharides, including
fucoidan, laminaran, alginate, and carboxymethylcellulose [55]. Chitosan supplements
with varying molecular weights of 1, 3, 5, 50, and 200 kDa were used in this study. These
results indicated that chitosan with a molecular weight of 3 kDa is promising for the
mitigation of methane production as it modulates the composition of the bacterial com-
munity. Specifically, it encourages the substitution of fibre-degrading bacteria (Firmicutes
and Fibrobacteres) with amylolytic microbial species (Bacteroidetes and Proteobacteria) [56].
According to Zanferari et al., the incorporation of chitosan into the diets of dairy cows
in the absence of lipid supplementation resulted in a decline in bacterial species such
as Butyrivibrio and Butyrivibrio proteoclasticus, which are known to be involved in rumen
biohydrogenation. This decrease in the bacterial population correlated with a reduction in
milk yields. However, the addition of chitosan led to elevated levels of unsaturated lipids
and cis-9, trans-11-conjugated linoleic acid in milk [57].

Methane production in the rumen is primarily attributed to the metabolic activity
of methanogenic archaea, which are specialised microorganisms that generate methane
as a byproduct. Notable examples of the methanogenic archaea found in the rumen in-
clude Methanobrevibacter smithii, Methanosphaera stadtmanae, Methanomicrobium mobile, and
Methanosarcina spp. (Figure 2) [58,59]. These archaea use H2, CO2, and methanol for
methane synthesis [60]. However, specific bacterial species within the rumen contribute to
the fermentation process by providing substrates that support methanogenesis [61]. Al-
though these bacteria are not directly involved in methane production, they play a crucial
role in establishing favourable conditions for methanogenic activity. The incorporation of
MAPs into ruminant diets can induce shifts in the relative abundance of particular bacterial
taxa. Consequently, these shifts often reduce the population of methanogenic archaea.
In a previous study, the effectiveness of incorporating Asparagopsis taxiformis, a red alga
containing natural compounds that selectively inhibit specific enzymes in methanogenic
archaea, into the diets of cattle and sheep was investigated [62]. Supplementation with
brown algae extracts markedly influenced the abundance of cellulolytic bacteria, includ-
ing Ruminococcus albus, Ruminococcus flavefaciens, and Fibrobacter succinogenes, as well as
methanogenic archaea and ciliate-associated methanogens [63].
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In conclusion, the rumen microbiota possess an extensive repertoire of enzymes that
can hydrolyse MAPs into simpler sugars and other fermentation intermediates, creating
a rich substrate pool for their own growth and metabolic activities. These interactions
between MAPs and the rumen microbiota are vital in methane mitigation in ruminants. In
addition, MAPs can modulate the rumen microbial community, favouring the growth in
bacteria associated with reduced methane production and the suppression of methanogenic
archaea populations. The specific mechanisms through which MAPs modulate microbial
diversity and alter fermentation pathways may vary depending on the characteristics of
the MAPs and the composition of the rumen microbiota in different animal species or indi-
viduals. Therefore, further investigation is required to elucidate the detailed mechanisms
underlying these interactions and their impact on methane mitigation. Understanding
these mechanisms will provide valuable insights into the potential of MAPs as effective
feed additives for the mitigation of methane emissions from ruminant livestock, thereby
reducing their environmental impact and promoting sustainable animal agriculture.

4. Effect of MAPs and VFAs in Rumen Fermentation and Methane Production

In the field of ruminant nutrition, an essential component playing a pivotal role
in rumen health and overall productivity is VFAs. VFAs are the main end products
of microbial fermentation in the rumens of ruminants. They are primarily produced
via the anaerobic breakdown of carbohydrates by ruminal microorganisms. These acids
include C2 to C6 carboxylic acids, including acetic, propionic, butyric, isobutyric, valeric,
isovaleric, and caproic acids [64,65]. These VFAs act as energy sources for host animals
and are essential for rumen fermentation and digestion. Fibre digestion in ruminants is
facilitated by the interplay between VFAs and the rumen microbial population [66]. The
microorganisms involved in VFA production are summarised in Table 2.

Table 2. Microorganisms involved in the volatile fatty acid process.

VFA Microorganisms Ref.

Acetic acid

Acetobacter pasteurianus, A. aceti, Acetobacterium wieringae,
Acetomicrobium flavidum, Acetobacterium woodii, Clostridium
formicaceticum, C. aceticum, C. thermoaceticum, Gluconobacter

strains, Moorella thermoacetica, Streptococcus lactis,
Thermoanaerobacter kivui

[67–69]

Propionic acid Propionibacterium freudenreichii, P. shermanii, P. acidipropionici, P.
thoenii, P. jensenii [70]

Butyric acid

Clostridium barkeri, C. thermobutyricum, C. butyricum, C.
acetobutylicum, C. beijerinckii, Butyribacterium sp., Butyrivibrio

fibrisolvens, Eubacterium, Fusobacterium nucleatum,
Sarcinalimosum, Clostridium tyrobutyricum

[71–73]

Isovaleric acid Propionibacterium freudenreichii, Pseudomonas sp. strain VLB120 [74]

VFAs are vital components of ruminal ecosystems. A balance among VFAs is essen-
tial for optimal ruminal function and animal performance. The generation of VFAs in
the rumen is closely linked to methane production [75]. The proper allocation of VFAs
for different physiological processes ensures efficient energy use and supports growth,
reproduction, milk production, and methane emissions [76]. Different factors, such as
the diet composition, rumen microbial population, rumen pH, and management prac-
tices, can influence the production and composition of VFAs and methane emissions [77].
Understanding these factors allows nutritionists and producers to formulate diets and
management strategies that promote the production of VFAs that are favourable for rumen
health and animal productivity.

Methanogens use a diverse range of substrates during methane production, including
formate, hydrogen, methanol, butanol, 2-propanol, 2-butanol, propanol, dimethyl sulphide,
dimethylamine, and trimethylamine [78]. Anaerobic digesters predominantly harbour
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hydrogenotrophic methanogens, indicating that hydrogen acts as the primary substrate
for methane generation [79]. However, competition for substrates occurs between VFAs
and methanogens because higher concentrations of VFAs can compete with methanogens
for available hydrogen [80]. MAPs generally either have no marked effect on or decrease
the levels of VFAs in the rumen. For instance, when 4% brown seaweed byproducts were
incorporated as feed additives, only minimal alterations in volatile fatty acid concentrations
were observed after 24 h [81]. The inclusion of Sargassum horneri did not influence the
overall production of VFAs, whereas the 4% incorporation of Ulva sp. resulted in a decline
in total rumen VFA production. Notably, both marine algal species led to a reduction in the
methane content in the rumen [82]. When Laminaria ochroleuca, Gigartina sp., and Gracilaria
vermiculophylla were combined with corn silage, a negative effect on total VFA production
was evident, which was accompanied by a decline in methane production [30].

The effects of marine algae on the content and composition of VFAs vary depending
on the substrate used. The breakdown of intricate polysaccharides derived from marine
algae and the subsequent generation of fatty acids rely on the involvement of diverse
bacterial species [83]. Notably, the phylum Bacteroidetes is recognised for its wide range of
carbohydrate-active enzymes (CAZymes), which are responsible for this process. CAZymes
can be categorised as glycoside hydrolases (GHs), polysaccharide lyases (PLs), and car-
bohydrate esterases (CEs) based on their distinct enzymatic catalytic mechanisms. These
CAZymes specifically target bonds within MAPs, leading to their cleavage into smaller
sugar units that can then undergo further metabolism. For instance, the CAZyme-encoding
genes associated with fucoidan degradation and the breakdown of fucoidan linkages are
found in the families CE4, GH29, GH107, S1_17, and S1_25 [13,84]. Kalyani et al. discovered
mrbExg5, an enzyme that demonstrates exo-β-1,3-glucanase activity toward β-1,3-linked
glucooligosaccharides and laminaran. This glycoside bears a structural resemblance to
a member of the GH5_44 family, which is prominently present in Pseudobutyrivibrio sp.
ACV-2 is an isolate derived from the rumen of cows [85]. The presence of abundant VFAs
reduces the accessibility of hydrogen to methanogens, consequently hindering their activity
and ultimately leading to a decline in methane production.

In vitro fermentation and in vivo studies have demonstrated the multiple beneficial
effects of VFAs on host health. For instance, the use of porphyran and its partially acid-
hydrolysed derivatives derived from Porphyra haitanensis can increase the concentrations of
acetate, propionate, isobutyrate, butyrate, isovalerate, and valerate in the rumen [86,87].
Acetate is a key VFA generated during the breakdown of fibrous materials in the rumen.
Their primary function is to provide substantial energy to ruminants, thereby fulfilling their
energy needs. Acetate is an easily accessible energy substrate for animals that facilitates
the maintenance of essential physiological processes [88]. However, acetate, as a substrate
for methanogenesis, contributes to elevated methane emissions [89]. Propionates are vital
VFAs that play pivotal roles in ruminant nutrition and energy metabolism. They serve
as key precursors for gluconeogenesis, a fundamental process in glucose synthesis [90].
Glucose is essential for various metabolic functions, including milk production in dairy
cows [91]. Higher propionate levels are associated with enhanced milk yields, emphasising
their importance as VFAs in lactating animals. Additionally, propionate production is
negatively correlated with methane emissions because it competes with methanogens for
available hydrogen [92]. Choi et al. examined the effects of incorporating dried Sargassum
fusiforme on ruminal fermentation in vitro. The experiment involved testing four different
doses of Sargassum fusiforme (1%, 3%, 5%, and 10% of the total ratio). The findings indicated
that supplementation with Sargassum fusiforme resulted in elevated propionate produc-
tion with a simultaneous reduction in methane production [93]. Therefore, increasing
propionate production relative to acetate production has the potential to mitigate methane
emissions in ruminants. Although butyrate is produced in smaller quantities than acetate
and propionate, its importance remains: it acts as a valuable energy source for the rumen
epithelium and contributes to rumen health and integrity [94]. Furthermore, butyrate
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actively participates in microbial protein synthesis, facilitating the production of essential
amino acids that are necessary for the overall growth and development of animals [95].

VFAs also provide the benefit of lowering the fermentation pH to below 6.0, thereby
inhibiting the proliferation of methanogenic microorganisms. The inhibitory growth of the
ruminal methanogen Methanobrevibacter ruminantium was demonstrated when suspended
with lauric acid and myristic acid in low-pH conditions (approximately pH 5–6). The results
showed that the decline in methane formation may have been related to the decreased
survival of Methanobrevibacter ruminantium via increased ATP efflux, potassium leakage,
and an increasing degree of protonation [96]. VFAs may have direct or indirect toxic
effects on protozoa-associated methanogens, which are the microorganisms responsible for
methane production. Macroalgae and their secondary metabolites are effective in reducing
methane production based on in vitro results. For example, Asparagopsis taxiformis reduces
methane production by suppressing methanogenesis [97].

In summary, understanding the interplay between MAPs, VFAs, rumen fermentation,
and methane emissions is crucial in developing sustainable strategies to reduce the envi-
ronmental footprint of ruminant livestock. By manipulating the production and use of
VFAs through dietary interventions, we can potentially reduce methane emissions without
compromising animal health or productivity. Future research should focus on further
elucidating the mechanisms by which VFAs influence methane production and explor-
ing novel dietary strategies and additives that can optimise VFA profiles and mitigate
methane emissions.

5. Antimicrobial Activity of Polysaccharides and Related Mechanisms

Adding antibiotics such as ionophores (e.g., monensin and lasalocid) to ruminant
diets can improve propionate production, decrease methane production, and reduce the
accumulation of ammonia in the rumen [49]. These beneficial effects are largely attributed
to modifications of the rumen microbial community, specifically the inhibition of methane-
producing microorganisms such as methanogenic archaea [98]. Methanogenic archaea
depend on the hydrogen produced during fermentation to convert carbon dioxide into
methane. Table 3 shows the common methanogens and their reactions in the rumen. By
limiting the availability of hydrogen, antibiotics restrict methane production by reducing
the substrate required by methanogenic archaea to synthesise methane [99].

Table 3. The common methanogens and their reactions found in the rumen.

Feed Additive Substrate Reaction Reference

Methanobrevibacter gottschalkii

Acetate
Formate
Pyruvate

Methylamine
Methanol

Dimethylsulfide
Acetate

H2
CO
CO2

H2 + CO2 → CH4 + 2H2O
H2 + CH3OH→ CH4 + H2O

4HCOO− + 4H+ → CH4 + 3CO2 + 2H2O
4CO + 5H2O→ CH4 + 3HCO3

− + 3H+

4CH3OH→ 3CH4 + HCO3
− + H2O + H+

2(CH3)2S + 3H2O→ 3CH4 + HCO3
−

+ 2H2S + H+

4CH3NH3Cl + 2H2O→ 3CH4 + CO2 + 4NH4Cl
CH3COO− + H2O→ CH4 + HCO3

−

[100]
Methanobrevibacter millerae [101]
Methanobrevibacter smithii [101]
Methanobrevibacter thaueri [102]

Methanobrevibacter
ruminantium [75]

Methanobrevibacter olleyae [103]
Methanosphaera stadtmanae [104]

Thermoplasmata [101]
Methanomicrobium mobile [53]
Methanobacterium lacus [53]

Methanobacterium formicicum [105]
Methanomicrobium bryantii [53]

Methanosarcina barkeri [106]
Methanosarcina mazei [53]

The use of antibiotics to mitigate methane production in ruminants has sparked a
contentious debate owing to their various limitations and drawbacks. Firstly, antibiotics
can encourage the development of antibiotic-resistant bacteria, which pose a serious threat
to human and animal health [107]. Secondly, the potential presence of antibiotic residues in
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animal products, such as meat and milk, may represent a health concern for consumers [108].
Finally, the absence of stringent regulations governing antibiotic use in animal agriculture
may lead to some farmers misusing antibiotics to increase feed efficiency or growth rates,
rather than to reduce methane emissions [109]. Consequently, researchers have shifted
their focus to identifying natural compounds with antimicrobial properties as alternatives
to antibiotics. Plant extracts, such as saponins, tannins, and essential oils, have the ability
to inhibit methanogenic bacteria in the rumen and decrease methane emissions [110,111].
Furthermore, some researchers have explored the feasibility of using seaweed extracts
containing polysaccharides with antimicrobial properties as feed additives to limit the
methane produced by ruminants [112].

Polysaccharides derived from both macro- and microalgae exhibit antimicrobial prop-
erties against yeasts and pathogenic bacteria. The mechanisms by which these polysaccha-
rides exert their antimicrobial effects vary. The disruption of microbial cell walls is one of
the predominant mechanisms employed by MAPs. MAPs bind to and disrupt the outer
membranes of bacteria, causing the release of cellular components and, eventually, cell
death (Figure 3). Sulphated galactans derived from Eucheuma serra and Gracilari verrucosa
hindered the growth of Escherichia coli K88 by penetrating the cell wall and eventually
reaching the interior of the bacterium. However, these sulphated galactans did not affect
the proliferation of three intestinal probiotics or a yeast (Saccharomyces cerevisiae) [113]. The
presence of sulphate or uronic acid groups in MAPs is closely linked to their antimicrobial
properties. For example, κ-carrageenan, obtained from the red alga Hypnea musciformis,
demonstrated effective antibacterial and antifungal effects against Staphylococcus aureus
(IC50 = 48.2 µg/mL) and Candida albicans (IC50 = 147.3 µg/mL) [114]. Ulvan, extracted
from the green seaweed Ulva reticulata, consists of a repeating disaccharide unit with
a backbone of [→4)-D-GlcA (1 → 4)α-L-Rha3S-(1→]. It contains approximately 17.6%
sulphate and 22.5% uronic acid and exhibits considerable antimicrobial activity against
Enterobacter cloacae and Escherichia coli [115]. In contrast, the ulvan derived from Ulva fasciata
is inactive against various bacteria, including Bacillus cereus, Candida albicans, Escherichia
coli, Micrococcus luteus, Pseudomonas aeruginosa, and Staphylococcus aureus [116].
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Figure 3. The antimicrobial mechanism of MAPs against bacteria involves increasing the permeability
of bacterial cell membranes.

MAPs exhibit a remarkable ability to impede the attachment and colonisation of host
cells by pathogens, thereby effectively preventing infection. Specific polysaccharides hinder
the adhesion of pathogenic bacteria to intestinal cells, thereby inhibiting their colonisa-
tion and subsequent infection. The negatively charged sulphated groups within these
polysaccharides are vital in interfering with pathogen adhesion to host cells. Pathogenic
microorganisms rely on specific protein–carbohydrate interactions to bind to host cells and
initiate infection. By mimicking these carbohydrate structures, the sulphated groups present
in fucoidan and carrageenan can bind to the adhesion proteins of pathogens, obstructing
their attachment to host cells [117]. This impedes the ability of the pathogen to colonise
and infect the host. The results of an in vitro study demonstrated the effectiveness of fu-
coidans derived from Fucus vesiculosus and Undaria pinnatifida in a dose-dependent manner,
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disrupting the adherence of Helicobacter pylori to adenocarcinoma epithelial cells [118]. Ad-
ditionally, sulphated galactans that were depolymerised and possessed a molecular weight
of ≤20.0 kDa, obtained from Eucheuma serra and Gracilaria verrucosa, exhibited efficacy in
inhibiting the adhesion of pathogenic bacteria, such as Escherichia coli K88, to the cell wall
of Saccharomyces cerevisiae [119].

The immune-stimulating properties of MAPs provide an indirect mechanism through
which to inhibit pathogens via promoting immune responses and triggering the production
of reactive oxygen species (ROS). Algal polysaccharides can enhance the activity of immune
cells, such as macrophages and natural killer cells, leading to the increased clearance of
pathogens. Rabee et al. investigated the effects of a feed supplement containing a mixture of
yeast (Saccharomyces cerevisiae) and microalgae (Spirulina platensis and Chlorella vulgaris) on
feed intake, which resulted in enhanced immunological parameters in the blood of camels
and sheep [120]. Additionally, the purification of sulphated polysaccharides from Ulva per-
tusa revealed that fractions with higher molecular weights demonstrated two-times-higher
macrophage functionality compared with lower-molecular-weight fractions [121]. This
highlights the importance of the structure–function relationship, particularly the impact of
the molecular weight, on the biological activity of ulvan. Researchers have recently focused
on harnessing ROS and oxidative stress to develop effective strategies against infection,
based on the finding that microbicidal antibiotics induce ROS generation in host defence
cells such as neutrophils and macrophages [122]. MAPs can also stimulate ROS production,
which directly damages and eliminates pathogens. For example, sulphated polysaccharides
derived from Padina tetrastromatica increased ROS generation [123].

In summary, the polysaccharides derived from marine algae hold considerable promise
as substitutes for antibiotics and synthetic additives to reduce methane emissions from
ruminants. These polysaccharides possess antimicrobial properties, are cost-effective, have
low toxicity toward mammalian cells, and are readily available, so they could decrease
both chemical use and drug resistance. In addition, these feed additives are sustainable and
renewable, making them attractive solutions to reduce the environmental impact of animal
agriculture while maintaining animal productivity and profitability. However, additional
research is necessary to comprehensively assess their potential and optimise their use as
feed additives in ruminant diets.

6. Future Trends and Conclusions

The use of MAPs as feed additives to mitigate methane emissions in ruminants
presents a promising opportunity to address the pressing issue of greenhouse gas emis-
sions. MAPs have demonstrated the ability to reduce methane production in ruminants
through diverse mechanisms, including the modification of rumen fermentation, manipu-
lation of microbial populations, modulation of gut-derived metabolites, and inhibition of
the enzymes involved in methane synthesis. This critical review presented several notable
findings regarding the effects of MAPs as feed additives for methane mitigation in rumi-
nants. Firstly, the inclusion of MAPs in ruminant diets leads to the discernible modulation
of the rumen microbial population, favouring the growth of beneficial microorganisms
while inhibiting methanogens. This shift in microbial composition contributes to reduced
methane production. Secondly, MAPs alter rumen fermentation patterns by promoting
the production of propionate and other VFAs, while limiting the hydrogen available for
methanogenesis. This metabolic redirection further contributes to decreased methane
emissions. Finally, certain MAPs demonstrate antimicrobial activity, directly inhibiting
methanogens and offering another avenue by which to reduce methane (Figure 4).
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Despite these positive outcomes, we identified limitations, such as the lack of long-
term studies and the variability in the responses among different animal species and diets.
To address these shortcomings, we recommend conducting more comprehensive, long-term
studies. In addition, when assessing the effectiveness of these feed additives, we must
consider their practical implementation and feasibility. Factors such as cost-effectiveness,
scalability, the types of MAs, dosage, supplementation duration, and performance should
be carefully evaluated to determine the viability of incorporating MAPs into livestock
production systems. Furthermore, long-term studies and comprehensive assessments
of animal health are essential to ensure the safety and well-being of ruminant livestock.
Continued interdisciplinary research, collaboration, and innovation are increasingly impor-
tant for the development of sustainable and effective strategies to reduce greenhouse gas
emissions in the livestock industry. The integration of seaweed-based feed additives has
substantial potential to promote a more sustainable and environmentally friendly approach
to ruminant farming, thereby supporting global efforts to mitigate climate change.
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